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CONSTRUCT BI-FROBENIUS ALGEBRAS VIA QUIVERS*

By

Yanhua WANG and Pu ZHANG

Abstract. The aim of this note is to construct explicitly a class
of bi-Frobenius algebras via quivers. In particular, this kind of
bi-Frobenius algebras are not Hopf algebras, and a necessary and
sufficient condition for such algebras being symmetric is given.

1. Introduction

Typical Frobenius algebras are finite group algebras. In general, a finite-
dimensional Hopf algebra is a Frobenius algebra (see Larson and Sweedler [LS],
or 2.1.3 in Montgomery [M]). Relations of the Frobenius algebras with the Yang-
Baxter equations and with the topological quantum field theory can be founded
in and [A], respectively. As a natural generalization of finite-dimensional
Hopf algebras, the concept of a bi-Frobenius algebra was introduced by Doi and
Takeuchi (see also [Kop]). Roughly speaking, this is a Frobenius algebra as
well as a Frobenius coalgebra together with an antipode. Except for an example
given in 2.5 in [DT], there are few explicit constructions of bi-Frobenius algebras
which are not finite-dimensional Hopf algebras. The aim of this note is to provide
such an explicit construction via quivers.

Motivations of our construction is the quiver method in the representa-
tion theory of algebras, see Ringel [R], coalgebra structure on quivers considered
by Chin and Montgomery [CM], and constructing Hopf quiver and quiver
quantum groups by Cibils and Rosso [C], [CR], and E. Green and Solberg [GS],
etc.

We start from the algebra KZ,/J? where KZ, is the path algebra of the
basic cycle with n vertices and J is the ideal generated by arrows with d > 2
an integer. This is an augmented Frobenius algebra, and it is a symmetric if

and only if d =1 (mod n) (see below). Endowed with a suitable
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Frobenius coalgebra structure, this Frobenius algebra becomes a bi-Frobenius
algebra, which is not a Hopf algebra (see [Theorem 3.3).
The authors thank the referee for pointing out the reference [D]. By Lemma
1.2 in [D], one can prove the both Frobeniusness of KZ,/J by showing that it
has a bijective bi-Frobenius antipode. So we leave the proof of the Frobeniusness
of algebra (see Lemma 2.1(ii)) and of coalgebra (see [Lemma 3.2)) to [Theorem 3.3.
Throughout let K be a field. All algebras and coalgebras are over K. The

notations Hom and ® are over K.

2. Quivers and Frobenius Algebras

A quiver Q is an oriented graph given by the set Qp of vertices and the set Q;
of arrows. Let KQ be the path algebra of a quiver Q (see e.g. [R]). We write the
conjunction of paths from right to left.

A finite-dimensional algebra A4 is said to be elementary if 4/rad 4 = k" as
algebras for some positive integer n, where rad 4 is the Jacobson radical. By
Gabriel’s theorem an elementary algebra is isomorphic to KQ/I, where Q is a
finite quiver, and 7 is an admissible ideal of KQ (ie., JY < I < J? for some
positive integer N,J is the ideal of K Q generated by the arrows). Such a quiver Q
is uniquely determined by A4, which is called the Gabriel quiver of A.

. Let 4 be a finite-dimensional algebra, and 4* = Hom(4, K). Then A* has
a natural A4-A4-bimodule structure given by (af)(b) = f(ba), (fa)(b) = f(ab),
Vf e A*, a,be A. We say that A is a Frobenius algebra provided that 44 =~ 44"
as left A-modules, or equivalently 4,4 = A% as right 4-modules; and that 4 is
symmetric provided that 44,4 = 4A4% as A-A-bimodules.

Let 4 be a Frobenius algebra with @ : 44 =~ 44*. Then ¢ := ®(1,) is a cyclic
generator of 4A4*. Also ¢ is a cyclic generator of 4%, and a+— ¢a is an iso-
morphism 4, =~ A%. We will call the pair (4,¢) is a Frobenius algebra if ¢ is
needed to be specified. Let (x;, f;), x; € A, fi€ A*, be a dual basis (i.e., for each
a€d, Y, fila)x; =a), and y; € A with f; = ¢y;. Then we have

Z xip(yia) =a = Z #(ax;)yi, VaeA.

We refer to ¢ as a Frobenius homomorphism, (x;, y;) as a dual basis, >, x; ® y;
as a Frobenius element, and (@, x;, y;) as a Frobenius coordinate, see or
[KS]. The Nakayama automorphism is the unique algebra isomorphism N : 4 —
A, determined by

for all ae A. Then we have
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N(a) = Zx,-gzﬁ(ay,-), Vae A.

It is well-known that a Frobenius algebra is symmetric if and only if its
Nakayama automorphism is inner (see e.g. [Y]).

Let C be a finite-dimensional coalgebra with comultiplication A, C* its dual
algebra. Then C is a C*-C*-bimodule via

fe=Y af(e), o =) fle)a ¥eCceC

By definition a pair (C,¢) with ¢ e C is called a Frobenius coalgebra if C = ¢C”*,
or equivalently C = C*t.

Let Z, denote the basic cycle with n vertices. The set of vertices is denoted
by {ei|ie Z/nZ}, and the set of arrows by {a;=i— i+ 1|ieZ/nZ}. Set
PP = Qitm - aip1a;, the path of length m starting at the vertex e;. Taking the
indices modulo n. Note that y? =¢; and y! = a;.

The following fact seems to be well-known. For use later, we write out a
direct proof.

LEMMA 2.1. (i) Assume that KZ,/I is a Frobenius algebra, where I is an
admissible ideal. Then I must be of the form I =J% for some positive integer
d>2.

(ii) The algebra KZ,/J¢ is a Frobenius algebra, which is augmented (i.e. there
is an algebra homomorphism ¢: A — K).

Proor. (i) Note that an admissible ideal I of KZ, must be generated by
some paths. While KZ,/I is a self-injective algebra, it follows from a direct
calculation that I = J9 for some positive integer d > 2.

(ii) Write 4 = KZ,/J¢. We have remarked in the introduction that the proof
of the Frobeniusness is left to [Theorem 3.3. But for use later, we write out a left
A-module isomorphism ® : 4 — 4*. Note that {y"|ie Z/nZ,0<m<d—1} is
a basis of 4. Let {(y")"|ie Z/nZ,0 <m < d — 1} denote the dual basis of 4%,
and ®: 4 — A* the linear map determined by

O = (i ™), VieZ/nZ,0<m<d-1. (1)

i+m
Actually, @ is a left A-module isomorphism and hence A4 is a Frobenius algebra.
Define ¢: A — K to be the linear map determined by

e(y") =0i00mo VieZ/nZ, 0<m<d-1 )
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where J;; is the usual Kronecker symbol, and 6;; is the one modulo n for
i,je Z/nZ. Clearly ¢ is an algebra map. |

The following facts can be obtained by direct calculations. We omit the
details.

LEMMA 2.2. For the Frobenius algebra A = KZ,/J¢ with isomorphism ®
given as above, we have

(i) The Frobenius homomorphism is ¢ = S "o (y41)".

.. . : 1 —d- 1

(ii) The Frobenius element is 3.1 S04 ym @ yd-1—m.

(iii) The space of left and right integrals are Ky{~} and Kyg~', respectively.
Hence kZ,/J¢ is unimodular if and only if d =1 (mod n).

(iv) The right modular function o: A — K is given by a(y") :5_,3,1_15,,1,0.

(v) The Nakayama automorphism N :A — A is given by N(y[") =y ;).
Thus the order of N is exactly n/(d — 1,n), where (d — 1,n) is the greatest
common divisor.

THEOREM 2.3. The Frobenius algebra KZ,/J¢ is symmetric if and only if
d =1 (mod n).

Proor. If KZ,/J¢ is symmetric, then KZ,/J 4 is unimodular, and hence
d=1 (modn), by Lemma 22(iii). If d =1 (modn), then N(y")=yp" by
Cemma 2.%(v), and hence ¢a = a¢ for ae KZ,/J?. 1t follows that KZ,/J¢ is
symmetric. [ |

REMARK 2.4. By [CHYZ|, the Frobenius algebras and the symmetric
algebras constructed above are all possible connected monomial Frobenius
algebras and monomial symmetric algebras, respectively.

3. A Class of Bi-Frobenius Algebras

DeriNiTION 3.1 ([DT]). Let A4 be a finite-dimensional algebra and coalgebra
with t€ 4 and ¢ € 4*. Suppose that

(i) the counit ¢ is an algebra map and 14 is a group-like element;

(i) (A4,¢) is a Frobenius algebra, and (4,¢) is a Frobenius coalgebra with
comultiplication A;

(iii) The linear map y : 4 — A, given by
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=Y ¢(na) (3)

for all a e 4, is an anti-algebra map as well as an anti-coalgebra map,

where A(f) =>4 ® 1.
Then the quadruple (4, ¢, ¢,y) is called a bi-Frobenius algebra, and the map ¥ is
called the antipode of A.

Now we attach a Frobenius coalgebra structure to KZ,/J d,

LEMMA 3.2. The quadruple (KZ,/J% t, A€ is a cocommutative Frobenius
coalgebra, where
t=y5" 4)
and

AOM = > 9@y, VipgeZ/mZ 0<mils<d-1, (5
p+q=i,l+s=m

and the counit ¢ is defined as in (2).

PrROOF. By a routine verification one sees that (KZ,/J¢ A,e) is a coal-
gebra. The Frobeniusness is proved in below. |

THEOREM 3.3. The quadruple (KZ,/J?, ¢,t,\) is a bi-Frobenius algebra but
not a Hopf algebra, with t, ¢, defined as above.

PROOF. It is easy to check the identity 1 = > 01 y? is a group-like element.

By Lemma 1.2 in [D], it remains to check that y is an anti-algebra and anti-
coalgebra automorphism.

Since Y(a) = > ¢(t1a)t,, we have

n—1 d-1 n—1 d-1
WO =D eGlrmyis = 5, iem$(y) )y}
j=0 I=0 j=0 1=0 ;
n—1 d—1 ~ ,
= 5 Li+m Z(V * +m)y,f_'j1'
j=0 =0

5 d-1-1
= 0j,i+m0d-1, 1+m3’n_j

_.m
- y—i—m'

It is clear that y is bijective.
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Obviously, W(31 %) = 2/ 7?0, and eoy = e. Note that

‘//(y:nyj]) 1/+1‘//( mH) 1]+I})_j+/m I

On the other hand,

WO = 7Ly = 0t -y = O, iV

So Y is an anti-algebra automorphism.
Let 7 be the twist map. Then we have

o AWGT) =To AR = D> v

pHq=—i—-m
I+s=m

and

WRWAM) =W | > ve

u+v=i

t+r=m

_ t r
= > M ®r,

u+v=i

t+r=m
. t r
- § : V—u—t ® V—v—r

—U—t—v—r=—i-m

tHr=m

This means to Ay = (Y ® ¥)A, ie, ¥ is an anti-coalgebra automorphism.
Since A is not an algebra map, it follows that it is not a Hopf algebra.
|

REMARKS 3.4.

(i) The order of Y is 2 since the coalgebra is cocommutative.
(ii) There may be other comultiplication on KZ,/J¢. In fact we can endow
a non-cocommutative comultiplication to KZ,/J? as follows

Aeg) = eo ®ep + €1 ® ey
Aer) =e1 ®ep+ e ® e
Aag) =ey®ao+e1®@ay+a®e —a) ® e
Ala)=er®ao+e @a;+ar®e —a e

This is exactly Sweedler’s 4-dimensional Hopf algebra
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H4=<g,x|92: l,x2:O,gx+xg:0,A(g)=g®g,A(x):g®x+x®1>,

(i)
(iv)

(Kop]
[LS]
[M]
(R]

[Y]

via
l=e +e, g=e —e, x=a —ap.

Actually, if d 4 n, the algebra KZ,/J¢ can never become a Hopf algebra,
with any comultiplication, see for detail.

Dually, we may obtain a class of bi-Frobenius algebras starting from
path coalgebras.
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