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PISOT SUBSTITUTIONS AND THE HAUSDORFF

DIMENSION OF BOUNDARIES OF ATOMIC SURFACES

By

De-Jun Feng, Maki Furukado, Shunji Ito, Jun Wu

Abstract. The atomic surface Xs from an unimodular Pisot sub-

stitution s usually has the fractal boundary and it generates a self-

a‰ne tiling. In this paper, we study the boundary qXs as the graph

directed self-a‰ne fractal and estimate the Hausdor¤ dimension of

the boundary.

0. Introduction

The several properties of self-a‰ne tiles and their boundaries are studied for

instance in the articles [26], [15], [3], [16], [9], [17], [18], [4], [27], [1], [24]. In this

paper, we treat the sets which have the fractal boundary called atomic surfaces or

self-a‰ne tiles based on substitutions.

Let s be a primitive unimodular Pisot substitution on the free monoid

A� ¼ 6y
n¼0

f1; 2; . . . ; dgn, that is,

(1) there exists an n such that i occurs in s nð jÞ for any pair of letters

ði; jÞ ðprimitiveÞ;

(2) the characteristic polynomial of Ls is irreducible over Q and eigenvalues

li, 1a ia d of Ls satisfy the followings:

l1 > 1 > jlij; i ¼ 2; . . . ; d ðPisot conditionÞ;

(3) det Ls ¼G1 ðunimodular conditionÞ.

Let o ¼ ðo1;o2; . . .Þ be the fixed point of the substitution s and p : Rd ! P

be the projection along the eigenvector with respect to the largest eigenvalue l1 of

Ls to the contractive invariant plane P of Ls. Let us define the set Xs by
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Xs :¼ the closure of p
Xn

k¼1
eok

j n ¼ 1; 2; . . .
n o

where ei, i ¼ 1; 2; . . . ; d are the canonical basis of Rd . The domain Xs called the

atomic surface usually has a fractal boundary. This domain and its boundary are

not only interesting from the viewpoint of the fractal geometry, but also ergodic

theory, number theory and quasi-crystal theory (see [22], [10], [11], [19], [23], [7]).

In this paper, we mainly study the boundary qXs as the fractals which have graph

self-a‰ne in Theorem 2.6 (c.f. [5], [25]) and estimate the Hausdor¤ dimension of

atomic surfaces as follows.

Theorem 1. Let s be a primitive unimodular Pisot substitution with d letters

and let Xs be the atomic surface based on the substitution s. Then the Hausdor¤

dimension of the boundary qXs is estimated by

dimH qXs a
log g1 � log l1 � ðd � 1Þ logjld j

�logjld j

where g1 is the largest eigenvalue of the graph matrix Ms.

Moreover, if the linear map LsjP restricted to the contractive invari-

ant plane P is a similitude, then the Hausdor¤ dimension of qXs is given

by

dimH qXs ¼
ðd � 1Þ log g1

log l1
:

1. Atomic Surfaces and Their Basic Properties

In this section, we give a survey of the property of the atomic surface which

is discussed in [6], [2], [12]. Let A be an alphabet of d letters f1; 2; . . . ; dg: We

denote A� ¼ 6y
n¼0

An the free monoid of A. The substitution s is a map from

A to A� such that sðiÞ is a non-empty word for any letter i. The substitution

s naturally extends to an endomorphism of the free monoid A� by the rule

sðUVÞ ¼ sðUÞsðVÞ: Denote sðiÞ ¼ W ðiÞ; where W ðiÞ is a finite word of the

length li, and we write W ðiÞ ¼ W
ðiÞ
1 � � �W ðiÞ

li
: Denote by P

ðiÞ
k the prefix of the

length k � 1 of W
ðiÞ
k (for k ¼ 1, this is the empty word), and S

ðiÞ
k the su‰x of

the length li � k, so that sðiÞ ¼ P
ðiÞ
k W

ðiÞ
k S

ðiÞ
k . For the simplicity, we assume that

W
ð1Þ
1 ¼ 1. Under this assumption, the infinite sequence o given by

o ¼ limn!y s nð1Þ
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is the fixed point of the substitution s. There is a natural homomorphism

f : A� ! Z d obtained by the abeliarization of the free monoid A�, and we

obtain a linear transformation Ls satisfying the commutative diagram:

A� ���!s A�

f

???y
???yf

Z d ���!Ls
Z d :

From now on, we assume that the substitution s is primitive, that is, there

exists an n such that i occurs in s nð jÞ for any pair of letters ði; jÞ. It is equivalent

to say that the matrix Ls of s is primitive. By Perron-Frobenius theorem, Ls has

the largest eigenvalue l1 that is positive, simple and strictly bigger in modulus

than the other eigenvalues. We denote ul and vl positive eigenvectors associated

with l1 for Ls and the transpose of Ls respectively. Moreover, we assume that

the substitution s satisfies irreducible Pisot and unimodular condition, that is,

(1) the characteristic polynomial of Ls is irreducible over Q and eigenvalues

l1; l2; . . . ; ld of Ls satisfy

l1 > 1 > jlij; i ¼ 2; . . . ; d ðPisot conditionÞ;

(2) the determinant of Ls is equal to G1 (unimodular condition).

Let P be the plane orthogonal to vl. It is clear that P is invariant by the

linear transformation Ls. Moreover, the linear transformation Ls is contractive

on P, that is, there exists a constant 0 < l0 < 1 such that

dPðLsx;Ls yÞa l0dPðx; yÞ for x; y A P

where dPð� ; �Þ is the restricted Euclid distance on P. Let p : Rd ! P be the

projection along the eigenvector ul.

Definition 1.1. Let us denote the fixed point o ¼ limn!y s nð1Þ of s by

o ¼ s1s2 � � � sn � � � ;

and let us define the set X and Xi, i ¼ 1; 2; . . . ; d by

X :¼ the closure of p
Xk

j¼1
esj j k ¼ 1; 2; . . .

n o
;

Xi :¼ the closure of p
Xk

j¼1
esj j sk ¼ i for some k

n o
:

The set X is called the atomic surface associated with the substitution s.

With the notations above, we know the following theorem.
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Theorem 1.2 ([2]). Let s be a primitive unimodular Pisot substitution, and X

and Xi, i ¼ 1; 2; . . . d be the atomic surfaces of s. Then Xi’s satisfy the following

relations: for each i ¼ 1; . . . ; d,

Xi ¼
Xd
j¼1

X
S
ð jÞ
k

:

W
ð jÞ
k

¼i;

sð jÞ¼P
ð jÞ
k

W
ð jÞ
k

S
ð jÞ
k

ðLsXj � pf ðS ð jÞ
k ÞÞ ðnon-overlapÞ

where
P l

j¼1 Aj (non-overlap) means that the Lebesgue measure jAj VAkj of Aj VAk

is equal to zero for each 1a j < ka l.

In [2], we can see implicitly the set equation of Xi, i ¼ 1; 2; . . . ; d holds.

However, we will give an explicit proof here. For this purpose, we prepare some

lemmas and propositions.

Lemma 1.3. The set X is bounded. More precisely, we can estimate

diam:X a
2

1 � l0
� l �m;

where Ls ¼ ðlijÞ, l ¼ max1ajad

Pd
i¼1 lij , and m ¼ max1ajad dPð0; pð f ð jÞÞÞ.

Proof. For any k > 0 there exists n such that l ðnÞ a k < l ðnþ1Þ, where

l ðnÞ ¼ js nð1Þj is the length of the word s nð1Þ. Therefore, there exists j such that

s1 � � � sk ¼ s nðW ð1Þ
1 Þ � � � s nðW ð1Þ

j�1Þt1 � � � tk 0 ;

t1 � � � tk 0 0 s nðWj
ð1ÞÞ

where u1 � � � uk 0 v1 � � � vj means

v1 � � � vj ¼ u1 � � � ukvkþ1 � � � vj :
Therefore, we know

f ðs1s2 � � � skÞ ¼ f ðs nðW ð1Þ
1 ÞÞ þ � � � þ f ðs nðW ð1Þ

j�1ÞÞ þ f ðt1 � � � tk 0 Þ:

On the other hand, we know that

dPð0; pf ðs nð jÞÞÞa ln
0dPð0; pf ð jÞÞ

where l0 ¼ max2aiadðjlijÞ. Therefore, we have

dPð0; pf ðs1 � � � skÞÞa l � max
1ajad

dPð0; pf ð jÞÞln
0 þ dPð0; pf ðt1 � � � tk 0 ÞÞ
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where l ¼ max1ajad

Pd
i¼1 lij and Ls ¼ ðlijÞ1ai; jad : Continue the procedure, then

we get

diam:X a
2

1 � l0
� l � max

1ajad
dPð0; pf ð jÞÞ: r

Lemma 1.4. The following set equation holds: for each i A f1; 2; . . . ; dg

Xi ¼ 6
d

j¼1

6
S
ð jÞ
k

:

W
ð jÞ
k

¼i

sð jÞ¼P
ð jÞ
k

W
ð jÞ
k

S
ð jÞ
k

ðLsXj � pf ðS ð jÞ
k ÞÞ:

Proof. It is enough to show that

L�1
s Yi ¼ 6

d

j¼1

6
S
ð jÞ
k

:

W
ð jÞ
k

¼i;

sð jÞ¼P
ð jÞ
k

W
ð jÞ
k

S
ð jÞ
k

ðYj � L�1
s ðpf ðS ð jÞ

k ÞÞÞ

where Yi ¼ fpf ðs1 � � � skÞ j sk ¼ i for some kg. For any k satisfying sk ¼ i, there

exist m and t such that

s1s2 � � � sk ¼ sðs1 � � � sm�1ÞPðsmÞ
t W

ðsmÞ
t ;

W
ðsmÞ
t ¼ i:

Therefore, we have

f ðs1s2 � � � skÞ ¼ f ðsðs1s2 � � � smÞÞ � f ðSðsmÞ
t Þ:

Thus, the set equation holds. r

Lemma 1.5. Let A be a d � d integer matrix and assume that the charac-

teristic polynomial of A is irreducible, then the eigenvector u ¼ t ð1; u1; . . . ; ud�1Þ of

the eigenvalue l of A is Q-basis of the field QðlÞ, that is,

(1) Q � 1 þQ � u1 þ � � � þQ � ud�1 ¼ QðlÞ;

(2) f1; u1; . . . ; ud�1g is Q-independent.

Proof. Let us denote the simple extension of Q adjoining l by QðlÞ, then

from the irreducibility of the characteristic polynomial of A, we see that f1; l;

l2; . . . ; ld�1g is the basis of QðlÞ, that is,
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(1) Q þQlþ � � � þQld�1 ¼ QðlÞ;

(2) f1; l; . . . ; ld�1g is Q-independent.

On the other hand, from the definition:

At½1; u1; . . . ; ud�1� ¼ l t½1; u1; . . . ; ud�1�;

we see

l ¼ a11 þ a12u1 þ � � � þ a1dud�1 ð1:1Þ

and moreover from the fact that

Ak t½1; u1; . . . ; ud�1� ¼ lk t½1; u1; . . . ; ud�1�;

we have

lk ¼ a
ðkÞ
11 þ a

ðkÞ
12 u1 þ � � � þ a

ðkÞ
1d ud ð1:2Þ

and we see

lk A Q þQu1 þ � � � þQud�1:

Therefore, we know that

ðQðlÞ ¼ÞQ þQlþ � � � þQld�1 HQ þQu1 þ � � � þQud�1:

Other direction

Q þQlþ � � � þQld�1 IQ þQu1 þ � � � þQud�1

is easy from the fact that

ðA� lEÞ t½1; u1; . . . ; ud�1� ¼ 0:

In fact, f1; u1; . . . ; ud�1g is the solution of the linear equation

ðA� lEÞ t½x1; . . . ; xd � ¼ 0, which is the equation with QðlÞ-coe‰cient, therefore,

we see ui A QðlÞ. And, we have

Q þQlþ � � � þQld�1 ¼ Q � 1 þQ � u1 þ � � � þQ � ud�1;

that is, f1; u1; . . . ; ud�1g is the basis of QðlÞ. And so, we see f1; u1; . . . ; ud�1g is

Q-linearly independent. r

As the corollary of Lemma 1.5, we have the following.

Corollary 1.6. The closure of pZ d ¼ P.
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Proposition 1.7. For the atomic surface X associated with the substitution s

we know the following properties:

(1) 6
z A fTd

i¼2nipðe1�eiÞ j ni AZgðX þ zÞ ¼ P;

(2) X
�
0q.

Proof. For each n let us consider the set of points ln ¼
f
Pk

j¼1 esj j 1a ka l ðnÞg. We define Yn ¼ pln and let us consider the lattice L0 :¼

f
Pd

i¼2 niðe1 � eiÞ j ni A Zg on P0 :¼ fx A Z d j hx; tð1; 1; . . . ; 1
zfflfflfflfflfflffl}|fflfflfflfflfflffl{ad

Þi ¼ 0g where hx; yi

is the inner product of vectors x and y.

Now define the set of the lattice points by

ln þ L0 ¼ 6
z AL0

ðln þ zÞ:

The projection of ln þ L0 by p is denoted by 6
z AL0

ðYn þ pzÞ. On the other hand,

for any substitution we can see easily the following relation:

ln þ L0 ¼ fx A Z d j hx; tð1; 1; . . . ; 1
zfflfflfflfflfflffl}|fflfflfflfflfflffl{#d

Þib 0g:

Using the fact that

Yn HYnþ1;

the closure of 6Yn ¼ X ;

we know from the boundedness of X and Corollary 1.6,

6
z AL0

ðX þ pzÞ ¼ P: ð1:3Þ

Using (1.3) and from Baire category theorem, we have X
�
¼ Y

�
0q. From

Theorem 1.2 and primitivity, we see that

X
�
i 0q for all i A f1; 2; . . . ; dg: r

In order to know that Xi are disjoint each other up to a set of measure 0

(about the sets of measure 0), we would prepare several lemmas. The next result

can be found in [2], originally in [21].

Lemma 1.8. Let M be a primitive matrix with the largest eigenvalue l.

Suppose that v is a positive vector such that Mvb lv. Then the inequality is an

equality and v is the eigenvector with respect to l.

Hereafter, we will note jK j the measure of the set K .
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Lemma 1.9. The vector of volumes tðjXijÞ1aiad satisfies the following in-

equality:

L�1
s

tðjX1j; . . . ; jXd jÞb l1
tðjX1j; . . . ; jXd jÞ:

Proof. From the form of Xi in the equation of Lemma 1.4, we see

jL�1
s Xija

Xd

j¼1
ðLsÞij jXjj:

Since the determinant of L�1
s restricted to P is l1, we know that jL�1

s Xij ¼ l1jXij.
Hence we arrive at the conclusion. r

From the Lemma 1.8, Lemma 1.9 and the fact that jXjj > 0; we obtain the

proof of Theorem 1.2.

Remark. We don’t know whether

X ¼
Xd

j¼1
Xi ðnon-overlapÞ

and we see in [2] that X ¼ 6d

j¼1
Xj is non-overlap if s satisfies the coincidence

condition.

Corollary 1.10. The relation that X ¼ the closure of X
�
holds.

Proof. Moreover by rewriting Theorem 1.2, for any n > 0 we have

X ¼
Xd
i¼1

Xd
j¼1

X
S
ð jÞ
n; k

:

W
ð jÞ
n; k

¼i;

s nð jÞ¼P
ð jÞ
n; k

W
ð jÞ
n; k

S
ð jÞ
n; k

ðLn
sXj � pf ðS ð jÞ

n;kÞÞ:

For any x A X and d > 0, let BxðdÞ be the ball with the center x and the radius d

on P, then by the above rewritten formula, there exist n and S
ð jÞ
n;k such that

BxðdÞILn
sXj � pf ðS ð jÞ

n;kÞ and Ln
sX

�
j 0q:

This means that the relation that X ¼ the closure of X
�

holds. r

2. Structure of Boundary and Mauldin-Williams Graph

We say that the point ðx; i�Þ A Z d � f1; 2; . . . ; dg is an element of the stepped

surface P if hx; vlib 0 and hx� ei; vli < 0. Put all of the elements of the

stepped surface P by S.
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Lemma 2.1. If a pair ðx; i�Þ0 ðy; j �Þ are the elements of S, then the element

ðz; k �Þ given by

ðz; k �Þ :¼ ðx� y; i�Þ if hx� y; vlib 0

ðy� x; j �Þ if hy� x; vli > 0

�

is also an element of S.

The proof is easy.

Let us define the map j : S � S ! S � S as follows:

jððx; i�Þ; ðy; j �ÞÞ ¼ ðð0; l �Þ; ðz; k �ÞÞ

where ðz; k �Þ is given as Lemma 2.1 and l � is given by

l � ¼ j � if hx� y; vlib 0

i� if hy� x; vli > 0

�

z ¼ x� y if hx� y; vlib 0

y� x if hy� x; vli > 0

�� �
:

Lemma 2.2. Let us define the operator s� on S by

s� : ðx; i�Þ :¼
X

j A f1;...;dg

X
S
ð jÞ
k

:

W
ð jÞ
k

¼i;

sð jÞ¼P
ð jÞ
k

W
ð jÞ
k

S
ð jÞ
k

ðL�1
s xþ L�1

s f ðS ð jÞ
k Þ; j �Þ:

Then all of the elements in s�ðx; i�Þ are also the elements of S.

The proof can be found in [2].

Let us consider the set V0 of the pair of elements such that

V0 ¼ fðð0; i�Þ; ðx; j �ÞÞ j ðx; j �Þ A S; kpxk < 2Dg

where kxk be the length of the vector x and D be the diameter of X estimated in

Lemma 1.3. Then, we see that the cardinarity of V0 is finite. Let us define the set

of the pair V ðiÞ such that

V ðiÞ :¼ fjððx; j �Þ; ðy; k �ÞÞ j ðx; j �Þ; ðy; k �Þ A s�ð0; i�Þ; kpðx� yÞk < 2Dg;

and V
ð0Þ
0 :¼ 6

i¼1;2;...;d V
ðiÞ, then V

ð0Þ
0 HV0.

Let us define the arrow from the point ðð0; i�Þ; ðw; j �ÞÞ A V0 by the following

manner: for each pair ðð0; i�Þ; ðw; j �ÞÞ let us pick up the pair such that ðx; k �Þ A
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s�ð0; i�Þ, ðy; l �Þ A s�ðw; j �Þ and if kpðx� yÞk < 2D, we give the arrow from

ðð0; i�Þ; ðw; j �ÞÞ to jððx; k �Þ; ðy; l �ÞÞ.
Let us define the graph G0 ¼ ðV1;E; i; tÞ by the following manner:

1st step: let us consider the arrows starting from the vertex u A V
ð0Þ
0 . If we can

not find the arrow from u, then the vertex u is cancelled; If we can find the

arrow e from u to v we denote iðeÞ ¼ u, tðeÞ ¼ v and if moreover the vertex

is new, that is, v A V0nV ð0Þ
0 ; then we call v the first generation of u. We

denote the set of the first generation from V
ð0Þ
0 by V

ð1Þ
0 .

2nd step: let us consider the arrow starting from the vertex of the first gen-

eration v A V
ð1Þ
0 . If we cannot find any arrows from v, then we cancell the

vertex v A V
ð1Þ
0 and the arrow e such that tðeÞ ¼ v; if we can find the

arrow e 0 from v to w and the terminal tðe 0Þ is new, that is, o ¼ tðe 0Þ A
V0nðV ð0Þ

0 UV
ð1Þ
0 Þ, then we call the terminal o the 2nd generator of u and

denote V
ð2Þ
0 .

kth step: if we can not find any arrows from the vertex vk, we cancelled the

vertex vk and the arrow e such that tðeÞ ¼ vk. And by the cancellation of the

arrow e if vk�1 ¼ iðeÞ has no arrow e 0 such that vk�1 ¼ iðe 0Þ then the vertex

vk�1 and the arrow e 00 such that tðe 00Þ ¼ vk�1 are also cancelled and so on.

From the finiteness of the cardinarity of V0, we can stop this procedure. We

denote the final step by q.

Now we get the graph with vertices V1 ¼ 6q

j¼1
V

ð jÞ
0 and each vertex u has

the arrow e such that u ¼ iðeÞ.
We denote the graph by GB ¼ ðV1;E; i; tÞ and call the graph of the boundary

of the atomic surface. For the simplicity, we denote the vertex ðð0; i�Þ; ðx; j �ÞÞ by

ði; j; xÞ.
The existence of the arrow from ði; p; x0Þ to ð j; q; x1Þ means that on the

notation:

s�ð0; i�Þ ¼
X

l A f1;...;dg

X
S
ðl Þ
k

:

sðlÞ¼P
ðl Þ
k

�i�S ðl Þ
k

ð�L�1
s ð f ðS ðl Þ

k ÞÞ; l �Þ ð2:4Þ

s�ðx0; p
�Þ ¼

X
m A f1;...;dg

X
S
ðmÞ
k 0 :

sðmÞ¼P
ðmÞ
k 0 �p�S ðmÞ

k 0

ð�L�1
s ð f ðS ðmÞ

k 0 ÞÞ;m�Þ þ L�1
s ðx0Þ; ð2:5Þ

there exist l, k, m and k 0 such that ð j; q; x1Þ is given explicitly by
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x1 ¼

L�1
s ð f ðS ðl Þ

k Þ � f ðS ðmÞ
k 0 Þ þ x0Þ

if hL�1
s ð f ðS ðl Þ

k Þ � f ðS ðmÞ
k 0 Þ þ x0Þ; vlib 0

�L�1
s ð f ðS ðl Þ

k Þ � f ðS ðmÞ
k 0 Þ þ x0Þ

if hL�1
s ð f ðS ðl Þ

k Þ � f ðS ðmÞ
k 0 Þ þ x0Þ; vli < 0

8>>>><
>>>>:

ð2:6Þ

ð j; qÞ ¼ ðl;mÞ if hL�1
s ð f ðS ðl Þ

k Þ � f ðS ðmÞ
k 0 Þ þ x0Þ; vlib 0

ðm; lÞ if hL�1
s ð f ðS ðl Þ

k Þ � f ðS ðmÞ
k 0 Þ þ x0Þ; vli < 0

(
: ð2:7Þ

Proposition 2.3. For each vertex ði; j; xÞ A V1 we know Xi V ðXj þ pxÞ0q

and jXi V ðXj þ pxÞj ¼ 0.

Proof. Suppose that Xi V ðXj þ pxÞ ¼ q, then from the compactness of Xi

and Xj we see

dPðXi; ðXj þ pxÞÞ > 0;

where dPðA;BÞ :¼ inffdPðx; yÞ j x A A; y A Bg, and so we have

dPðL�1
s Xi;L

�1
s ðXj þ pxÞÞb l�1

0 dPðXi; ðXj þ pxÞÞ:

From the set equation given by Theorem 1.2 and the relation (2.4) and (2.5), we

know that

L�1
s Xi IXl � L�1

s pf ðS ðl Þ
k Þ for ðl; kÞ satisfying W

ðl Þ
k ¼ i

L�1
s ðXp þ x0ÞIXm � L�1

s pf ðS ðmÞ
k 0 Þ þ L�1

s ðx0Þ for ðm; k 0Þ satisfying W
ðmÞ
k 0 ¼ p:

Moreover, from the fact that the vertex ði1; j1; x1Þ from ði; j; xÞ A V1 is given by

(2.6) and (2.7), in particular ði1; j1Þ is chosen as ðl;mÞ or ðm; lÞ on the notation

(2.4), (2.5). Therefore we see

dPðXi1 ;Xj1 þ px1Þb dPðL�1
s Xi;L

�1
s ðXj þ pxÞÞ;

that is,

dPðXi1 ;Xj1 þ px1Þb l�1
0 dPðXi;Xj þ pxÞ:

Continuing this procedure, we have

dPðXin ;Xjn þ pxnÞb l�n
0 dPðXi;Xj þ pxÞ:

On the other hand, from the definition of V0 and Lemma 1.3, we know

dPðXp;Xq þ pxÞ < 3D for all ðp; q; xÞ A V0:
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Therefore, we see that

dPðXi;Xj þ pxÞ ¼ 0:

This contradicts to dPðXi;Xj þ pxÞ > 0. From the definition of ði; j; xÞ A V1, there

exist k, n, ðy; l �Þ and ðw;m�Þ A �s nð0; k �Þ such that

ði; j; xÞ ¼ jððy; l �Þ; ðw;m�ÞÞ

where we denote �s n instead of ðs�Þn. Therefore, from the non-overlapping

property in Theorem 1.2, we have

jXi V ðXj þ pxÞj ¼ 0: r

Proposition 2.4. For each vertices ði; j; xÞ A V1, we see

qXi IXi V ðXj þ pxÞ:

Proof. Assume that

qXi nIXi V ðXj þ pxÞ:

Then, we see that

ðXj þ pxÞVX
�
i 0q:

Therefore, there exist a A X
�
i and an open ball BdðaÞ with the center a and the

radius d such that

a A Xj þ px and BdðaÞHX
�
i:

Since the closure of X
�
j is equal to Xj, we know BdðaÞV ðX

�
j þ pxÞ0q, and thus

there exists Bd 0 ðbÞ such that

Bd 0 ðbÞHBdðaÞV ðX
�
j þ pxÞ:

Therefore,

jBdðaÞV ðX
�
j þ pxÞj > 0:

From Proposition 2.3 this contradicts to

jXi V ðXj þ pxÞj ¼ 0: r

Proposition 2.5. For each j A f1; . . . ; dg, there exist n and W0 such that

s nð jÞ ¼ Y � 1 �W0 and satisfying the following form:

206 De-Jun Feng, Maki Furukado, Shunji Ito and Jun Wu



qðXj � pL�n
s ð f ðW0ÞÞÞ

¼
X
k;W :

s nðkÞ¼Y 0�1�W if k0j
or s nðkÞ¼Y 00 �1�W and W0W0 if k¼j

ððXj � pL�n
s f ðW0ÞÞV ðXk � pL�n

s ð f ðWÞÞÞÞ ð2:8Þ

and

jðð j; f ðW0ÞÞ; ðk; f ðWÞÞÞ A V1 if ðXj � pL�n
s f ðW0ÞÞV ðXk � pL�n

s ð f ðWÞÞÞ0q:

In particular, we have

qXj ¼
X
k;W :

s nðkÞ¼Y 0 �1�W if k0j
or s nðkÞ¼Y 00 �1�W and W0W0 if k¼j

ðXj V ðXk � pðL�n
s ð f ðWÞ � f ðW0ÞÞÞÞÞ: ð2:9Þ

Proof. From Theorem 1.2, we know

L�n
s X1 ¼

Xd
j¼1

X
W :

s nð jÞ¼Y �1�W

ð�pL�n
s ð f ðWÞÞ þ XjÞ:

For the fixed j and the su‰cient large n, we can find a ball V contained L�n
s X1

and W0 such that the ball V contains Xj � pL�n
s f ðW0Þ and W0 satisfies s nð jÞ ¼

Y � 1 �W0. Therefore, we see that

qðXj � pL�n
s ð f ðW0ÞÞÞ

¼
X
k;W :

s nðkÞ¼Y 0 �1�W if k0j
or s nðkÞ¼Y 00 �1�W and W0W0 if k¼j

ðXj � pL�n
s f ðW0ÞÞV ðXk � pL�n

s ð f ðWÞÞÞ:

ð2:10Þ

In the formula (2.8), if ðXj � pL�n
s f ðW0ÞÞV ðXk � pL�n

s ð f ðWÞÞÞ0q, then

jðð j;L�n
s f ðW0ÞÞ; ðk;L�n

s f ðWÞÞÞ A V1: r

For each arrow eu; v A E let us define the transformation Tu; v : P ! P by

Tu; vx ¼ Lsxþ pfu; v ð2:11Þ

where u ¼ ði; p; x0Þ and v ¼ ð j; q; x1Þ given by (2.6) and (2.7), and pfu; v is given

by
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pfu; v ¼

�pf ðS ðmÞ
k 0 Þ þ x0

if hL�1
s ð f ðS ðl Þ

k Þ � f ðS ðmÞ
k 0 Þ þ x0Þ; vlib 0

pf ðS ðl Þ
k Þ
if hL�1

s ð f ðS ðl Þ
k Þ � f ðS ðmÞ

k 0 Þ þ x0Þ; vli < 0

8>>><
>>>: :

Then the transformation Tu; v on P is a contractive map. Therefore, we have

the list of compact sets ðKuÞu AV1
uniquely satisfying Ku ¼ 6Tu; vðKvÞ (see

[20]). On the other hand, for each vertex ði; p; x0Þ from Proposition 2.3, we

know Xi V ðXp þ px0Þ0q and each Xi and Xp þ x0 are decomposed by The-

orem 1.2,

Xi ¼
Xd
l¼1

X
S
ðl Þ
k

:

W
ðl Þ
k

¼i;

sðlÞ¼P
ðl Þ
k

W
ðl Þ
k

S
ðl Þ
k

ðLsXl � pf ðS ðl Þ
k ÞÞ;

Xp þ px0 ¼
Xd
m¼1

X
S
ðmÞ
k 0 :

W
ðmÞ
k 0 ¼p;

sðmÞ¼P
ðmÞ
k 0 W

ðmÞ
k 0 S

ðmÞ
k 0

ðLsXm � pð f ðS ðmÞ
k 0 Þ � x0ÞÞ:

Therefore, we have

Xi V ðXp þ px0Þ ¼
X

S
ðl Þ
k

;S
ðmÞ
k 0 :

ðW ðl Þ
k

;W
ðmÞ
k 0 Þ¼ði;pÞ

ðLsðXlÞ � pf ðS ðl Þ
k ÞÞV ðLsðXmÞ � pð f ðS ðmÞ

k 0 ÞÞ þ x0Þ:

Using (2.6), (2.7) and pfu; v we have

Xi V ðXp þ px0Þ ¼ 6
v:v¼ð j;q;x1Þ AV1;

e AEu; v

LsðXj V ðXq þ pLðx1ÞÞÞ þ pfu; v

¼ 6
v:v¼ð j;q;x1Þ AV1;

e AEu; v

Tu; vðXj V ðXq þ px1ÞÞ: r

Therefore, we have the following theorem.

Theorem 2.6. Let GB ¼ ðV1;E; i; tÞ be the graph from the substitution s and

let Tu; v : P ! P be the transformation given by (2.11). Then, the list of compact

sets ðKuÞu AV1
satisfying
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Ku ¼ 6
v AV1;
e AEu; v

Tu; vðKvÞ

is given by

Ku ¼ Xi V ðXj þ pxÞ

where u ¼ ði; j; xÞ A V1.

3. Hausdor¤ Dimension of Boundaries

In this section, we discuss the Hausdor¤ dimension of the boundary of

atomic surfaces.

Theorem 3.1. Let s be a primitive unimodular Pisot substitution with d

letters. Let X be the atomic surface with respect to s. Then the Hausdor¤ di-

mension of qX is estimated by

dimH qX a dimB qX a
log g1 � log l1 � ðd � 1Þ logjld j

�logjld j

where dimB qX is the Box dimension of qX and g1 is the largest eigenvalue of the

matrix of the graph GB.

Proof. By Proposition 2.5, the boundary qX is constructed by the sets

ðXi V ðXj þ pxÞÞ, ði; j; xÞ A V1. For any e > 0, each set Xi V ðXj þ pxÞ can be

covered by cðg1 þ eÞn pieces parallelograms Ln
sðpUÞ from the unit square U and

the parallelogram Ln
sðpUÞ is covered at most c 0

jl2j
jld j

� jl3j
jld j

� . . . � jld jjld j

� �n
pieces of the

cube whose length of the edge is jld jn. Therefore, the Box dimension of Xi V

ðXj þ pxÞ can be estimated by

dimBðXi V ðXj þ pxÞÞa lim
n!y

log cðg1 þ eÞn þ log c 0ðl1jld jd�1Þ�n

�logjln
d j

¼ logðg1 þ eÞ � log l1 � ðd � 1Þ logjld j
�logjld j

for any e > 0. Therefore, by Proposition 2.5, we see

dimH qX a dimB qX a
log g1 � log l1 � ðd � 1Þ logjld j

�logjld j
: r

If we know the explicit values g1, l1 and ld , we see probably that

dimH qX < d � 1. But we have no idea to say
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log g1 � log l1 � ðd � 1Þ logjld j
�logjld j

< d � 1:

Therefore, we give the next theorem (c.f. [14]).

Theorem 3.2. Under the same assumption for s as in Theorem 3.1, we have

dimH qX < d � 1:

Proof. From the set equations in Theorem 1.2 of fXigi¼1;2;...;d and X
�

1 0q,

for the su‰cient large n0 there exist j0 A f1; . . . ; dg and k0 such that

s n0ð j0Þ ¼ P
ð j0Þ
n0;k0

� 1 � S ð j0Þ
n0;k0

;

Lðn0Þ
s Xj0 � pf ðS ð j0Þ

n0;k0
ÞHX

�
1:

This means

qX1 H
Xd
j¼1

X
ð j;S ð jÞ

n; k
Þ0ð j0;S

ð j0Þ
n0 ; k0

Þ;

s n0 ð jÞ¼P
ð jÞ
n0 ; k

�1�S ð jÞ
n0 ; k

ðLn0
s ðqXjÞ � pf ðS ð jÞ

n0;k
ÞÞ

qXi H
Xd
j¼1

X
S
ð jÞ
n; k

:

s n0 ð jÞ¼P
ð jÞ
n; k

�i�S ð jÞ
n; k

ðLn0
s ðqXjÞ � pf ðS ð jÞ

n;kÞÞ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

: ð3:12Þ

From the above properties, we say that we can cover qX1 by

at most Ln0
s ð1; 1Þ pieces of Ln0

s ðqX1Þ

� � �

at most Ln0
s ð j0; 1Þ � 1 pieces of Ln0

s ðqXj0Þ

� � �

at most Ln0
s ðd; 1Þ pieces of Ln0

s ðqXdÞ

and on the definition of the matrix

D ¼

Ln0
s ð1; 1Þ � � � Ln0

s ð1; dÞ
� � � � � � � � �

Ln0
s ð j0; 1Þ � 1 � � � Ln0

s ð j0; dÞ
� � � � � � � � �

Ln0
s ðd; 1Þ � � � Ln0

s ðd; dÞ

2
6666664

3
7777775;
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we see that D < Ln0
s and D is primitive for su‰cient large n0. Therefore, we know

that the largest eigenvalue m of D is strictly smaller than ln0

1 . The boundary qX1

can be covered by at most c 0p-pieces of paralleologram pL pn0
s ðUÞ for any m <

n < ln0

1 . By analogous discussion in Theorem 3.1, we see that the boundary qX1

is covered by at most c 0pðl1jld jd�1Þ�pn0 pieces of cubes with the length jld jpn0 .

Therefore, the a-dimensional Hausdor¤ measure HaðqX1Þ can be estimated by

HaðqX1Þa lim
p!y

np
1

ðl1jld jd�1Þpn0
ðjld jpn0Þa:

Let us assume that n ¼ ln0�x
1 for some 0 < x < 1. Then the Hausdor¤ measure is

estimated by

HaðqX1Þa lim
p!y

ðlðx�1Þ
1 jla�ðd�1Þ

d jÞpn0 ;

we can choose a0 > 0 such that

a0 < d � 1 and l
ðx�1Þ
1 l

a0�ðd�1Þ
d < 1;

and so we know that Ha0ðqX1Þ ¼ 0. Therefore we have

dimHðqX1Þa a0 < d � 1:

By analogous discussion, we see

dimHðqXiÞ < d � 1

and so we get

dimHðqX Þ < d � 1: r

From now on, we will assume that the linear transformation Ls on P is a

similitude. In two cases (i) d ¼ 2 (ii) d ¼ 3 and Ls is the complex Pisot matrix,

we know that the linear transformation is the similitude on P.

Let the list fX1 . . . ;Xdg of compact sets be the atomic surfaces, then we had

known the sets satisfy the equation in Theorem 1.2. Therefore, we can get the

graph Gs ¼ fV ;E; i; tg which is constructed by V ¼ f1; . . . ; dg, eij A E if there

exists j A f1; . . . ; dg such that sðiÞ ¼ P
ð jÞ
k � i � S ð jÞ

k . And for each eij A E let us

define the contracting transformation Tij : P ! P by

TijðxÞ ¼ Lsx� pf ðS ð jÞ
k Þ

which is the similitude with some contractive constant 0 < s < 1. Then we see

that fV ;E; i; t; fTijgg is a Mauldin-Williams graph and that fXi j i ¼ 1; 2; . . . dg is
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the graph construction set. Moreover, the graph satisfies the locally finite

condition, that is, there exists a constant H > 0 such that for any 1 > r > 0 and

any x A P

a ði1i2 � � � ilÞ
eij ; ijþ1

A E; 1a ja l � 1;

tra tl a r;

Ti1i2 � Ti2i3 � � � �Til�1il ðXil ÞVBxðrÞ0q

�������
8><
>:

9>=
>; < H; ð*Þ

since the sets X
�
j, j ¼ 1; 2; . . . ; d satisfy the open set condition.

Therefore, we have the following lemma.

Lemma 3.3. Let GB ¼ ðV1;E; i; t; fTu; vgÞ be a Mauldin-William graph in

Theorem 2.6. Then the graph satisfies the locally finite condition.

Proof. From the locally finite condition of GB ¼ fV;E; i; t; fTijgg, we see

that

a ðu1; u2; . . . ; unÞ
eui ;uiþ1

A E; tr < tn < r;

Tu1u2
Tu2u3

� � �Tun�1unðXp V ðXq þ pyÞÞVBxðrÞ0q

����
( )

< C2
H ¼ HðH � 1Þ

2
:

Using Lemma 3.3 and Theorem 1 in [20], we have the following theorem.

Theorem 3.4. Let s be the primitive unimodular Pisot substitution. Let us

assume that the linear trasnformation Ls on the invariant surface P is a similitude.

Then the Hausdor¤ dimension of qX is given by

dimH qX ¼ ðd � 1Þ log g1

log l1

where g1 is the largest eigenvalue of the matrix of the graph GB.

4. Examples

In this section, we propose some examples of atomic surfaces.

Example 4.1. Let s be the following substitution:

s :
1 ! 112

2 ! 21
:
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This substitution is a simple example which is not invertible. Therefore, the

atomic surface is not an interval (see [6]). In this example, the graph GB of the

boundary of the atomic surface is given by the following form (see Figure 2):

The matrix Ms of the graph GB is given by

Ms ¼

1 1 0 1 0 0

1 1 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 1 0 1 0

0 0 0 0 0 1

2
666666664

3
777777775

and the characteristic polynomial of Ms is given by

x2ðx2 � 2x� 1Þðx� 1Þ2

Figure 1: the atomic surface X ¼ 6
i¼1; 2

Xi in Example 4.1.
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where the largest eigenvalue of Ms comes from x2 � 2x� 1. And so by using

Theorem 3.4, the Hausdor¤ dimension of the boundary of the atomic surface is

given by

dimH qX ¼ log g1

log l1
¼ log 2:41421

log 2:61803
¼ 0:915785 . . .

where g1 and l1 are the largest eigenvalues of the graph matrix Ms and Ls

respectively.

Example 4.2. Let us consider the substitution called Rauzy substitution [22]:

s :

1 ! 12

2 ! 13

3 ! 1:

Figure 2: the graph GB from the substitution: 1 7! 112, 2 7! 21.

Figure 3: the atomic surface X ¼ 6
i¼1; 2; 3

Xi in Example 4.2.
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The Hausdor¤ dimension had been calculated in [10]. In our method, the

graph GB of the boundary of the atomic surface is given by the following form

(see Figure 4):

The matrix Ms of the graph GB is given by

Ms ¼

0 1 1 0 0 0 0

0 0 0 0 1 1 0

0 0 0 1 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

2
66666666664

3
77777777775

and the characteristic polynomial of Ms is given by

x3ðx4 � 2x� 1Þ:

Therefore, the Hausdor¤ dimension of qXs is caluculated by

dimH qX ¼ 2 log g1

log l1
¼ 2 log 1:39534

log 1:83929
¼ 1:09337 . . .

where g1 and l1 are the largest eigenvalues of the graph matrix Ms and Ls

respectively.

Example 4.3. Let us consider the following substitution:

s :

1 ! 12

2 ! 31

3 ! 1

:

Figure 4: the graph GB from Rauzy substitution: 1 7! 12, 2 7! 13, 7! 1.
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The matrix Ls of the substitution is same as one of Rauzy substitution.

But the shape of the atomic surface is perfectly di¤erent. The graph GB of the

boundary of the atomic surface is given by the following form (see Figure 6): The

characteristic polynomial of Ms is given by

ðx6 � x5 � x4 � x2 þ x� 1Þðx2 þ xþ 1Þ2
x15ðx� 1Þ2:

Therefore, the Hausdor¤ dimension of qXs is caluculated by

dimH qX ¼ 2 log g1

log l1
¼ 2 log 1:72629

log 1:83929
¼ 1:7919 . . .

where g1 and l1 are the largest eigenvalues of the graph matrix Ms and Ls

respectively.

Example 4.4. Let us consider the substitution:

s :

1 ! 112

2 ! 13

3 ! 1:

This substitution is an example of a class of Pisot substitutions:

sk1;k2
:

1 ! 11 � � � 1
zfflfflffl}|fflfflffl{ak1

2

2 ! 11 � � � 1
zfflfflffl}|fflfflffl{ak2

3

3 ! 1

Figure 5: the atomic surface X ¼ 6
i¼1; 2; 3

Xi in Example 4.3.
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which is related to Pisot b-expansions (see [13]). The graph GB of the

boundary of the atomic surface is given by the following form (see

Figure 8):

Figure 6: the graph GB from the substitution: 1 7! 12, 1 7! 31, 1 7! 1.

Figure 7: the atomic surface X ¼ 6
i¼1; 2; 3

Xi in Example 4.4.
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The matrix Ms of the graph GB is given by

Ms ¼

0 1 1 1 0 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0

2
6666666666666664

3
7777777777777775

and the characteristic polynomial of Ms is given by

x5ðx4 � x2 � 3x� 1Þ:

Therefore, the Hausdor¤ dimension of qXs is caluculated by

dimH qX ¼ 2 log g1

log l1
¼ 2 log 1:74553

log 2:54682
¼ 1:19177 . . .

where g1 and l1 are the largest eigenvalues of the graph matrix Ms and Ls

respectively.

Figure 8: the graph GB from the b-substitution: 1 7! 112, 2 7! 13, 3 7! 1.
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Example 4.5. Let us consider the substitution:

s :

1 ! 13

2 ! 1

3 ! 32

:

This substitution is coming from Example 4 in [8] ðLs ¼ M 2Þ.

This example is that the atomic surface is not simply connected. The

characteristic polynomial of Ms is given by

x32ðx13 � x12 � x10 þ x9 � 2x8 � 4x7 � 2x5 � 4x4 þ x3 � 4x2 � 1Þ

� ðx5 � 2x3 þ x� 1Þðx4 þ x3 þ x2 þ xþ 1Þðx� 1Þ

and the largest eigenvalue of Ms is coming from the polynomial ðx13 � x12 �
x10 þ x9 � 2x8 � 4x7 � 2x5 � 4x4 þ x3 � 4x2 � 1Þ. Therefore, the Hausdor¤ di-

mension of qXs is caluculated by

dimH qX ¼ 2 log g1

log l1
¼ 2 log 1:72864

log 1:75478
¼ 1:94643 . . .

where g1 and l1 are the largest eigenvalues of the graph matrix Ms and Ls

respectively.

Figure 9: the atomic surface X ¼ 6
i¼1; 2; 3

Xi in Example 4.5.
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Example 4.6. Let us consider the substitution:

s :

1 ! 12123

2 ! 1

3 ! 12:

This substitution is coming from s1 � s2 for sm Example 1 in [10].

This is an example such that the boundary of the atomic surface is not

double point free. The graph GB of the boundary of the atomic surface is given

the following form (see Figure 11);

The matrix Ms of the graph GB is given by

Ms ¼

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

:

Figure 10: the atomic surface X ¼ 6
i¼1; 2; 3

Xi in Example 4.6.
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The characteristic polynomial of Ms is given by

x13ðx3 � 3x2 þ 2x� 1Þðx� 1Þ:

Therefore, the Hausdor¤ dimension of qXs is caluculated by

Figure 11: the graph GB from the substitution: 1 7! 12123, 2 7! 1, 3 7! 12.
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dimH qX ¼ 2 log g1

log l1
¼ 2 log 2:32472

log 3:0796
¼ 1:5

where g1 and l1 are the largest eigenvalues of the graph matrix Ms and Ls

respectively.
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[ 9 ] Gröchenig, K. and Haas, A., Self-similar lattice tilings, J. Fourier Anal. Appl., 1 (1994), 131–170.

[10] Ito, S. and Kimura, M., On Rauzy fractal, Japan J. Indust. Appl. Math., 8 (1991), 461–486.

[11] Ito, S. and Ohtsuki, M., Modified Jacobi-Perron Algorithm and Generating Markov Partitions

for Special Hyperbolic Toral Automorphisms, Tokyo J. Math., 16 (1993), 441–472.

[12] Ito, S. and Rao, H., Atomic surfaces and self-similar tiling I: Irrecucible case, Israel J. (to

appear).

[13] Ito, S. and Sano, Y., On periodic b-expansions of Pisot Number and Rauzy fractals, Osaka J.

Math., 38 (2001), no. 2, 349–368.

[14] Keesling, J., The boundaries of self-similar tiles in Rn, Top. Appl., 94 (1999), 195–205.

[15] Kenyon, R., Self-Similar Tilings, Ph.D. Thesis, Princeton Univ. (1990).

[16] Kenyon, R., Self-replicating tilings, in Symbolic Dynamics and Its Applications (P. Walters, ed.),

Contemporary Mathematics, Vol. 135, Birkhäuser, Boston, 1992, pp. 239–264.
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