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LOCAL PROPERTIES AND MAXIMAL TYCHONOFF

CONNECTED SPACES

By

J. van Mill,1 M. G. Tkachenko,1 V. V. Tkachuk,1 R. G. Wilson1

Abstract. We prove that, if X is a Tychono¤ connected space and

wðx;XÞao for some x A X , then there exists a strictly stronger

Tychono¤ connected topology on the space X , i.e., the space X is

not maximal Tychono¤ connected. We also establish that if X is

locally connected or s-compact or has pointwise countable type then

X cannot be maximal Tychono¤ connected.

1. Introduction

A connected space X is called maximal connected if no strictly stronger

topology on X is connected. The concept was introduced in [Tho], where ex-

amples of maximal connected T1-spaces were constructed. Later, maximal con-

nected spaces were studied in [GRS], [GS] and [GSW]. In this last paper and in

[Si], maximal connected strengthenings of the usual topology on the real line R

were constructed; the space R being Hausdor¤, any strengthening is Hausdor¤ as

well. In [NlW] it was shown that maximal connected T1-spaces must be sub-

maximal (i.e., all their dense subspaces are open); however, very few non-trivial

examples of submaximal T3-spaces without isolated points are known (see for

example [vD]), and all known are (at least) totally disconnected. In particular, it

is still an open question as to whether there exists a connected submaximal T3-

space. A lot of research has been done here; it is known, for example, that any

infinite submaximal Tychono¤ space which is either first countable, separable or
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compact is totally disconnected (see [AC, 4.8, 4.12 and 5.10], where even stronger

results are given).

In view of these results it is natural to ask whether there is a maximal

Tychono¤ connected space, that is, an infinite connected Tychono¤ space X such

that any stronger Tychono¤ topology on X is disconnected. Such spaces do not

apparently have to be submaximal so the results of [AC] mentioned in the pre-

ceding paragraph do not apply. Even so, the folklore suspicion was that such

spaces do not exist. The first steps of an attempted proof were taken in [Jo],

where it was shown that there exists a connected group topology on the reals R

which is stronger than the usual one (see also Example 2.10 of [ATTW]); in [TVs]

stronger connected group topologies were constructed for certain Abelian topo-

logical groups.

It was later shown in [STTWW] that if X is a first countable or a separable

or a locally Čech-complete infinite connected Tychono¤ space, then it has a

strictly stronger connected Tychono¤ topology, that is, it is not maximal

Tychono¤ connected. The results were new even for the classes of metrizable or

compact spaces.

A well-known class containing all first countable and locally Čech-complete

spaces is the class of spaces of pointwise countable type. In this paper we prove

that all spaces with this property are not maximal Tychono¤ connected,

answering positively Problem 2 from [STTWW]. Another result is that no

Tychono¤ locally connected connected space is maximal Tychono¤ connected.

We also establish that if a Tychono¤ connected space has a point of countable

character or is s-compact then it cannot be maximal Tychono¤ connected.

2. Notation and Terminology

All spaces are assumed to be Tychono¤. Given a space X the family tðXÞ
is its topology and t�ðX Þ ¼ tðXÞnfqg. If Y HX and A is a family of subsets

of X then AjY ¼ fAVY : A A Ag. We denote by R the set of the reals with its

natural topology; IHR is the set ½0; 1�. If X is a space and f : X ! Y is a map

then Gð f Þ ¼ fðx; f ðxÞÞ : x A XgHX � Y is its graph. A connected space is called

non-trivial if it has more than one point; for technical reasons we consider that

the empty space is not connected. If X is connected then x A X is called an

endpoint of X if Xnfxg is also connected.

A set F HX is a zero-set in the space X if there is a continuous f : X ! I

such that F ¼ f �1ð0Þ. If X is a space and F HX then a family BH tðXÞ is an

outer base of F in X if for any V A tðXÞ with F HV there is U A B such that
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F HU HV . The set F has countable outer character in X if it has a countable

outer base in X . A space X is of pointwise countable type if it can be covered with

compact subspaces of countable outer character in X . The symbol r denotes the

end of the proofs of numbered statements; to indicate that a substatement’s proof

is finished, we use the symbol p.

If S is a set then ½S�2 ¼ fT HS : jT j ¼ 2g is the set of all non-ordered pairs

of the elements of S. If F H ½S�2 then a set AHS is homogeneous with respect to

F if ½A�2 HF . The rest of our notation is standard and can be found in [En].

3. General Properties of Maximal Tychono¤ Connected Spaces

After a great deal of hard work on extending connected Tychono¤ topologies

the authors became convinced that it is highly probable that maximal Tychono¤

connected spaces exist. They could not prove it, however, so all results about

maximal Tychono¤ connected spaces could announce properties of an empty class.

On the other hand, while there is no proof that the class of maximal Tychono¤

connected spaces is empty, looking at its properties might be of use when studying

connected spaces.

3.1. Proposition. The following are equivalent for any Tychono¤ space X :

(1) X is maximal Tychono¤ connected;

(2) for any function f : X ! I its graph Gð f ÞHX � I is connected if and only

if f is continuous.

Proof. There is a continuous one-to-one map of Gð f Þ onto X for any

function f : X ! I. If f is continuous then Gð f Þ is homeomorphic to X so Gð f Þ
is connected. If f is discontinuous then the projection of Gð f Þ onto X is not a

homeomorphism so Gð f Þ has to be disconnected because otherwise, by identifying

the set Gð f Þ with X , we obtain a strictly stronger connected Tychono¤ topology

on X . This proves (1) ) (2).

Now assume that X is not maximal Tychono¤ connected. Then there is

a connected Tychono¤ topology t 0 on X such that t 0 0 tH t 0. Since t 0 and t

are Tychono¤, there is a function f : X ! I such that f is t 0-continuous and not

t-continuous. Let X 0 ¼ ðX ; t 0Þ and denote by i : X 0 ! X the identity map. It is

clear that the graph G 0 ¼ Gð f Þ considered as a subspace of the space X 0 � I is

homeomorphic to X 0 so G 0 is connected. Now, if j : I ! I is the identity map

then h ¼ i � j maps X 0 � I continuously onto X � I and hðG 0Þ ¼ Gð f Þ. Thus

f : X ! I is a discontinuous function whose graph is connected; this contradicts

(2) and hence (2) ) (1). r
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3.2. Lemma. Given a connected space X and a continuous function f : X ! I

assume that the set F ¼ f �1ð0Þ is non-empty and U 0q is a clopen subspace of

XnF. Then ð0; eÞH f ðUÞ for some e > 0.

Proof. If our statement is not true then we can choose a strictly decreasing

sequence frn : n A ogH ð0; 1Þn f ðUÞ such that rn ! 0. Pick an arbitrary y A U

and n A o such that rn < f ðyÞ. Then y A V ¼ Un f �1ð½0; rn�Þ ¼ Un f �1ð½0; rnÞÞ and

therefore V is a clopen non-empty proper subset of X which contradicts the

connectedness of X . r

3.3. Theorem. Let X be a connected space for which there exists a continuous

surjective function j : X ! I with the following properties:

(a) the set S ¼ j�1ð0Þ is connected;

(b) if On ¼ j�1 0; 1
n

� �� �
for all n A N then the family O ¼ fOn : n A Ng is an

outer base of S in X.

Then X has a strictly stronger connected Tychono¤ topology.

Proof. Let Y ¼ XnS; since j is surjective, Bn ¼ j�1 1
n

� �
0q for all n A N.

It follows from Lemma 3.2 that

(*) if C is clopen in Y and C 0q then C VBn 0q for all but finitely

many n.

The function h ¼ 1
j

is continuous on Y and fhðBnÞ : n A Ng is a discrete

family of singletons in R. An evident consequence is that there is a continuous

function a : Y ! I such that aðBnÞ ¼ 0 if n is even and aðBnÞ ¼ 1 for each odd

n A N. Define f : X ! I by f ðxÞ ¼ 0 for any x A S and f jY ¼ a; it follows from

(b) of our hypothesis that f is discontinuous. By Proposition 3.1, all there

remains to prove is that Gð f Þ is connected.

Assume the contrary and denote by p : Gð f Þ ! X the natural projection;

let S 0 ¼ S � f0gHGð f Þ and pick a clopen non-empty proper subset D of Gð f Þ
with DVS 0 0q. Since the set S 0 is connected, we have S 0 HD so C ¼ Gð f ÞnD

is a clopen non-empty proper subset of Gð f Þ for which C VS 0 ¼ q. Since a is a

continuous map and GðaÞ ¼ Gð f ÞnS 0, the map pjGðaÞ : GðaÞ ! Y is a homeo-

morphism so U ¼ pðCÞ is a non-empty clopen subset of Y .

It follows from (*) that there is m A N such that U VBn 0q for all nbm;

choose a point xn A U VBn for any n A N0 ¼ fk A N : k bm and k is eveng.

Since the family O is an outer base of S in X , there is a cluster point x A S for

the sequence fxn : n A N0g. Then P ¼ fðxn; 0Þ : n A N0gHC and ðx; 0Þ A C VD

which is a contradiction. Thus Gð f Þ is connected so X admits a strictly stronger

connected topology by Proposition 3.1. r
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The following result, often referred to as Kuratowski’s Lemma, is part of the

folklore; its proof can be found in [Ko, Chapter 2, § 5].

3.4. Theorem. Let X be a connected space with a connected subspace C. If S

is a component of XnC, then XnS is connected.

From now on, for any space X we denote by UX the collection of all con-

nected open U HX such that jUnU j ¼ 1 and XnU 0q. The unique point in

UnU will be denoted by xU .

3.5. Proposition. Let X be a connected space. Then,

(1) if U A UX then U is a component of XnfxUg and XnU is connected;

(2) if U ;V A UX and xV A U then either V HU or U UV ¼ X ;

(3) if U A tðX Þ and jUnU j ¼ 1 then U is connected;

(4) if fU0; . . . ;UngH tðXÞ, the family fU0; . . . ;Ung is disjoint and

jUinUij ¼ 1 for each i a n, then F ¼ Xn6fUi : i a ng is connected and Ui UF is

connected for every i a n.

Proof. The first part of (1) is trivial because XnfxUg is the union of the

disjoint open sets U and XnU while U is connected. The second part of (1)

follows from the first part and Theorem 3.4 (with C ¼ fxUg and S ¼ U).

To prove (2) note that XnU is connected by (1) so it is either contained in V

or in XnV , i.e., U UV ¼ X or V HU .

For (3), there is x A X such that UnU ¼ fxg; if U is disconnected then

U ¼ E UF for some non-empty disjoint closed sets E and F . If x A E then F is

clopen in X , and if x A F then E is clopen in X which contradicts connectedness

of X .

As to (4), let UinUi ¼ fxig and Fi ¼ XnUi for every i a n. Assume that F ¼
7

ian
Fi is not connected; then F ¼ E0 UE1 for some disjoint non-empty closed

sets E0 and E1. Observe that fx0; . . . ; xngHF and let ÊEj ¼ Ej U6fUi : xi A Ejg
for every j A f0; 1g. It is immediate that ÊE0 and ÊE1 form a partition of X into

disjoint closed sets, which contradicts the connectedness of X ; this shows that F

is connected.

For the second part of (4) observe that Ui is connected by (3) and xi A Ui VF

so Ui UF is connected being a union of two connected non-disjoint sets. r

3.6. Proposition. Let X be a maximal Tychono¤ connected space. Then,

(1) for any disjoint non-trivial connected sets A;BHX there is a set U A UX

such that either AHU and BHXnU or vice versa;
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(2) if A;BHX are connected disjoint sets then jAVBja 1;

(3) if connected sets A;BHX are disjoint and AUB ¼ X then AVB is a

singleton.

Proof. (1) Let B 0 be the component of XnA that contains B, and A 0 ¼
XnB 0. Then the set A 0 is connected by Theorem 3.4 and we have AHA 0, BHB 0

while A 0 UB 0 ¼ X and A 0 VB 0 ¼ q. Since X is connected, we have A 0 VB 0 0q.

If jA 0 VB 0j > 1, fix distinct points a; b A A 0 VB 0. We can assume, without

loss of generality, that a A A 0. Take a continuous g : X ! I such that gðaÞ ¼ 0

and gðbÞ ¼ 1 and define a function f : X ! I as follows: f ðxÞ ¼ 0 for all x A B 0

and f ðxÞ ¼ gðxÞ for every x A A 0. It is evident that f is discontinuous at b

independently of whether b A A 0 or not.

Let us show that the graph Gð f Þ of the function f is connected. Indeed, the

set GB 0 ¼ fðx; 0Þ : x A B 0 U fagg is homeomorphic to B 0 U fag and hence con-

nected. Analogously, f jA 0 is continuous so GA 0 ¼ Gð f ÞV ðA 0 � IÞ is also con-

nected. Thus Gð f Þ ¼ GA 0 UGB 0 is a union of two connected subspaces with a

non-empty intersection. Therefore Gð f Þ is connected which in light of Proposition

3.1 shows that X is not maximal Tychono¤ connected. This contradiction proves

that A 0 VB 0 ¼ fxg for some x A X ; if x A A 0 then A 0 is closed in X and hence

U ¼ B 0 A UX is as promised. Analogously, if x A B 0 then U ¼ A 0 A UX while

AHU and BHB 0 ¼ XnU . This settles (1).

To prove (2) apply (1) to find U A UX such that AHU and BHXnU or vice

versa. It is immediate that in both cases we have AVBHU VXnU ¼ fxUg.

As to the statement of (3), it follows from (2) that jAVBja 1; since A and B

are non-empty (recall that we consider that empty spaces are not connected), an

immediate consequence of the connectedness of X is that AVB0q so we have

jAVBj ¼ 1. r

3.7. Proposition. If X is a maximal Tychono¤ space and U HX is a non-

trivial open connected subset of X then U (with the topology inherited from X ) is

also a maximal Tychono¤ connected space.

Proof. Let t be the topology of X and assume that there is a Tychono¤

connected topology m on U such that m0 tjU H m. Let t 0 be the topology on X

generated by the family tU m as a subbase; then tH t 0 and t 0 0 t.

To see that t 0 is Tychono¤ take any x A X and V A t 0 with x A V . Assume

first that x A U and take W A t such that x A W HW HU (the bar denotes the

closure in ðX ; tÞ). Then V 0 ¼ V VW A m and x A V 0 so there is a m-continuous
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function f : U ! I such that f ðxÞ ¼ 1 and f jðUnV 0Þ1 0. Letting gðyÞ ¼ f ðyÞ
for all y A U and gðyÞ ¼ 0 for all y A XnU we obtain a function g : X ! I

such that gðxÞ ¼ 1 and gjðXnVÞ1 0. To see that g is t 0-continuous observe that

it is t 0-continuous on U (because its restriction to U coincides with the m-

continuous function f ) and constant on a t-open set XnW . Therefore g is locally

t 0-continuous and hence continuous on ðX ; t 0Þ.
Now, if x A XnU then tx ¼ fU A t : x A Ug is a local base at x in ðX ; t 0Þ so

there is W A t such that x A W HV . The space X being Tychono¤ there is a

t-continuous function f : X ! I such that f ðxÞ ¼ 1 and f jðXnWÞ1 0. It is clear

that f is continuous on ðX ; t 0Þ and witnesses the Tychono¤ property at x in

ðX ; t 0Þ.
Finally, to see that the space X 0 ¼ ðX ; t 0Þ is connected take a t 0-clopen set

W such that W VU 0q. Since t 0jU ¼ m, the space ðU ; t 0jUÞ is connected so

U HW . Let W 0 ¼ XnW ; the family ty ¼ fG A t : y A Gg is a local base at y in

X 0 for any y A XnU which implies, together with W 0 HXnU , that W 0 is open in

X . Besides, any point of W nU has a t-open neighbourhood contained in W ;

since U is also a t-open neighbourhood of any element of U , we conclude that

the set W is t-open as well, i.e., W is a clopen subset of X . The space X being

connected we have W ¼ X and hence X 0 is connected. Since X is a maximal

Tychono¤ connected space, we obtained a contradiction which proves that U is

also maximal Tychono¤ connected. r

3.8. Theorem. Suppose that j : X ! Y is a continuous monotone open

surjective map. If X is maximal Tychono¤ connected then Y is also maximal

Tychono¤ connected.

Proof. It is clear that Y is connected. If it is not maximal Tychono¤

connected then it follows from Proposition 3.1 that there exists a discontinuous

function g : Y ! I such that its graph GðgÞ is connected. The function f ¼ g � j
is discontinuous because j is a quotient map so it su‰ces by Proposition 3.1 to

prove that Gð f Þ is connected.

If id : I ! I is the identity map then F ¼ j� id : X � I ! Y � I is open,

monotone and Gð f Þ ¼ F�1ðGðgÞÞ so the mapping F 0 ¼ FjGð f Þ is open and

monotone as well. Since the inverse image of a connected space under a

monotone open map has to be connected, the set Gð f Þ is connected which

contradicts maximal Tychono¤ connectedness of X . r

We will now turn our attention to countably compact spaces. The methods

of [STTWW] are not applicable to that class of spaces because of the existence of
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a dense-in-itself countably compact space all countable subspaces of which are

scattered (see [JvM]).

3.9. Theorem. Let X be a normal, countably compact, maximal connected

Tychono¤ space. Then UX is finite.

Proof. Assume, towards a contradiction, that UX is infinite.

Claim 1. Let UH t�ðXÞ be an infinite pairwise disjoint collection. If A ¼
Xn6U then there is U A U such that AUU is not connected.

To prove Claim 1 assume that AUU is connected and pick a point xU A U

for every U A U. Since X is countably compact, the set fxU : U A Ug has a

cluster point z A A. For every U A U pick a continuous function fU : U UA ! I

such that fU ðAÞ ¼ 0 and fUðxU Þ ¼ 1. If f ¼ 6
U AU fU , then f is discontinuous

at the point z and Gð f Þ ¼ 6fGð fUÞ : U A Ug while Gð fUÞ is homeomorphic to

AUU and hence connected for every U A U. Since the connected sets Gð fUÞ have

a non-empty intersection Gð f jAÞ, the set Gð f Þ is connected, which, together with

Proposition 3.1, contradicts the maximal Tychono¤ connectedness of X . p

Claim 2. If x A X then the family of all components of Xnfxg contains at

most finitely many elements that are open in X .

Suppose that C ¼ fCn : n A ogH t�ðX Þ is a fathfully indexed collection of

components of Xnfxg. By Theorem 3.4 the set F0 ¼ XnC0 is connected. Now,

assume that n A o and we proved that Fi ¼ Xnð6fCk : k a igÞ is connected

for any i a n. Since Cnþ1 is a component of Fnnfxg, the set Fnþ1 ¼ FnnCnþ1

is connected. Thus Fn ¼ Xnð6fCk : k a ngÞ is connected for any n A o which

implies, together with countable compactness and normality of X , that Y ¼
Xn6C is connected. Since for every C A C we have x A C, the set C UY is

connected as well which is a contradiction with Claim 1. p

Claim 3. There exists no infinite VHUX such that the family fV : V A Vg
is pairwise disjoint.

If Claim 3 is false then there is a family V ¼ fVn : n A ogHUX such that

V n VV m ¼ q whenever n0m. If Sn ¼ 7fXnVi : i a ng then Sn is connected for

every n A o by Proposition 3.5. It follows from countable compactness and

normality of X that S ¼ 7fSn : n A og is non-empty and connected. Observe that

the components of XnS are precisely the sets Vn and S UVn is connected for

every n because xVn
A V n VS. This gives a contradiction with Claim 1. p
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Fix an element U A UX . By Claim 2, the collection fV A UX : xV ¼ xUg is

finite because if V A UX then V is a component of XnfxVg (see Proposition 3.5).

Since UX is infinite, we can find a sequence fUn : n A ogHUX such that if n0m

then xUn
0 xUm

; for the sake of brevity let xn ¼ xUn
for all n A o.

Claim 4. There is no infinite AHo such that for all distinct n;m A A we

have Un UUm ¼ X .

If Claim 4 is false, then there is an infinite AHo such that for any pair

of distinct m; n A A we have Un UUm ¼ X ; let Vn ¼ XnUn for any n A A. The

collection fVn : n A Ag is pairwise disjoint so the set Sn ¼ Xn6fVi : i A A; i a ng
is connected for every n by Proposition 3.5. It follows from countable com-

pactness and normality of X that S ¼ Xnð6
n AA

VnÞ ¼ 7
n AA

Un is connected.

We have XnS ¼ 6
n AA

Vn and Vn U fxng ¼ V n is connected for every n A A (see

Proposition 3.5). Now, xn A S and hence Vn US is connected for every n; this is

again a contradiction with Claim 1. p

In what follows we will need the sets E0 ¼ fp A ½o�2: if m; n A p and m < n

then xm A Ung and E1 ¼ fp A ½o�2: if m; n A p and m < n then xn A Umg as well

as E2 ¼ ½o�2nðE0 UE1Þ. The following three Claims show that, for any i A f0; 1; 2g
there is no infinite homogeneous set for Ei which contradicts Ramsey’s theorem

(see [Ru, Chapter II, page 8]). Thus our proof will be complete after we establish

Claims 5–7.

Claim 5. There is no infinite homogeneous set for E0.

Indeed, if AHo is an infinite homogeneous set for E0 then it follows

from Proposition 3.5 that ½A�2 ¼ E00 UE01 where E00 ¼ fp A ½A�2: if m; n A p

and m < n then Um HUng and E01 ¼ fp A ½A�2: if m; n A p and m < n then

Un UUm ¼ Xg. Now apply Ramsey’s theorem to find an infinite BHA such that

B is homogeneous either for E00 or for E01.

If B is homogeneous for E00 then we have a collection fUn : n A Bg such that

Un HUm whenever n;m A B and n < m. If Vn ¼ XnUn then VnnVn ¼ fxng so

V m HVn for all m; n A B such that n < m. As a consequence, we obtain a set

S ¼ 7fVn : n A Bg ¼ 7fV n : n A Bg which is a connected zero-set of countable

outer character in X . Using normality of X it is easy to construct a continuous

function j : X ! I as in Theorem 3.3 which is a contradiction with maximal

Tychono¤ connectedness of X .

Now, if BHA is an infinite homogeneous set for E01 then fUn : n A Bg is an

infinite family for which Un UUm ¼ X for any distinct m; n A B; this contradicts

Claim 4. p
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Claim 6. There is no infinite homogeneous set for E1.

Indeed, if AHo is an infinite homogeneous set for E1 then it follows

from Proposition 3.5 that ½A�2 ¼ E10 UE11 where E10 ¼ fp A ½A�2: if m; n A p

and m < n then Un HUmg and E11 ¼ fp A ½A�2: if m; n A p and m < n then

Un UUm ¼ Xg. Now apply Ramsey’s theorem to find an infinite BHA such that

B is homogeneous either for E10 or for E11.

If B is homogeneous for E10 then we have a collection fUn : n A Bg such that

Um HUn whenever n;m A B and n < m. As a consequence, we obtain a set S ¼
7fUn : n A Bg ¼ 7fUn : n A Bg which is a connected zero-set of countable outer

character in X . Using normality of X it is easy to construct a continuous function

j : X ! I satisfying the hypothesis of Theorem 3.3 and hence X is not maximal

Tychono¤ connected.

Now, if BHA is an infinite homogeneous set for E11 then again fUn : n A Bg
is an infinite family for which Un UUm ¼ X for any distinct m; n A B; this con-

tradicts Claim 4. p

Claim 7. There is no homogeneous infinite set for E2.

Indeed, if AHo is an infinite homogeneous set for E2 then xn B Um and

xm B Un for all distinct m; n A A. Then the collection fUn : n A Ag is pairwise

disjoint for otherwise there are distinct m; n A A with Un VUm 0q and hence

Un VUm ¼ Un VUm (we have to recall that xn 0 xm and apply Proposition 3.6)

is a clopen non-empty proper subset of X , which is impossible by connectedness

of X . This contradiction with Claim 3 shows that Claim 7 is settled. p

Thus we obtained a decomposition ½o�2 ¼ E0 UE1 UE2 with no homogeneous

infinite set for all i A f0; 1; 2g. This contradiction with Ramsey’s theorem finishes

our proof. r

3.10. Remark. Perhaps the reader feels that a better theorem would be that

UX is empty. This would indeed be the case. However, we do not know whether

there is a normal, countably compact, maximal Tychono¤ connected space. It is

worth noting, however, that if there is a normal, countably compact, maximal

Tychono¤ connected space X with an endpoint then there is one for which

UX 0q.

Proof. Let X be a normal, countably compact maximal Tychono¤ con-

nected space with a endpoint x. Consider the disjoint topological sum of two

copies of X , i.e.,
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ðX � f0gÞU ðX � f1gÞ;

and identify the points ðx; 0Þ and ðx; 1Þ. The resulting space Y is again normal,

countably compact, maximal Tychono¤ connected and UY 0q. r

A similar trick cannot be repeated infinitely often, since then it is clear that

one loses countable compactness. So it seems that, in a sense, Theorem 3.9 is the

best possible.

3.11. Corollary. Let X be a non-trivial, normal, countably compact, maxi-

mal Tychono¤ connected space. Then every disjoint family of non-trivial connected

subsets of X is finite.

Proof. Let A be a countably infinite family of pairwise disjoint non-trivial

connected sets in X . By Theorem 3.9, the family UX is finite, say UX ¼
fU0; . . . ;Ung. If no Ui contains infinitely many elements from A then we may

pick distinct A;B A A such that AnUi 0q0BnUi for every i a n. Since this

contradicts Proposition 3.6, we may assume, without loss of generality, that every

element of A is contained in U0. Proposition 3.6 implies that all the pairs of

elements of A can be ‘separated’ by an element of the collection UXnfU0g so we

can repeat the same reasoning to throw out one more element of UX ; after at

most n steps this evidently leads to a contradiction. r

3.12. Remark. Every non-trivial continuum X contains an infinite pairwise

disjoint family of non-trivial subcontinua. To see it, take an infinite family

UH t�ðX Þ such that the collection fU : U A Ug is disjoint. For any U A U choose

xU A U and observe that the component CU of the point xU in the space U is

non-trivial because it has to intersect the boundary of U (see [En, Lemma 6.1.25]).

Thus Corollary 3.11 implies that no non-trivial continuum is maximal Tychono¤

connected providing, therefore, another method for the proof of Theorem 2 of

[STTWW] for the compact case.

3.13. Corollary. Let X be a non-trivial, normal, countably compact, maxi-

mal Tychono¤ connected space. Then X contains a dense open totally disconnected

subspace.

Proof. Every non-empty open subset of X contains an infinite disjoint

family of non-empty open subsets of X . This means that one of them is totally
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disconnected by Corollary 3.11. So, a maximal family of totally disconnected

open subspaces of X has dense union and is, clearly, totally disconnected. r

4. Classes in which Connected Tychono¤ Topologies can be Strengthened

The results of this section show that many local properties of a connected

space X imply that X is not maximal Tychono¤ connected. The analogous global

properties discovered so far imply, in some sense, that there exist ‘‘large’’ compact

subsets in the space X .

4.1. Theorem. Let X be a non-trivial connected Tychono¤ space containing

at least one point of countable character. Then X admits a strictly stronger con-

nected Tychono¤ topology.

Proof. Let X be first countable at the point x. It is easy to find a continuous

surjective function j : X ! I such that jðxÞ ¼ 0 and fUn ¼ j�1ð½0; 1=nÞÞ : n A Ng
is a local base at x in X . Now apply Theorem 3.3 to conclude the proof. r

4.2. Theorem. Let X be a non-trivial connected Tychono¤ space that is the

union of a family of fewer than c compact subspaces. Then X admits a strictly

stronger connected Tychono¤ topology.

Proof. Let K be the family of all compact dense-in-themselves subspaces

of X , and consider the set F ¼ 6K. If F ¼ X then we can apply Lemma 2 and

Theorem 1 of [STTWW] to obtain the desired result. So assume that U ¼ XnF is

non-empty and pick a non-empty open subset V of X such that V HU . Then V

is the union of fewer than c compact subspaces that all have to be scattered.

We claim that V is zero-dimensional; to see it, pick an arbitrary continuous

function f : V ! R. Since for every scattered compact E HV the set f ðEÞ is

scattered and hence countable, the space f ðVÞ has size strictly less than c. The

space V being Tychono¤, it has to be zero-dimensional. But no open subset of a

connected space is zero-dimensional, which is a contradiction. r

4.3. Corollary. Let X be a non-trivial connected s-compact Tychono¤

space. Then X admits a strictly stronger connected Tychono¤ topology.

Recall that a space X is of pointwise countable type if it is a union of a family

of compact subspaces each having a countable outer base in X . It is not hard

to prove that every Čech-complete space is of pointwise countable type. It was

shown in Theorem 4 in [STTWW] that if X is a connected Tychono¤ space of
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pointwise countable type and cðX Þ ¼ o then X admits a strictly stronger con-

nected Tychono¤ topology. The following result shows that there is no need to

assume the Souslin property of X and answers Problem 2 of [STTWW].

4.4. Theorem. Let X be a non-trivial connected Tychono¤ space of pointwise

countable type. Then X admits a strictly stronger connected Tychono¤ topology.

Proof. Again, let K be the family of all compact dense-in-themselves sub-

spaces of X , and put F ¼ 6K. If F ¼ X then we can apply Lemma 2 and

Theorem 1 of [STTWW] to obtain the desired result. So we assume that U ¼ XnF

is non-empty. Pick x A U , and a compact subspace K C x of X with a countable

neighbourhood base. In addition, let V be an open neighbourhood of x such

that V HU . Then V VK is compact and scattered. Hence the non-empty open

subspace V VK of V VK has an isolated point, say y. But then y is an isolated

point of K so X is first countable at y because K has a countable outer base in

X . Now apply Theorem 4.1 to complete the proof. r

4.5. Theorem. If X is a non-trivial Tychono¤ connected and locally connected

space then there exists a strictly stronger connected Tychono¤ topology on X .

Proof. Fix a continuous j : X ! I such that F ¼ j�1ð0Þ0q and U ¼
XnF 0q. Consider the sets Bn ¼ j�1 1

n

� �
, On ¼ j�1 0; 1

n

� �� �
and Pn ¼ On UBn for

any n A N. We will also need the sets C m
n ¼ j�1 1

m
; 1

n

� �� �
and Dm

n ¼ j�1 1
m
; 1

n

� �� �

for any m; n A N with n < m. Furthermore, N0 ¼ fn : n A N and n is eveng and

N1 ¼ fn : n A N and n is oddg. Observe first that

(i) if G is a clopen subset of U and G VC nþ1
n 0q then G VBk 0q for any

k > n,

because otherwise GnOk ¼ GnPk is a clopen non-empty proper subset of X .

Furthermore,

(ii) if G is a clopen subset of U and x A G VF then x A 6fG VBi : i A Ag for

any infinite AHN.

To see that (ii) is true assume that W is an open connected neighbourhood

of x such that W VP ¼ q where P ¼ 6fG VBi : i A Ag. Take any m A A; since

W VOm is a neighbourhood of x, we have Om VW VG 0q so there is k bm

and a point y A C kþ1
k VG VW . Since A is infinite, we can take l A A with k þ 1 <

l. It is immediate that we have y A C l
m VG VW ¼ Dl

m VG VW so W 0 ¼ C l
m V

W VG is a non-empty proper clopen subset of G VW . Besides, W 0 VF ¼ q and

hence W 0 is a clopen non-empty proper subset of W ; this contradiction with

connectedness of W shows that (ii) holds.

Next note that h ¼ 1
j

is a continuous function on U such that fhðBnÞ : n A Ng
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is a discrete family of singletons in R. An evident consequence is that there exists

a continuous function g : U ! I for which gðBiÞ ¼ f0g for any i A N0 and gðBiÞ ¼
f1g whenever i A N1. Let f ðxÞ ¼ gðxÞ for any x A U and f ðxÞ ¼ 0 if x A F .

The space X being connected, the set U is not closed in X so there is

x A U VF . Applying (ii) with G ¼ U and A ¼ N1 we can see that x A fBi : i A Ag
and hence the function f is discontinuous at the point x. We claim that the graph

Gð f Þ of the function f is connected.

To arrive at a contradiction assume that E 0 and G 0 are non-empty disjoint

clopen subsets of Gð f Þ such that E 0 UG 0 ¼ Gð f Þ. If p : X � I ! X is the natural

projection then it is a homeomorphism if restricted to any of the sets F 0 ¼
ðF � IÞVGð f Þ and U 0 ¼ ðU � IÞVGð f Þ. Let G ¼ pðG 0Þ and E ¼ pðE 0Þ; we can

assume, without loss of generality, that G VU 0q.

Suppose first that U HG; then E HF . Since pjF 0 ! F is a homeomorphism,

the set E is closed in F and hence in X . Therefore it is impossible that E H
IntðF Þ because otherwise E is a clopen non-empty proper subset of X . Therefore

we can take x A H ¼ FnIntðF Þ such that x A E. Applying (ii) to the set B ¼
6fBn : n A N0g we conclude that x A B; the map f jðBUF Þ is constant so

ðx; 0Þ A B � f0g which, together with B � f0gHG 0, shows that ðx; 0Þ A E 0 VG 0

which is a contradiction.

Thus we can assume that E1 ¼ E VU 0q. Therefore G1 ¼ G VU and E1

are non-empty disjoint clopen subsets of the space U such that E1 UG1 ¼ U .

If E1 VOn ¼ q for some n A N then E1 ¼ E1nOnþ1 ¼ E1nPnþ1 is a clopen non-

empty proper subset of X , a contradiction. Analogously, it is impossible that

G1 VOn ¼ q for some n A N.

Furthermore, E VF and G VF are disjoint closed subspaces of F and hence

of X . It follows from connectedness of X that E VG 0q so either G1 VE 0q

or E1 VG 0q. The two cases are similar so take an arbitrary point x A G1 VE.

It is clear that x A F so we can apply (ii) again to conclude that BVG1 contains x

in its closure. But BUF is homeomorphic to ðBUF Þ � f0gHGð f Þ which shows

that ðx; 0Þ A E 0 is in the closure of ðBVG1Þ � f0gHG 0 which again provides a

contradiction. Finally, apply Proposition 3.1 to conclude that X fails to be maxi-

mal Tychono¤ connected. r

4.6. Remark. It is worth noting that the proof of Theorem 4.5 is valid for

a slightly larger class of spaces than the locally connected ones. To see it observe

that we only used local connectedness of X at the points of the boundary of the

set F . Thus we have actually proved that if X is a Tychono¤ connected space in

which there is a zero-set F HX such that q0F 0X and X is locally connected

at all points of FnIntðF Þ then X is not maximal Tychono¤ connected.
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5. Open Problems

The most intriguing problem is the existence of maximal Tychono¤ connected

spaces. Being convinced that they do exist, we also ask about their properties.

5.1. Problem. Does there exist a maximal Tychono¤ connected space?

5.2. Problem. Is it true that any connected space is a continuous image of a

maximal Tychono¤ connected space?

5.3. Problem. Is it possible to strengthen the topology of R to a maximal

Tychono¤ connected topology? How about an arbitrary connected space?

5.4. Problem. Does there exist a maximal Tychono¤ connected countably

compact space? Does it help to assume additionally that X is normal?

5.5. Problem. Does there exist a maximal Tychono¤ connected pseudo-

compact space?

5.6. Problem. Does there exist a maximal Tychono¤ connected Lindelöf

space?

5.7. Problem. Does there exist a maximal Tychono¤ connected Fréchet–

Urysohn space? How about maximal Tychono¤ connected spaces which are se-

quential or k-spaces?

5.8. Problem. Is it true that all compact subsets of a maximal Tychono¤

connected space are zero-dimensional ? Is it possible to prove, at least, that a

maximal Tychono¤ connected space cannot contain a copy of I?

5.9. Problem. Let X be a maximal Tychono¤ connected space. Does there

exist a cut point in X , i.e., a point x A X for which Xnfxg is disconnected?

5.10. Problem. Must every maximal Tychono¤ connected space be (strongly)

s-discrete?
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