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BIFURCATION OF THE KOLMOGOROV FLOW
WITH AN EXTERNAL FRICTION

By

Mami MATSUDA

Abstract. We consider Kolmogorov’s problem of stationary flows
in a thin layer with a bottom friction. Using the Lyapunov-Schmidt
theory, we construct bifurcating solutions of this problem in the case
where the linearized equations have simple eigenvalues. Compared
with the previous paper [7], where we did not take account of the
bottom friction, we find some interesting properties of bifurcation
curves.

1. Introduction

The Kolmogorov flow, a plane periodic flow of an incompressible fluid under
the action of a spatially periodic external force, has been conceived of only as
a convenient object for theoretical investigations since it has been proposed in
1959. But later in 1979, a laboratory experiment by means of electrolyte through
magnetic forcing was carried out in order to mimic the Kolmogorov flow (see its
outline in [9, 2]). The results of their experiments were found in some aspects to
be in good qualitative agreement with the previous theories described in [8, 4],
but in other aspects, there were some serious disagreement caused by the friction
on the bottom of the layer. Bondarenko and his group asserted that we should
take account of the influence of the friction in order to investigate a motion in a
thin layer. Accordingly, they built a modified model of the Kolmogorov flow to
allow for the bottom friction.

The corresponding equations in stationary case take the form:

uuy + vuy, = —Px + vAu — ku + y sin y,
(1.1) uvx 4+ vv, = —P, + vAv — kv,
ux +v, =0.
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where (u,v), P, v, y mean velocity vector, pressure, the kinematic viscosity and
the amplitude of the external force, respectively. And x means the coefficient of
the bottom friction which can be defined by k = 2v/h? with A, the depth of the
fluid layer. As in the case of the original Kolmogorov problem, let the system of
solutions V(x, y) = “(u(x, y),v(x, y)) and P(x,y) satisfy

V(xa y) = V(x + 2”/“’ y) = V(x’ y+ 2”),
(12) P(x, y) = P(x +2n/a, y) = P(x, y +27),
[ p V(x,y) dxdy =0, [[p P(x,y) dxdy =0,

where D = {(x,y): x| <=m/a,|y| < =}.

Introducing the stream function Y(x,y), we reproduce the velocity as
(u,v) = (¥, —¥,). As the pressure is known to be determined by the velocity, we
eliminate P and replace y with yv~'y. Then we reduce the problem (1.1-2) to:

(1.3) (A, ) = AP — LAY +cos y,  J(f,9) = fdy — S0

{W()Q y) = l//(x+27l'/d, y) = ‘p(x’y+2n),
f.fD Y(x, y) dxdy =0,

where 4 =y/v? and { = k/v = 2/h. :
We first note that o (x, y) = —(1 + )™ cos y satisfies (1.3-4) for any 4 >0
and { > 0. We call y, a basic solution. The velocity field of the basic solution is
given by (u,vp) = (yv~'(1 +¢)~" sin y,0), which represents a shear flow parallel
to the x-axis.
Defining ¢ by ¢ = ¢ — ,, we write as follows:

(15)  f(4e) ={A% A - 2(1+0)7" sin y(A+ D)d}p — AJ(Ap,p) =0,

where I is the identity operator. ¢ = 0 corresponds to the basic solution for all
4 and {. Dropping the non-linear term AJ(Ag, ¢) in (1.5), we obtain a linearized
equation f,(4,0)p = 0.

It is well known in general that, if A = ¢ is a bifurcation point, the linearized
equation has at least one non-trivial solution. As we consider later, if o > 1,
Jo(4,0)p =0 has only trivial solution for any A and {. Namely, there is no
bifurcation point in o > 1. -

When we fix a € (0,1) and { € [0,0) and let r e N satisfy ra <1 < (r + 1)a,
there exists 4 = A; for each ke {*l,...,+r} such that f,(i,0) =0 has non-
trivial solutions. We state the properties of A as follows:

(1.4)

REMARK. Let K, ={1,...,r}. Then, each A; (k € K,) satisfies the following
properties:
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(1) Agx = g,
(i) For r > 2, it is possible for some k,k' € K, (k # k') to satisfy A = .

Taking account of this remark, we later assume that ¢ has the symmetry as

follows:
o(=x,—y) = p(x, y).

Remark (ii) is one of the important properties caused of the bottom friction
which leads dim ker f;,(4x,0) = 2 for some k. In this paper, we treat only the case
where dimker f,(4x,0) = 1, although we will consider the another case in our
forthcoming paper.

Here is our main result:

THEOREM 1.1. We fix a€(0,1) and {€[0,0). Let re N satisfy ra <1 <
(r+ 1)a. Then, for each k € K, = {1,...,r}, there exists a bifurcation point A = Ji
with dimker f,(Ax,0) = 1, and we can construct one parameter family of non-trivial
solutions of (1.5) in a neighborhood of (,0):

(4, 0) = (u(s), 0(s)), sl <1,
where u(0) = Ak, ¢(0) = 0 and p,(0) = 0. Moreover, u,(0) > 0 is obtained for each
{ >0 when ko is close to one.

In Section 2, we solve the linearized equation and obtain a function A=
A(B,{) defined on fe(0,1) and {€[0,00). In Section 3, using the Lyapunov-
Shmidt theory, we prove that bifurcation points of (1.5) are given by Ax =
Alka,{). In Section 4, we find some properties of the curve (4,¢9) = (u(s), p(s)).

Hereafter, we consider ¢(s) in the space X = Hy = {p € H*; [[,, ¢ dxdy = 0}
with ¢(—x, —y) = ¢(x, y) equipped with the inner product

(0,0)x = (A%0,A%9),, < 0.
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2. The Linearized Equation

In order to investigate bifurcations from the basic solution ¢ =0, we have
to solve the following linearized eigenvalue problem for fixed a and {:
(2.1) fo(2,0)p = {A% — (A — 2(1 + )" sin y(A + 1)dx}e =0,
where A is called eigenvalue if has a solution ¢ # 0.
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@ € H} is expanded in the Fourier series as

1 4 2
0= Zcm,nel(max+n}’), E(m2a2 + n2) |cm,n| < 400, co0 = 0,
m,n

myn

where the summation is taken over all the pairs of integers but (m,n) = (0,0),
and co o = 0 follows from [[, ¢ dxdy = 0.

For an arbitrarily fixed m, coefficients c,, , satisfy the following system of
infinite linear equations:

(m*a? + n?)(m?a? + n* + {)cmn +—2—(';mTa§){m2a2 + (=12 = 1}emn1
Amo 2.2 2
-_—— 1) = 1}emnt1 =0, =0,41,+2,....
2(1+C){ma +(n+1) Yem nt1 n=0

We easily see that cp , = 0 for any n. We can prove that non-trivial solutions ¢, ,
which satisfy ¢y, — 0 as |n| — co cannot be found when |ma| =1 (this can be
seen from (2.3’) below). For m # 0 and |ma| # 1, the above equations are simply
written as

(22) am,nbm,n + bm,n——l - bm,n+l =0, n=0, +1, iza ceey
where

_ 21 + {)(mPa® + n*)(m*a? + n? + ()

— 2.2 2
m,n — Ama(mzaz +n2 _ 1) ] bm,n = (m o +n - I)Cm’n.

Let us seek non-trivial solutions of the system such that b,,, — 0 as
In| — co. We note that any non-trivial {b,, .}, which satisfies this condition is
non-zero for n as seen in [1, 2, 7] (this was proved in [1, 2, 7] in the case of { = 0,
but the same result for follows immediately). Therefore, we can define
P =byn/bmn-1 for all n and rewrite as follows:

(2.2 Am,n +

~Pmnp1 =0, n=0,+1,42,...,

m,n '
Here limy—+ py, , = limy—_o 1/p,, , =0 is required for each m. Once we fix
Pm,1> then other p, . are determined uniquely. We now introduce p;, , and p, ,
respectively by

—1 |+...’ p;z,nEam,n_l_*_#_}_...

Qm,n am, n+1 am,n-2

1
—

pm,n

b
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where the right hand sides of both formulas represent infinite continued frac-
tions (as for the convergence of continued fractions, see [7]). lim,—io0 pif , =
lim,—,_ 1/p,, , = 0 follows from lim,— 10 am,» = . If we put p,, | = /’;;,1 (resp.
Pm1 = Pm1)s (2.2°) yields p,, , = pf. , (€SP pp, » = Py, ) fOr any n. Otherwise, we
have lim,, x|p,, .| = 0o (resp. lim,,_._(,o|pm’n|_1 = o0). Therefore, the solutions
Prm.n I exist if and only if p}, | = p}, | = p,1- This relation is equivalent to

..

aAm. 0 1 ] 1
2.3 -0 =
( ) 2 am,1 + am,2

Let us put f = ma and write a, , as a, for simplicity. We denote the right
hand side of by G(4,8,() and rewrite [2.3):

73 (1+0B(B*+0) _
A1 - B

We state properties of (2.3’) in the following proposition.

(4, 8,0).

ProPOSITION 2.1. For the equation (2.3'), we obtain the following results:
() If|Bl>1 and £ =0, (2.3) has no positive solution A.
(2) If 0< |B| <1, there exists a function A(B,{) which satisfies A(f,{) =
AM—pB,{) and the following properties for positive pB:
(i) (2.3') has a solution if and only if A= A(B,();
(i) limg_o A(B,{) = limg_,; A(B,{) = +o0 for any { > 0. As for the case
where { = 0, we have limg_o A(B,0) = v2 and limg_; A(B,0) = +o0;
(iii) A(B,¢) is a strictly monotone increasing function of { > 0 for fixed B.

Proor. We multiply A to (2.3’) so that the left hand side of this equation
is independent of A: '

(1+ 0B +7)
1-5°
The statement (1) is obtained from the fact that the both sides of this equation
have different signs for || > 1, { >0 and 4> 0.
We obtain A(B,{) = A(—B,{) because (2.3') is invariant with respect to the

transformation f — —p. Hereafter, we consider only in the case where f > 0.
Let us prove (2)-(i). Since 0 < G(4,8,¢) <ay! — 0 as A — 0, it holds that

(1+ BB+ )
A1-p%

= AG(4,p,0).

> G(4,8,0)
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for small .. We next prove that the converse inequality holds true for large 4. To
this end, it is sufficient to establish that AG(4, 8, {) tends to +o0 as A — +o00. We
first see

-2
G(/Lﬁ,C)>—1J+_1J+...+L=az+a4+ +a3,,2+0(/1 )
a) a amm 1+0(A )

We write Aa, as a, for simplicity. We note that each a, does not depend on A.
By virtue of the following fact

May+ ag + - + am) + A0(A72) _ Tk ant o™

4G(%,4,¢) > 110072 1+0(7)

we have liminf;_,, AG(4,8,{) > S ;_, @} The right hand side of this inequality
tends to +oo0 as n — +00. Accordingly, AG(4,,{) diverges as A — +oo0, which
means that G(4,f,{) is greater than the left hand side of (2.3’) for sufficiently
large A. Therefore, by virtue of the intermediate value theorem, (2.3') has a
positive solution 4 = A(,().

The uniqueness of the solution follows from the fact that AG(4,8,() is
monotone increasing in A. Actually, we have

LS PR U U
1 + + -

AG(A’B, C) - al/i Aaz a.3//1

When J increases, ay,—1/2 tend to zero and Aa,, do not change. Hence, AG(4, §,{)
increases. Thus (i) is proved.
As for (ii), since it follows from (2.3')
2p3
0<16(1,8,0) < 2= 2P ,
a 2B+ 1B +14+0)

we have

B+ OB+ 1) +1+0)
B(1-5)
For fixed { > 0, the right hand side of diverges when f tends to zero or one.

The case where { =0 was already proved in [7]. Therefore, (ii) follows.
As for (iii), we rewrite (2.3’) in the following form

__A-p) D S U T I
(2.5) 1_(1+C)ﬁ(ﬂ2+C)Gu’ﬂ’§)_ T T

(2.4) PR
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where

i = H1=5) __ 1+ +7)
= v opg 0 T -

The even terms of the continued fraction
_ 20 =B (B2+4n?) BE+an2+(
2 — .
BB+ -1 B¢
decrease with { > 0. Then, since the continued fraction of is actually a
constant, at least one odd term of

S 2P+ (+DMBPHOB 4D

2n—1-

a; = - ] =2n-—1
A=+ A2
must decrease with ¢. As (1 +£)%(% +¢)(B? + j2 +{) increases with {, we see
that A? increases with ¢. This completes the proof of the proposition. O

This proposition shows that there is no solution A in if @ > 1. (2.3) has
a solution A = A(ka,{) = Ax(= Ax) where k belongs to

keK,={1,2,...,;,re Nyra<1 < (r+ 1)a}.

We see, from the shape of A(f,(), that there exist 8, 8’ (0 < B,B’ < 1) which
satisfy A(B,¢) = A(B’,{). This property leads to the description of the remark in
the previous section.

The solutions by , of are given by

[T pr.i for n > 0,
(2.6) ' brn=<1 for n =0,

(~D)" 1% pas forn <0,
where k € K, and

Ak, i Ak, i+1

i>1.

For each /i, the set of the non-trivial solutions of is given as follows:
(2.7.1) ker f,(Ak,0) = {s19x + s20_s;5i € R,i = 1,2},

or

(2.7.2) ker f,(A,0) = {519 + $20_i + 830 + Sa@_p;S5i € R,i=1,2,3,4},

where ¢, = 3, cpne ™) ¢, = (m2a? +n? —1)"'b,,, and k'(+ k) satisfies
Ak = A,
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Here we note that ¢, = c_m —n since ¢ is real-valued, and also the as-
sumption ¢(—x, —y) = ¢(x, y) leads c_m,—n = cm,». By this consideration, we can

rewrite (2.7.1) and (2.7.2) as follows:

(2.7.1%) ker f,(4,0) = {p = s¢®;s € R},
(2.7.2") ker £,(J,0) = {p = s19® + 5:0%);s,€ Ri= 1,2},
where ¢ = S°% ¢, , cos(max + ny).
Similarly, we seek non-trivial solutions @ of the conjugate equation of [2.1):
(2.8) £o(3,0)*® = {A? = (A + A(1 + )" (A + 1) sin yd,}® =0,

in the form ®(x, y) =Y, , dm ne ™). We see do , = 0 for all n and dy,, =0
for |ma| = 1. As for other m, we have the following equations of d,, ,:

am,ndm,n - dm,n—l + dm,n+1 =0.
Putting b;, , = (—1)"dp, », the above equations can be written as

Am,nbpy, n + by —bpni1 =0,

m,n—1 m,n+

Then, we apply the same argument as that in and obtain the set of non-
trivial solutions of for k € K,:

(291) ker f¢(/1k,0)* = {tl(Dk + th)—k; tie Ra = 1,2},
or
(292) ker f(p(lk, 0)* = {th)k + 10 _ + 13D + 4P t;eRi=1,2, 3,4},

where @, = 3, dpp e’ ™) d, = (—1)"bm n, and k’'(# k) satisfies Ax = Ak
Since ® is real-valued and satisfies ®(—x, —y) = ®(x, y), (2.9.1) and (2.9.2)

can be written respectively as follows:

(2.9.1") ker f,(A,0)* = {® = s®®;s e R},

(2.9.2) ker f,(A,0)* = {® = 5;0® + 5,0%);5; € R, i = 1,2},

where @™ = % ¢, , cos(max + ny).

In this paper, we consider only [(2.7.1") and (2.9.1') as ker f,(4,0) and
ker f,(4,0)" respectively.
3. Existence of Bifurcation Points

For «€(0,1) and {€[0,0), the linearized equation has non-trivial
solutions if and only if A is equal to the values 1; given in the previous section.
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Using the method of Lyapunov-Schmidt, we prove that each A, is the bifurcation
point of (1.5).

Suppose p€ X and we Y =L2. ge L} means ge L? and [[, g dxdy = 0.
We decompose them orthogonally by:

P=01+ 0, ¢ €X,p,€X,

w=w +w;, w €Y,weY,.

where X; and Y; (i=1,2) are defined as follows: X; = ker f,(4,0), Y> =
Rf,(2,0) and X, Y; are the orthogonal complements of Xj, Y, respectively.
We first note that

(3.1) Y, = ker £ (%,0).

The proof of this may be safely omitted, since it is clear at least formally and a
rigorous proof is standard.

We denote the projection to Y; of Y by P. Q =1 — P means the projection
to Y,. Corresponding to the above decomposition, we have a system of the fol-
lowing two equations which is equivalent to (1.5):

{Qf(/l,¢1+¢z)=0 in Y3, ---(32)
Pf(A,¢; +¢,)=0 inY;. ---(3.3)

Hereafter, we seek the set of solutions (4,¢) which depends on one parameter
se(—1,1) as follows: (4,¢) = (u(s), p,(s) + @,(s)). We suppose that u(s) e R
satisfies x(0) = 4. We put ¢,(s) = sp¥) where ¢*) is a non-trivial solution of
2.1) given in (2.7.1'). Now we look for A= u(s) and ¢,(s) € X>.

First, let us consider (3.2). Put Qf (4, ¢, + ¢,) = g(7,9,) with 7 = (4, 5). Then,
g(7,0) = 0 follows from f(4,0) =0 for all .. We see from its definition that
9o, (tk,0) with 7, = (A, 0) is a bijective mapping from X, to Y. By virtue of the
implicit function theorem, there exists a function y(z) which satisfies g(z, Y(7)) =
0 and Y(tx) =0 in the neighborhood of (7x,0). We shall determine ¥ = (1)
more precisely. In (3.2) with ¢, = sp*) and ¢, =¥, ¥ satisfies the following
equation:

H[y] — Lisp® + y] — 27 (A(se® + ¢), 5% +y) =0,

where H = g, (4,0), L= (A — 4&)(1 + )" sin y(A + I)d,. Since H is a bijective
mapping from X, to Y;, there exists the inverse mapping H~! and it holds that

¥ — H™' L[sp® + ] — AH T (A(sp®) + ), 50 + ¢) = 0.
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We define a sequence of functions {y,} (n=0,1,2,...) as follows:
Vo=0, Y,=H"'Lisp® +y, ] - AH ' T(A(s9® + ¥, _,),50" +y,_).

Let us show that {y,} is a Cauchy sequence in the neighborhood of s=0.
The non-linear term can be omitted since it becomes O(s?). Choosing 4 such as
|4 — | <47Y|HY||™', we have ||y]| = O(s) and |y, — ¥ ll <27'||¢, . Simi-
larly, ||¥,11 — ¥all < 27|y, || follows. Then {y,} is a Cauchy sequence and con-
verges to a limit ¥ = y/(4,s) which belongs to X, with (4,0) = 0 and for small s

(3.4) v =H'Lisp® +y] — AHT(A(sp® + ), 59" + ).

In order to show that each A; is a bifurcation point, we have to prove the
existence of the solution u(s) of (3.3) with u(0) = Ax. Substituting ¢, = Y(7) into
the left hand side of (3.3) and putting

Pf(4,50®) +¥(4,5)) = h(4, ),

we define
_ [h(A,s)/s, fors#0,
x(4,5) = {hs(/l, 0), fors=0.

We note that #(4,0) = 0 holds for all A4, and the continuity of y follows from
that of h;. The reason why we define x(4,s) is that we cannot apply the implicit
function theorem to A(A,s) because 4;(4,0) =0 follows from y(4,0) =0 for all
A. And from hg(4,s) = Pf,(4,59%) + ¢(2,5))[e® + ¢ (4,5)], we have A (4,0) =
Pf,(%,0)[p®) + y,(4,0)]. Now we verify ¥ (4,0) = 0 which we will use later. Dif-
ferentiating Qf (4, sp®) +y¥(4,5)) =0 by s and putting (4,s) = (A,0), we have
O fo(Ak,0)[Y,(Ak, 0)] = 0. Since Qf,(4k,0) is a bijective mapping from X, to Y3,
Y, (A, 0) = 0 is verified.

When we consider that X7 = ker f,(4x,0) is given in (2.7.1"), Y = ker f}(4%,0)
takes the form [2.9.1"). Then x(4,s) = 0 is equivalent to the following equation:

(3.5) X(l)(lvs) = (x(4, S)’(I)(k))L2 =0,
where ®*) e ¥;. We seek a solution A of [3.5). Differentiating by A, we have

(1) o X+ AL,0) = x(4,0) 1y
0 (A, 0) = ()i‘i‘o AL ),

= (Pf(l’l('l/ﬂ 0) [¢(k)]’ q)(k))L2 = (f(M (llk, 0)[¢(k)], P*(D(k))Lz
= Ui O[], POW),,

= s(—(1 407" sin y(A + 1)d,p®), ®®),,.
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Let us show
(3.6) (=(14¢)7 " sin y(A + Dop®, 0%, > 0.
Since ¢® is a solution of [2.1), we have

~(1+0)7" sin y(A + Daxp® = 1 (=A% + (A)p®).
o =3, cincostkax +ny)  and  ®W =37, d cos(kax +ny) = T, (~1)"-
(k2a? + n? — 1)cx, » cos(kax + ny) yield

(e 0]
(=A% +¢A)p®, @), = 271D 3 (=)™ e,
n=-—0oo

where G = (k?a? +n?)(k%a® + n? + {)(k*«® + n? — 1)c} . Meanwhile, we can
verify 3, G, =0. In fact, multiplying the both side of f,(,0)p®) =0 by
(A+1)p® and integrating over D, we obtain

0= ” (A + D™ (A2 — (A)p® dxdy
D

— (1 + 0! ” (A + D" sin y(A + I)0,9% dxdy.
D

The second term of the right hand side of this equation vanishes. Then, we have

[e 0]
” (A + 1) (A2 = (A dxdy = —27'|D| 3 Gin = 0.
D

n=—0o0

From ), & ,=0 and ¢, _, = é.n, We have
= 1
n+l~ ~ = ~
E (=1)"" Crn = —Ch0+2 E Creym — 2 E C,m
n=—oo m=1,3,5,... m=2,4,6,...

=4 Y &m>0.
m=1,3,5,...

Therefore, we obtain [3.6), namely, xfll)(/lk,O) #0 if 5s# 0. By virtue of the
implicit function theorem, there exists a function A= u(s) which satisfies
xV(u(s),s) =0 and u(0) = Jx. This means that the solution of (1.5) is given by

(4,0) = (u(s), 9(s)) = (1(s), 59 + Y (u(s),5)).
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4. Properties of the Bifurcation Curve

Following the method in [7], we shall consider the convex property of
A = u(s) with regard to s. Namely, we prove that u. (0) > 0. We rewrite

f(u(s),p(s)) =0 as
(4.1)  To(s) = As)(1+¢)" sin p(A+1)0:xp(s) + u(s)T (Ag(s), 0(s)),
where T = f,(,0) and A(s) = u(s) — A Let us differentiate (4.1) by s:

_A(s) A(s)
T¢s(s)_1+c 1+C
+ 5 () (Ag(s), 9(s)) + u(s)J (Ap(s), 9(s));

ff@ sin (A -+ D0:p(5) + 22 sin y(8+ Do, (9
As

sin y(A + I)0xp,(s)

sin y(A + I)0xp(s) +

To(s) =

1+¢

)
1+¢

+ 2u,(5)J (Ap(s), 9(s)) + u(s) I (Ap(s), 9(s)) 3

95(5) = 0% + Y, (u(s), )ps(s) + Ws(u(s), 5)-

+ sin y(A + I)0x¢(s) + uss(5)J (A@(s), 9(s))

@(0) =0 and A(0) = 0 yield

2u,(0) .
@2 Tou(0) =250 sin y(A-+ Do)+ 200I (A0, o)

If we take the L? inner-product with ®® e ker T*, (4.2) becomes
0 = 2u,(0)(1 + {) ™' (sin y(A + INoxp"®), ®X)) 5,
and T¢® =0 implies
0 = 2u,(0)4; ' (A% — ¢A)p™), @W) 1.
Since we already have shown in that
(4.3) (a2 = (a)p®, @), <0,

we obtain u,(0) = 0.
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Differentiating (4.1) once more and putting s = 0:
TP4s(0) = 315 (0)(1 +¢) ™" sin y(A+ 1)dxg®
+ 32{J (894,(0), ™)) + T (A9Y, 0,,(0))}
= 3u,,(0) A (A% — ¢A)p®
+32{J (894(0), ) + T (A0™), 0,,(0))},
and taking the L? inner-product with ®® e ker T*, we have
0 = (Tpy,(0), @9) 1
= 3u,(0)4 ' (A% = (A)p), @) 1,
+ 34 (I (A0,s(0), 0) + T (899, 0,,(0)), @) 1o,
namely,

_,11%
(A% = ¢A)pk), @R

Hss(0) = (J(Ap(0), 9P + T (Ap™), 9 (0)), @H)) .

4.3) informs us that the sign of u(0) is equal to that of
A

(4.4) j jD{J<A¢m<0), o) 1+ J(Ag®), 0,(0))} O dxdy.

Since ¢(0) = Y,(4k,0) is obtained by
(4.5) To,(0) = 24 (Ap®), o)),
we have

j J {J(Ag,,(0), o®) + J(Ag®), g (0))}0® dxdy = Dy + Ds,
D

D= jj (J(AZy,9™) + T(Ap™®, Z,)} 0P dxdy,
D

D= Jj (J(AZs, o) + J(80™®), Z,)} 0P dxdy,
D

where Z;, Z, are functions extended respectively by cos £y, cos(2kax + £y) (we
define them precisely later in Appendix). As for D; and D;, the following prop-
osition holds true: :
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PROPOSITION 4.1.  For each fixed { > 0, Dy > |D,| holds if ka is close to one.

This proposition means that p(0) > 0 holds if ko € (0,1) is sufficiently close to
one. Thus, is proved.

5. Appendix

This appendix gives the proof of the proposition asserted in the previous

section.

ProOF OF ProPosSITION 4.1. The outline of this proof is based on the previous
paper (see Section 4 and 5 of [7]). First, we introduce a proposition which can be
proved similarly to [7].

PROPOSITION 5.1. The solution of (4.5) takes the following form:
(5.1) 0,(0) = ‘wOAc(0) + 'wPPDEc(2ka) = Z; + 2,
Z, = 'wOAc(0), Z; = 'w*DEc(2ka).

Here ¢(0), c(2ka), w® and w® are column vectors with the following ¢(-th
components:

(e(0)), =cos ¢y, (c(2ka)), = cos(2kax + Ly),
(w®), = Jpkat 'o®K S 9™,

(w®), = Aeka'9® K, (2N — ¢I)RS p®,

where ® is a column vector corresponding to the Fourier coefficients of ¢*) with
n-th component ¢, = (k?a? + n? — 1) by, (by,n is defined by (2.6)), K, and N are
diagonal matrices with n-th elements —k, = —(k*«? +n?) and (N), = n respec-
tively. S’ and R are matrices with (i, j) elements as follows:

(Sf)._z{l for j—i=¢, (R) _{1 for i+ j=0,
iJj

0 otherwise, hi 0 otherwise.

A and E are diagonal matrices with n-th elements

A — (n* + ()~ for n#0, E — 1+¢
"o for n=0, = Acka(4k2a? +n?—1)’
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and D = (---d"™ --.) is a matrix where d"™ are column vectors with n-th com-
ponent d,g’") as follows:

(Hn—m+1 ﬂ?_)Nn—all for n>m,

d™ = { N1, for n=m,
=1 Ar—
(Hi=n+l ’71' ) m.}_l for n< m,
where
1 1
”: = / |+ ! |+ Tty
a, an+1
_ -1
nnE_anl+ + -

n—2
= 5t -
Not1 = Mgy = M

, (1 +0)(4k%a? + n?)(4k?a? + n? +C)
Aicka(4k?a? + n? — 1)

IS
&)
It

We can write D; in the previous section as

D = A,kk20(7[ (W; +w_g {A/()(D() + ZZA(m }
£=1,3,5,...

m=1

where

[0 0]
we = POKISDO =0 3 (h)pry O = (@), = (<),

Jj=—o0
Am = [AN{N?*(I — R)S™ + (I — R)S"K1}9®),
= {(AN) k—t1m — (AN*) }0_p o+ {(AN?), = (AN) K 1m}0rim:
Here we use the following facts: Az = A(—eyms O = (=1)"0p, O = (=1)"Dp,

and k_; = k;. We also employ the following lemma in [7].

LEMMA 5.2. For matrices S, N and R, we obtain
(i) SN —NS’=¢S’, £eN,
(i) NRS’ — RS’N = (2N — ¢I)RS’, ¢ e N.

Let us consider each terms of D;. Since it holds that (AN), > 0, 02—k, =
—k?a2 <0, ¢, <0 for odd £ >1 and ®, =1, we have

An®o = 2(AN),(¢* — ks)p, > 0.
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The terms which contain ¢, are dominant throughout this proof, since only
0o = (k*a2 — 1)7! < 0 diverges if ka tends to one. In 3%, A,,®,,, We see that
the corresponding term (AN),(—¢? + k?a?)p,®, > 0 diverges to +oo if ko tends
to one and the sum of other terms is uniformly bounded. On the other hand, in

We+w_s = /{2/’2(%(/’0 + Z (kevi — ki)¢i¢/+i}, £=13,5,...,
i%0,—¢

if ko tends to one, then only the first term 2¢/3¢p,¢p, > 0 diverges to +co and the
other terms remain bounded. Therefore, w, + w_, > 0 holds and, then, we obtain
D, > 0.

Similarly, D, can be written as

0 o0
D2 =/1kk2a7z2 Z Z W{z‘i'(mq)m,

{=—00 m=—00

e8]
W, = 'p®WK 2N — ¢D)RS‘9® = S k(¢ - 2))py0,

Jj=—o

_.j,
A{m = {DE(KZS—m - S_mKl)(N — m1)¢(k)}{

o0
= > dEj(~k; + kiom)(=2m + )0y,
Jj=—o00
where K, is a diagonal matrix with n-th element —k; = —(4k2a2 + j2). In this
case, the terms which contain ¢} are dominant. The corresponding terms in D,
are given by

o0 o0
(4) hek?am® 3" 3" —£3p,md)" By (3K + m?) e,
{=—00 m=—0o0
while in D;, the terms which contain ¢? are
(B) Ak am? Z an?(k2a? — n?)(n* + ¢) ™ 9, Dngd.
n=1,3,5,..

We compare (4) and (B) in the case where ka tends to one. Neglecting
Ak?an?p? > 0 involved in both terms and putting ko = 1, we have
D=4 > @ -1)r*+07'8},,
n=1,3,5,...,

8]

Dr=(1+0 Y. Y (~)™ " emag a by cboim.

{=—00 Mm=—00
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We already knew that D > 0, and we can estimate D, as follows:

D2l < 1+ 0 Y lbw e (C1eM ™" + Cot2M219),
(=1

Here C; and C, are suitable constants and M = [\/Ax] + 1 where [x] is the in-
tegral part of x (as for the estimation, we use the same method in Section 5.2 of
[7]). For each fixed ¢ > 0, the right hand side is smaller than D; mainly since A
goes to oo as ko is close to one. Therefore, the proposition is proved.

[9]
(10]

(11]
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