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A WEIGHTED POINTWISE ESTIMATE FOR TWO
DIMENSIONAL WAVE EQUATIONS AND ITS
APPLICATION TO NONLINEAR SYSTEMS

Dedicated to professor Kunihiko Kajitani on his sixtieth birth day

By

Yuki Kurokawa* and Hiroyuki TAKAMURA!

Abstract. This paper is devoted to some weighted pointwise esti-
mate for solutions of two dimensional wave equations. It gives a
simple proof to obtain the best order of the lower bound of the
lifespan of classical solutions to nonlinear systems.

1. Introduction

We are first concerned with pointwise estimates of a classical solution of the
following initial value problem for inhomogeneous wave equations in low space
dimensions.

ou=H in R" x [0, c0),
{ 0, 0) (L1)
u't:O =1, ut'z:o =49,
where O is an usual D’Alembertian in R” and f, g are given smooth functions of
compact support in R”. H = H(x,t) is a smooth function in R"” x [0, c0) whose
support is admissible to the initial data. Our attention goes to pointwise esti-
mates, so that we consider the case of »=2,3 only, in which a fundamental

solution of 00 is positive.
Most of weighted L® estimates of a solutions of (1.1) are global type.

Actually, one can prove
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Iwttl] L ®7x(0,00)) < Cf.g + ClIW H|| Lo (70, 00)) (1.2)

for a suitable weight w and some power p, where Cr, is a positive constant
depending on the initial data. This inequality is often applied to nonlinear prob-
lem. For example, putting H = |u|? “lu, or |ulf (p =2), we have a global exis-
tence of a classical solution of (1.1) with small initial data by together with
a contraction mapping argument, namely, a constructive method. See early works
on this problem, F. John [6] and R. T. Glassey [4]. In this sense, the global esti-

mate is enough.

However, in order to investigate the lower bound of the lifespan of the
solution when a blow-up occurs in the nonlinear problem, more precise estimate
will be required rather than [1.2). To see this, we put a small parameter ¢ > 0
into the initial data, i.e.

f(x) =ep(x), g(x) =eyp(x) (1.3)

for arbitrarily fixed functions ¢, . Then we have a similar estimate to (1.2) such
that

[wull Lo goxio, 77y < Cou€ + ClIIWPH || L roxpo, 7)) F (T, P), (1.4)

where F is a function of p and a time 7. But we have to improve this. Because
a function space in which we will make a contraction has a bad order of ¢

such as
Wl Lo rr o, 77y = Oe)- (1.5)
Hence the local in time existence of a solution is guaranteed by
e’ 1F(T, p) « 1 (1.6)

in the contraction. Unfortunately, this condition does not make a optimal order
of ¢ of the lifespan, sup 7. For example, see R. Agemi & H. Takamura for
n=2.

In three space dimensions, » = 3, one can improve (1.4) easily by making use
of strong Huygens’ principle. Actually, there is a space-time domain 4 in which
we find C, y = 0 by compactness of the support of the initial data. Therefore we
have new estimates

vl gy < CLWPHll o 1y F(T, p) + 9P H e 3}, .
||Wu||Lw(1§) < Coye+ C”WPH”Loc(E)G(Ta p);
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where B=R3 x [0, T ]\d and F,G are functions of T, p. Then the good orders
of ¢ in function spaces are obtained such as

[wull w4y = OEF),  |lwull (5 = O(e). (1.8)
Hence the local in time existence of a solution is guaranteed by
e?P~VF(T, p), e G(T, p) « 1 (1.9)

in the contraction. The first quantity is always bigger than the second one, and
makes the optimal lifespan. See F. John for a quadratic nonlinearity, or Zhou
Yi and R. Agemi & Y. Kurokawa & H. Takamura for any power.

On the contrary, it is hard to prove a suitable weighted L estimate in two
space dimensions like (1.7) by lack of the strong Huygens’ principle. However,
other clever proofs overcome the difficulity, which can be found in H. Lindblad
[9] and Zhou Yi [11]. They made pointwise estimates and extended a local in
time solution to the longest time by continuation principle, namely the contra-
diction argumenyt. This method is sharper than constructive one. The lower and
upper bounds of the lifespan coincide with each other and can be written by
known quantity when ¢ goes to 0. But it works only for the sub-critical case of
the nonlinear problem because a scaling argument is essential. For the critical
case, the optimal lower bound of the lifespan has been obtained. We also remark
that the pointwise estimate with some special function is required in two space
dimensions.

The aim of the present paper is to prove some weighted pointwise estimate
in two space dimensions by almost the same way as the three dimensional case.
Moreover, as an application, we easily obtain the weighted L*® estimates like
(1.7). This gives us the two dimensional version of R. Agemi & Y. Kurokawa &
H. Takamura [1] in which the lifespan of a classical solution to the initial value
problem for

{D” = lol?, (1.10)

ov = |u|?

is precisely estimated from below and above in three space dimensions. This
system was first studied by D. Del Santo & V. Georgiev & E. Mitidieri [3].

This paper is organized as follows. In the next section, we state our main
result. Section 3 is devoted to its proof which proceeds along with the method
originally introduced by F. John [6]. In section 4, main result is applied to non-
linear systems. From section 5 to section 8, we get the lower bound of the life-
span in a very simple way.
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2. Main Result

We shall consider the linear problem (1.1) with a scaled data [(1.3). A key
assumption on the present problem is '

supp ¢, supp ¥ = {x € R%; |x| < k}. (2.1)

Without loss of generality, we may assume that & > 1. By finite propagation
speed of the wave, the admissible support of H is

supp H < {(x,?) e R? x [0, 0); |x| < 1+ k}. (2.2)
The weight function w is defined by
t+ |x| + 2K\
(i) = (EEZ) v - ), 23)

where N(s) is a given function of s. _
Our main result is the following theorem.

THEOREM 1. Let u be a classical solution of the initial value problem (1.1) in
R? x [0, T] with a scaled data under the assumptions on the compactness of
support of the initial data, (2.1), and H, (2.2). Then, for 0 < ¢ < 1 and p € R, there
exist positive constants C,y depending on the initial data not on &, and C inde-
pendent of k,e such that the following inequality holds for any (x,t) € R* x [0, T.

2k [t — 2k
\/HI)CILJr \/t |x1|c+ |u(x, 1)| < Cy,ye+ CkI(|x], 1), (2.4)

where, when p > 3,

I(r,1) = J::(l + Et—__—r:_—zﬂfl[o, w0yt — r)) F(p_zj)\/,z(’(;); nh) \wPH|(B) dB. (2.5)
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Here Fp(b,a) and || - || are defined by

( 1-P
(a+2k) when P > 1,
k
b+ 2k
Fp(b,a) = = 2.6
p(b,a) 4 10g2a+2k when P =1, (2.6)
1-P
(b + Zk) when P < 1
\ k
and
lul|(z — |x]) = sup sup [|u(x,1)]. (2.7)
t+|x| x/|x]eS1

For the case p <3, Fi,_52(t—r,B) in I is replaced by G,(t+r,t—r), where

1/2
(ﬁ *I;Zk) log 2}‘:52 when p =3,
Gp(o, B) = s o (2.8)
B+ 2k\? (o + 26\C7PV
( T > ( A ) when p < 3.

REMARK 2.1. For p > (3+v17)/2, a weighted L* estimate in two space
dimensions,

|1W"”L°°(R2x[o,oo)) < Coye+ Ck2||WpH||Loo(R2x[o,oo)) (2.9)

has been obtained by R. T. Glassey [4] with a suitable weight w. See also
Appendix of R. Agemi & H. Takamura [2] for a simplified proof. This estimate is
enough for the global existence for nonlinear problem.

3. Proof of the Main Theorem

First, we shall follow some basic facts of a representation formula of a
solution of (1.1) with which has to satisfy the following integral equation.

u(x,t) = eu’(x,t) + L(H)(x, 1), (3.1)

where u° is a solution of Ou® = 0 with the same initial data to u/e. Moreover,

L(H) is a solution of OL(H) = H with zero data. In two dimensional case, #°
and L(H) can be expressed by

ul(x, 1) = %R(Mx, 1)+ RW|x,t), L(H)(x,t) = J; R(H( ,T) | x,t — 1) dt, (3.2)
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where a function R is defined by

1 (" pdp

Ry |x,t =—J —J Y(x + pw) dS,. 33

( I ) 27( 0 m o<1 ( ) (] ( )

Applying this formula to L(H) in our problem, we note that the weight

function is spherically symmetric. So the method of the spherical mean developed
by F. John gives us the following useful formula.

(3.4)

=t pdp J”” |wPH||(t—A)AwP(,7) dA

0 Ju—e)?—p2 [ (= p2 fr4p)2 =32

where r = |x|. Then, it follows from inverting the order of (A,p)-integral that

) t t—t+r t—1 (t=r), t1—1—r Atr
IL(H)(x,0)] < 24 | de di|  dp+ J dr J d/lj dp
T lJo [t—1—7| |A—r| 0 0 [A—r|

x HWPHH(T — ))“w_p(l T) (35)

\/t—f) p\/p \/(/1+r) — p?

After some estimates, one can find that p-integral will disappear by

b
pdp 1,011\
L \/pz_az\/bz_pz—zB(Z’z)—z' (3.6)

Introducing characteristic variables

L(H) (6 )| < 2 jo a |

a=14+4, f=1-1 (3.7)

and extending the domain of the integral, we have

|L(H)(x,1t)| < C(Ii(r,t) + L(r, 1)), (3.8)
where
Y = w(d,7)7?
n(m)—j_ WP H\(8) d Ju e 689
and

b= wenimas[ D
20 —k g (Vror \Jt—r—BVi—r—u
All detailed proofs of inequalities above can be found in R. Agemi & H.

Takamura [2]. Here we use a slightly modified form of I,. The bottom of the
a-integral is replaced by g instead of 0 which is made by different extension of the

da. (3.10)
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domain. The estimate for I; and I, will be divided into two cases. Here and
hereafter, a constant C independent of ¢ and & may change from line to line.
Case 4r > t+r+2k, ie t+r+2k>2(t—r+2k).
In this case, /7 must be taken in the definition of I;, (3.9). Then it follows
from the definition of w, (2.3), that

1—

r " ((a (2-p)/2
WP HIBN(B) 7 dp J (e +2k) /)

t—r \/ oL — (t —Fr )
With the help of integration by parts, the a-integral is dominated by

(2-p)/2 t+r (1-p)/2
Cr t+r+2k +£J o+ 2k o
k V)i \ k

do. (3.11)

I](r, I) < %J

(/¢ _ (3-p)/2
(E—%Zk) when p > 3,
< CVk{ log 2% when p = 3, (3.12)
(3-p)/2
\(H_;—i:}f) when p < 3.
Hence, by simple inequality
1/2
N ? (#) , (3.13)

we obtain, when p > 3,

k — t—rF _ - 7r,
VR e s [ el B gy g, 314

Because we have
t—r+ 2\
(—76_——) < F(p_z)/z(l — r,,B). (315)
It is clear that, when p <3, F(,_52(t —r,f) is replaced by G,(t+r,t—r).
Similarly to I;, /7 is taken in the definition of I, (3.10). Here we have to
assume that 1+ —r > 0. Then we get

—

— @-p)/2
e (p)” ap | 2O

In order to investigate the a-integral, we need the following inequality.

L(r,t) < %J do. (3.16)

r
|
—k
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LEMMA 3.1. For PeR, b>0 and b >a > —k, it holds that

b -P
J= J ,/bbtzf (“ ;Zk) do < CkFp(b, a), (3.17)

where Fp is the one in (2.6).

PrROOF. When b >a>b/2 -k, we have

~P b
T < C(ﬂ> J de (3.18)
Vb + 2k k b2—k Vb — o
which implies
1-P
J<Ck (b *]‘{2") < CkFp(b,a). (3.19)

When b/2 — k > a, we have

b/2-k -P ~P b
T ] J <ﬂ> do + C(ﬂ> J 4 (320
vb+2k = /b2 +k k k b/2-k Vb — o

which implies

a

J < Ck{Fp(b/Z —k,a) + (bikz—k>l_P} < CkFp(b, a). (3.21)

Therefore the lemma follows.

Applying Lemma 3.1 to our case with P=(p—2)/2, b=t—r, a=f, we
can find that the a-integral is dominated by

CkF(p_2)2(t —1,p)

Vi—-r+2k

Hence it follows from (3.13) that

\/;—{- rk+ Zk\/t — rk+ 2k Lr1) < Ck J—: F(p—ZJ)\/rz((ﬁt); r,B) \w?H||(B) dB. (3.23)

Case 2. dr <t+r+2k, ie t+r+2k <2(t—r+2k).
In this case, v/A must be taken in (3.9). Then we have

t—r t+r (1-p)/2
L(r,t) < Vk J_k Iw?H||(B)N(B)? dp J,_r ((“% do. (3.24)

(3.22)

The o-integral is dominated by
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_ (1=p)/2 pt+r _ (2-p)/2
C(t r+2k> J do SC\/I;(Z r+2k) (3.25)

k (=7 k

because 2r < t — r + 2k. This implies (3.14). Similarly, taking /¢ —r — f in (3.10),

we have

. —r (2-p)/2
L(r,t) <k J_k ﬂ;v—%—K__%N(ﬂ)_” ap L ((a % 1’

The a-integral is estimated in completely the same way of previous case. Hence
we have

\/t+r+2k\/t—r+2k12(r’ N < ij’“’ w?H|\(B) Eip-2/2(t —1,5) dp. (3.27)

k k —k\t—r—p N(B)?

We note that F,_5),(t —r,f) < Gy(t+r,t—r) is always valid for p < 3.
As for u°, we employ the well-known estimate.

do.  (3.26)

PROPOSITION 3.2. Let u® be a solution of tu® =0 in R* x [0, 00) with an
initial data u|,_y = ¢, uy|,_o = ¥ of compact support such as (2.1). Then there exists
a positive constant C, y such that

Co,uk

N < . 3.28
) Vit |x] + 2kt — [x] + 2k (3.28)

| (x,

Proor. For example, see R. T. Glassey [4].
Therefore the proof of Theorem 1 is finished.

4. Application to Nonlinear Systems

Now, as announced in Introduction, our attention goes to the following
nonlinear systems.

ou = |[v]?, ov = |u|?, in R? x [0, 00),
u(x,0) = ¢fi(x), (0u/0t)(x,0) = eg1(x), (4.1)
D(X, 0) = 8f2(x)a (av/at)(x, 0) = ng(X)

We shall investigate the lifespan defined by
T(e) = sup{T € (0, o0]: There exists a unique solution (u,v)
e {C*(R? x [0, T])}* of (4.1).}. (4.2)

The full histories on (4.1) including the general space dimensions can be found
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in the introduction of R. Agemi & Y. Kurokawa & H. Takamura [I]. Therefore
we omit all of them and shall prove the existence part of the following theorem.

THEOREM 2. Let p,q > 3. Suppose that both f; € C3(R?) and g; € C3(R?) do
not identically vanish for each i = 1,2. Then there exists a positive constant &, such
that, for any & with 0 < & < &, the lifespan T () of the classical solution (u,v) of
(4.1) satisfies

T(e) = o0 (4.3)
provided F(p,q) <0,
exp(cg—min{p(pq—l),q(pq—l)}) <T(e) < exp(Ce—min{p(pq—l),q(pq—l)}). (4.4)
provided F(p,q) =0 with p # q,
exp(ce PP~D) < T(e) < exp(CePP~1) (4.5)

provided F(p,q) =0 with p=gq, and
ceFra)™ < T(e) < CeFpa)” (4.6)

provided F(p,q) > 0, where ¢ and C are positive constants independent of ¢, and

p+2+q! q+2+p“} 1
2

F(p,q) = max , —=. 4.7
(p,9) { g —1 g —1 (4.7)

For the upper bound, the positivity on the initial data is required which makes the
spherical mean of the solution to be positive.

REMARK 4.1. H. Kubo & M. Ohta [8] have proved the upper bound of
Theorem 2.

REMARK 4.2. According to the short time existence of a classical solution of
(4.1), we must have the same result when 2 < p, ¢ < 3. But the technical difficulty
will appear. Actually we cannot apply Theorem 1 directly. The proof will be
much complicated if we can prove by similar estimate to Theorem 1. The in-
teresting result on (4.1) comes from the neighborhood of a cusp p =g on the
critical curve {F(p,q) = 0}. So, in this sense, the case 2 < p,q < 3 is not essential
in Theorem 2. We shall discuss this case in another paper.

Now we shall estimate the lower bound of the lifespan by the following
proposition.
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PrOPOSITION 4.3. Under the same assumption as Theorem 2, there exists
a positive constant & such that (4.1) admits a unique solution (u,v) e {C*(R? x
[0, T)}Y?, as far as T satisfies

00 if F(p,q) <0,

- exp(cg—min{p(Pq—l),‘I(Pq—l)}) if F(p,q) =0 with p#gq, (48)
exp(ceP(P=1)) if F(p,q) =0 with p=gq, '
ce F(p” if F(p,q)>0

for 0 < & < ¢ and some positive constant c¢ independent of e.

PrROOF. We note that our system (4.1) has a symmetry on p,q and u,v.
Hence it suffice to investigate only the case

p<q and F(p,q) =—-7"—=. (4.9)

Without loss of generality, we may assume that, for k > 1,
supp fi,supp g; < {x e R%;|x| <k} (i=1,2). (4.10)
Then it follows from the dependence domain of the solution of (4.1) that
supp u,supp v < {(x,t) e R? x [0, T]; |x| < t + k}. (4.11)

This fact is established as an easy application of the single case as well as the
uniqueness of the solution. See Appendix of F. John [7] for example. Hence we
can adapt |u|? and |[v|” to H in Theorem 1.

We shall define the function space X by

X = {(u,v) € {C*R?* x [0, T])}* : supp(u,v) = {|x| < 1+ k},

[1(, 0)llx < 0} (4.12)
Here we put
1w, 0)llx = Z (HWV;uHL"O(RZX[O,T}) + HWV;U“UO(R%([O,T])), (4.13)
lef <2

where w stands for suitable weight functions which will be defined later. Remark
that du/0t and Ov/0t are expressed by V,u and V,v in view of the representa-
tion formula of the solution. So, it is sufficient to consider the spatial derivatives
only. A classical solution (u,v) of (4.1) will be constructed by the iteration
argument in X as a classical solution of the corresponding systems of integral
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equations. More precisely, a solution will be obtained by convergence in a closed
subspace in X of a sequence {(u,,v,)}y defined by

{u,, =uo + L(|von-11"), uo = 8”00’ (4.14)
Un = Vo + L(lun—llq)a Do = &v-,

where all u°,1v° and a operator L appeared in the integral representations of u
and v. See the beginning of the previous section.
In order to apply Theorem 1 to (4.1), we have to define suitable weights

wy, wa for u,v, respectively;

t4r+ 2N/t —r+ 2\
whd=\—%—) 7% ) -

/ (4.15)
24\
wi(r, ) = (———t+ rk+ k) Ni(t—r) (i=1,2),
where
( 1/2
(s + Zk) when p > 4.
k
1/2 -1
Ni(s) = J (S 4;{2/() (log s '4;(3/() when p =4, (4.16)
(p-3)/2
(s —';CZk) when 3 < p < 4,
( 1/2
(5 4;(2]() when x4 > 1/2 except for p =g =4,
1/2 -1
(S _’;CZk) (log 2 _23]() when p = g = 4,
Nals) =1 7 v (4.17)
(s _;Zk) (log o _;3k) when F(p,q) =0 with p # ¢,
u
(s a 2k> otherwise.
\ k
Here we set
ﬂzq@—3)(q—qu—ﬂ
2p 2p(pg—1)
(4.18)
_gq(p—1)

~p(pg—1)
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REMARK 4.4. Note that 4 > 0 when 3 < p < ¢ and that u satisfies

1 —pu=p(g—1)F(p,q) (4.19)

This relation gives us the fact that, in (p, g)-plane, a curve {F(p,q) = 0} is under
a curve {u# =1/2} and over a curve {u = 0}. Moreover, one can find that two
curves, {u#=1/2} and {u =0}, crossaline {p=¢q}atp=g=4and p=g=3,
respectively. Therefore we don’t have to consider the case u < 0. We also note
that v satisfies

qg-—1
1—pv= > 0. 4.20
A — (4.20)

The proof of Proposition 4.3 will be devided into the following four cases.

5. Proof for p >4
In this case, due to Remark 4.4, we have
u>1/2 and F(p,q)<0. (5.1)

For the sake of simplicity, we shall put
llunl| = ||W1“n||Lw(R"x[o,T])a loall = ”WZUn”Lw(R"x[o,T])- (5.2)
First we define a closed subspace Y of X by
Y ={(u,v) € X : |lu|| <2C 48 |lv|l <2Cp, 48} (5.3)
Then we presumably assume that

”un—lll = 2Cf1,g|87 (5 4)
lvn-1ll < 2Cp,, g,8.

When Theorem 1 is applied to u, we put w=wy, ¢ = f1, ¥ =g and N = N,
wPH = (wy|v|)? in the B-integral. Similary, when Theorem 1 is applied to v, we
put w=w,, 9= f5, Yy =g, and N = Ny, p = q, w/H = (w1|u})? in the S-integral.

Then it follows from
(4-p)/2
(ﬁZZk) when p > 4,

t—r+2k
lOg 2ﬂ—{——2k Whenp—4

Fppp(t—r,p) = (5.5)

that
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wi(r, |un(x,1)| < Cp g6 + Ck(2Cy,, 4,8) I, (r, 1),

in R? x [0, T (5.6)
wa(r, )|vn(x,1)| < Cp,, 4,6 + Ck(2Cy, 4,8) 1, (r, 1),
where
- t—r+2k B+ 2k\27PP°
Ip(r, t) = J—k (1 + —t_:_r——ﬂ_xlo’“’)(t - r)) ( 2 ) dap (5.7)
because of
4-p p_
5 3= 2—p. (5.8)

Here 6 < (p — 3)/p appears only in the case p =4 and comes from the loga-
rithmic term in the weight. Hence applying Lemma 3.1 with P=p -2 — pd > 1
to I,. We obtain I,(r,¢),1,(r,t) < Ck, so that

llunll < 2G5 g8,
(5.9)
[onll < 2Cp, 4,8
if the following inequalities hold.
Ckz(chz,gza)p < Ch.ai%
(5.10)

Ckz(zcﬁvgls)q S CvagZE'

Therefore the boundedness of a sequence {(u,,v,)}y in Y is obtained for any
T > 0 if ¢ satisfies (5.10). Because we can take

luoll < Cpi, g8,
(5.11)
ool < Cp, .8

Next we shall estimate the differences under (5.10). The iteration frame (4.14)
gives us

ltn+1 = nll = IIL(|on|” — |on-1]")l
< PIL(1on = va-1|(on] + [22-1])""D)]I- (5.12)
Holder’s inequality for the norm || - || and above estimates yield that

Nens1 — tn|] < PCK2||(|Vn] + |0ne1 )PV 05 — va_t| VP

< PCK*([[oall + l[on-11)""" ljon = va-1]l- (5.13)
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Similarly we get
lowss = vall < QK (el + 1 1)*" Nt = 1401 |- (5.14)

Therefore a convergence of {(u,,v,)} follows from

_ -1 _
{”un+1 un“ <2 1 ”un~l “n—2|| (5.15)
|Vn+1 — nll <27 ||on—1 — va-2],
provided
2P 2paCHA(2C, 48)° T (2Cs 48) T < 271 (5.16)

is always valid for sufficiently small ¢ while T can be arbitrarily. Hence
we get a C° solution (u,v) in Y.

In order to establish the existence of a classical solution, we require the
convergence of sequences {(Ox,un, Ox,Un)}, {(Ox,0xUn, Ox,0x,0n)} in Y. At the same
step in [1], trivial mistakes have appeared in the form of the derivatives of non-
linearlities. But they are not essential, meaning that one can find a correct proof
very easily, for example along with the original proof of F. John [6]. A key role
in estimating of {(0x,u,,0x,vn)} is the following.

Un+1 Un
(51 s = (517 o, = [ 1) ds = | "(1s)" s

0

_ J (Is]P)" ds. (5.17)

Un
Similary to C° solution with this argument, one can verify the existence of C!
and C? solutions. Hence here and hereafter we shall check only the existence of
C° solution in each cases.
6. Proof for 3<p<4 and u>1/2
In this case we note that

F(p,q) <0 and g >4. (6.1)

See Remark 4.4 again. The condition x> 1/2 makes the restriction g > 4,
but ¢ =4 is valid only when p = 4 under this condition. The case p =g =4 is
already investigated in the previous case. We shall put

”un”SU = ”wun||L°°(S”)7 ”un“Sm = ”W]un”Loo(Slz)- (62)

First we define a closed subspace Y of X by
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Y = {(u’ U) eX: “u”S“ < 2Cf1,918’ “u“S]2 < 2M,ée?, ||U” < 2Cf21928}'

Then we presumably assume that
ln-1lls,, <2C.q8
lun-1lls,, < 2M€?,
llon-1ll <2GCp 008,
where domains S;; and S); are defined by
S ={(x,t) eR* x [0, T|; -k < t — |x| < Kie" L1k},
Si2 = {(x,2) e R* x [0, T]; t — |x| = Kyje~L1k}.
Here we put
K < r-e-92cprct | il )Y,

2(p—1
L1=%_7),

M, =2C; , KPP L 2ck*(2Cy, )P

K, will be fixed later.
Now, we assume that
Kt > 2.

Then it follows, similarly to the previous case, from Theorem 1 with

t—r+ 2\4P2
Fopoap(t—r,p) = (_IE__)

that

t—r+ 2K\ PO/
wi(r, O)|un(x, 2)| < Cfl’gl€<——7c——) + Ck(2Cy,, 4,6) P J11 (1, 1),

Wz(r, t)lv,,(x, t)l < sz,gza + Ck{(ZCf,,gla)qu(r, t) + (2M18P)qJ22(r, t)},

where

(6.3)

(6.4)

(6.5)

(6.6)

t—r _ -p/2
Ju(r,t) = J_k (1 + \/t—t'-_—rrl__zﬁkl[o,oo)(t - r)) (’B ;2k) dg  (6.10)

and
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t—r i k q/2
.MMﬂ=J%<L+5:%%% o rﬂ(ﬂ+2) Flg-2y2(t = 7,) d

= t—r+2k B+ 24\ 4P (611
In(r, 1) :J (1 + ﬁx[@w ( r)) ( ) Fy-2)2(t —r,B) dp,

—k r

where we denote a characteristic function of a set S by ys. Applying Lemma 3.1
with P= p/2 > 1 to Jj;, we have

J11(r, t) < Ck. (6.12)

On the other hand, since

PTG
F(‘I‘Z)/2(t - raﬁ) = (ﬂ k ) ) (613)

we get

t—r r 2—q
S (r, 1) = J——k (1 + t—:—igﬂlf)qo o) (= )) (ﬁ i 2k> g (6.14)

as in the previous case. Therefore Lemma 3.1 yields again that
J21(r, t) < Ck. (6.15)

In order to estimate J,;, we need the following fact.

ReMARK 6.1. It follows from Remark 4.4 that

3-—- -3
S+ 1-q5 "= —utalp - VF(p,9). (6.16)

This means that, in (p,q)-plane, a curve {1 —g(p —3)/2 =0} is over a curve
{F(p,q) = 0}. Both two curves meet only on a line {p = gq}. Because,

3-a9_(-q9lpg+l) _, (6.17)

+ = <
AT p(pg —1)

holds by (4.18).

Due to Remark 6.1, one can find

t—r t—r+2k 4+ 2k ~1+q(p—1)F(p,q)
I2(r, 1) =J (1 + —_ijX[O,w)(t"r)) (ﬁ 2 ) df (6.18)

—k t
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because of 1/2 — 4 < 0. Hence we have
Ja(r,t) < Ck. (6.19)
Summing up three estimates, we obtain
lunlls,, <2C.q8
llunlls,, <2Me?, (6.20)
ln]l < 2C, g8

if the following inequalities hold.

t—r+ 2k\*P)2 .
Ck*(2Cy, 4,8)" (—k——) < Cj 4.8 in Sy,

6.21
Cr.g 2K PP 1+ Ch2(2Cy,, 1,6)7 < 2M1eP  in Sy, (6.21)

Ck*{(2Cy, 4,8)? + 2M 7))} < C, in R? x [0, T).

The first and second lines of (6.21) are always valid by definition of each con-
stants in [[6.6). Therefore the boundedness of a sequence {(un,v.)}y in this
weighted L® space is obtained for any 7 > 0 if ¢ satisfies the third line of (6.21)

and [(6.7). Because we can take
luolls,, < Cr,aé
luolls,, < Mie?, (6.22)
lvoll € Cp,g,8-

Next we shall estimate the differences under (6.21). Similarly to above case,
by (6.5), (6.6) and (6.7), we have

1 = unlls, <227 pCh*(2Cp,5,8)" " (2K1) P 26120y — vy |

lttns1 — tnlls,, < ZP_IPCkZ(chz,gzg)p—l |on — Vn—1l]

1 (6.23)
“vn-l—l - Un“ < 2q_1qu2(2Cfl»gla)q~ IIun - un—l“Sn
+ Zq_qukz(ZMlep)q_IHu,, ~ Un-1lls,-
Therefore a convergence of {(u,, v,)} follows from
lttni1 — tnlls,, < 4=ty — un—2||s,, + 4 up1 — Un—2|s,,
“un+l - un”S|2 < 4—1”un_l - un"2||S1| + 4—1I|un_1 - un—2”S12 (6'24)

lons1 = vall < 27 lon1 = vacall
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provided all the following inequalities hold.
Ce? ' <471, (CePla-D) < 47!
(6.25)
CePt12 <471 CePi ! <471,

In (6.25), C = C(f1, f2,91,92, P,q,k) > 0 may be a different constant from each
other. In fact, we have by (6.24)

|41 — un”su + ||ttns1 — un“su
< 27 |ltn-1 — tnalls, + w1 — tn-2lls,, }- (6.26)

(6.25) is always valid for sufficiently small ¢. In this case, the proof is completed
by taking Kj as

Ky = r-92crcg |l )Y, (6.27)

7. Proof for 3 < p<4and 0 <pu<1/2 except for the Case F(p,q) =0
with p # ¢

We shall put
||Un||s21 = ||an||Lw(s21), ||Un||s22 = “wzvn||L°°(Szz)' (7.1)
First we define a closed subset Y of X by
Y = {(u,0) e X : |lullg, <2Cf 48 lulls, < 2Me?,
[vlls, < 2Cp,g:8 |I0lls, < 2Ma2e?}. (7.2)
Then we presumably assume that
[n-1lls,, < 2C, 408,

||un_1 ”S12 S 2M18p’

(7.3)

lon-1lls, < 2Cp, 08,

lon-1lls,, < 2M>e?.

where M, S11, Si2 aré defined in [6.6), (6.5) and
So1 = {(x,t) eR2 x [0, T]; -k < t — |x| < Kpe L2k}, (14)

Sy = {(x,£) e R? x [0, T]; 1 — |x| = Kpe L2k},
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Here we put

K < (2"‘(“‘1/2)Ck2Cf” Cf—l )1/(/1—1/2),

1,91 2,92

qg-1
- 7.5
L 1/2—-u’ (73)

M, =2Cp, , K272 4+ 2CK2(2C;, )1
K, K, will be determined later. For the sake of simplicity, we put E}, E; by

E\(T) = Fi_pg-1)F(p,q) (T —k)

(1 if F(p,q) <0
T +2k .
log?2 F(p,q) =0, p=
_ g2 in F(p,q)=0,p=gq (76)
plg—1)F(p,q)
<Tz%) if F(p,q) >0,
EZ(T) = Fl—q(p——l)F(p,q)(Ta —k)
(1 if F(p,q) <0
T + 2k .
2 F =0,p=
_ Jlog2— in F(p,q) =0, p=gq (17)
q(p—1)F(p,q)
(TZZI‘) if F(p,q) > 0.
\

Now, we assume that

mllr% Kie i > 2. (7.8)
=1,

Then it follows from Theorem 1 and (7.3) that

wi(r, D)lun(x, 2)| < Cﬁ,g@(——;——)

+ Ck{(Zszygzb‘)le] (r, t) + (2M28")”J12(r, t)}, ( )
7.9
t—r+4 2\ 1/?
(o) < ()

X {sz,gzs + Ck(Zthgl S)qul (r, t) + Ck(2M18p)qJ22(r, t)},
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where Ji1,J21 and Jy, are the one in (6.10) and (6.11). Jy, is defined by

t—r _ —PHU
Tt = | (1+\/%X[o,oo)(’—r)) (BE) a5 o)

Due to Remark 4.4 together with Lemma 3.1, we get

Jiz2(r, t) < CKE((T). (7.11)
Ji1 1s estimated in the completely same way as in the previous case. Hence we
obtain
Ji(r,t) < Ck. (7.12)
For J and J,;, we need to divide into the following three cases.

Case 1, q > 4.
In this case it follows from

+ 2k \4-9/2
Fyyp(t—rp) = (ﬂ A ) (7.13)
that
ct—r t—r+ 2% ﬂ + 2k (4—q)/2—q/2
Jau(r, 1) = |, (1 + ‘t_r—_ﬂX[o,oo)(f-r)>( T ) g,
_ (7.14)
ct—r f—r+2k B+ 2k (4-9)/2—q(p-3)/2
Jzz(’,f)=“_k <1+\/ml[o,oo)(t—r))( 2 ) dp.
Hence we simply obtain by Remark 6.1 and Lemma 3.1 that
J21(r, t) < Ck,
t —r 4 26\IP~DF(P.g)+1/2-p
T) when F(p,q) > 0, (7.15)
Jn(r,t) < Ck ;
_ 1/2—p
(t__rl:—_Zk) when F(p,q) <0.
Case 2, q =4.
In this case we have
t—r+2k
F(q_z)/z(t—r,ﬂ) ———IOg 2m— (716)

Hence it follows from Lemma 3.1 that
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_ u—1/2 _ u—=1/2 _
(’—1]:“—25) S ha(n 1) < Ck(t——%gk) log 2’—-’]:“—2" <Ck (7.17)

because of 0 < u < 1/2.
When 1-¢(p—3)/2 > 0, one can find a small ¢ satisfying 1 — q(p —3)/2 -
0 > 0. Hence we have

t—r 426\ (" [t —r+2k B+ 20\ eI
Jzz(r, t) < C(—E——> J_k (1 + m)([o,oo)(t— r))( k ) dp

(7.18)
which implies that, by Remark 6.1,
_ u-1/2 _ a(p-1)F(p,q)
(’——'kik) Toa(r, 1) < Ck(’—iki—zf) . (7.19)

When 1 —¢g(p—3)/2 <0, we have

t—r42k (" lt—r+2k B+ 2k\ 9P~/
Jx(r,t) <log 2——E—J_k (1 + m}([o,oo)(t - r)) ( 2 ) dp.

(7.20)
Hence we obtain
_ u—1/2
(t—’g—z—k) Tna(r,1) < Ck. (7.21)
Case 3, 3<g<4.
In this case we have
t—r+2\492

Fyapt—rp)= (—T—> : (7.22)

Hence it follows from Lemma 3.1 that

_ u—1/2 _ u+(3-g)/2
(’——'kﬂ) I (r, 1) < Ck (’—%2") <Ck  (123)

because Remark 6.1 implies that

3-q_(-a(pa+l) _, (7.24)

+ = <
T3 p(pg—1)

For J;; we get

t—r+2k (4-9)/2 pt—r t—r+2k + 2k -q(p-3)/2
Jn(rt) < (———%—) J . 1+ Pp— (ﬂ T ) dp. (7.25)
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When 1 —¢g(p —3) >0, Remark 6.1 yields that

_ u—1/2 _ q(p—1)F(p,q)
(’___%1‘) Jn(r,t) < Ck <£—~—rk+——2,f) : (7.26)

When 1 —¢g(p —3) =0, we have

_ u—1/2 _ ut(3—9)/2 _
(i—lit35> Jﬁ@gﬁ:gC%(i—litzk> logi—litZE. (7.27)

Hence (7.24) implies that

when p # g,

1

t—r+ 2 \P12

(——k——) Ia(n) <k Taok (7.28)
log 2 when p =gq.

We note that p = ¢q in this case means F(p,q) = 0 by Remark 4.4 and Remark
6.1. When 1-¢q(p—3)/2 <0, the situation is the same as J;. We get

_ u—1/2
Gmlgi%> In(r,1) < Ck. (7.29)
Now, three cases above are combined and the following estimates hold.

Ju(r,t) < Ck,
J12(r, t) < CkE](T),

_ u—1/2
(t rk+ 2k> T (r, 1) < Ck, (7.30)
_ u—1/2
(1—%t%g Toa(r, 1) < CKEy(T).
Therefore we obtain
lunlls,, <2Ch,q:8,
l|un”S12 < 2M18p’
(7.31)

[nlls,, < 2Cp, 028,

lvalls,, < 2M>e?

if the following inequalities hold.
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Ck*{(2Cp, g,6)7 + (2M2e)PEy(T)} 2Ky eI 422 < ¢ e,

2Ck*(2M5e?)PE|(T) < Me?
(7.32)
CK*{(2Cf,,0,6)* + (2M187)  Ex(T)}(2Kpe ™)' /> < Cp, g,

2Ck (2M1€P) Ey(T) < Mael.

Hence the boundedness of a sequence {(u,,v,)}n in this weighted L* space is
obtained if and (7.32) hold. By definition of all constants in [6.6) and [7.5),
one can see that (7.32) follows from

(2M,)Pe? "V E\(T) < max{(2Cp ,)7, (CK?) "' My}, 033
(2M;) 1P~V Ey)(T) < max{(2C}, ,,)?, (Ck?) ™' M>}.

This proves Proposition 4.3 except for the case F(p,q) =0 with p # g because
we can take

||u0“S11 < Cflvgla’
lluolls,, < Mie?,

(7.34)
“vo||S2| < Cf27928’

”vO”Szz = M28q.

Next we shall estimate the differences under (7.32). Similarly to the above
case, by the definition of the devided domain and [7.8), we have

tni1 — talls,, <277 (2K 42 {pCK2(2Cy,, 1,6)7 |0n — Vac ||,

+ pCK2Ey (K17 11k) (2Mae®)P ™ |vn — vaci |5, }
l|ttns1 — un“s,z < ZP_IPCkZ(chz,gza)p_l”Un - Un-—llls;”

+ 2P~ pCk2E (T)(2M3e9)? Y |v, — vy s,

(7.35)
- —ph 1 -1

+ qCk2Ey(Kae~12k) (2 M1 e7) Y |ty — 14— lls,, }

lons1 — vnlls,, <297 gCk2(2Cs, 1) T |1t — thn-1 |5,

+2971gCk? Ey(T) (2M1&P) ™ ||ty — thn—i |,
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Therefore a convergence of {(uy,v,)} follows from provided
27H472pg C?k4 (2K, ) P2 (2K,) P4 (2C, )77 (2C,6,) T
Cgl_q+p(q_1)E2(K28—L2k) + CEI—P+P(‘I—1)+‘I(P—1)E1 (Klg—le)Ez(T) < 4!
Cert 1 CoP- By (T) < 471

Csp—q+p(q—l)E2(K28—L2k) + C8p(q_1)+q(p_1)E1(T)Ez(T) <41
(7.36)
27+ 2pg C2e (2K ) P2 (2K) P4 (2 G, 0,)P T (2Ch,00) !

+ CeP~1P-D By (KpeL2k) < 471
Ce!PHP-DE (Kie7hk) + Ce' 9P DHP-D E|(T) Ey(Kye F2k) < 47!
Ce?™! + Ce? Ey(T) < 47!
Ce?PHP-DE (Kiehik) + CetP~ V@D E (T)Ey(T) < 47",

Here C = C(f1, /2,91, 92, P,q,k) > 0 may be a different constant from each other.

Now we can fix K; and K, to satisfy and [7.5), so that the first term
of the first and fifth inequalities in (7.36) is less than 8~!. When F(p,q) <0 or
F(p,q) = 0 with p = g, the other inequalities in (7.36) are valid for a sufficiently
small ¢ > 0. When F(p,q) > 0, they follow from the same requirement to (7.32)
and the following Lemma with a sufficiently small ¢. We note that all powers of ¢
of indistinct terms in the left-hand side of (7.36) are summarized in the following
quantities.

Pr=1-p—-Lplg—1)F(p,q)+4q(p—1),

(7.37)
Py=1-q—Ly(p—-1)F(p,q) + fI(R —1).

LemMma 7.1. Let 3<p<4, F(p,q) >0 and p < q. Then the following in-
equalities hold.

Pi>0, P;>0. (7.38)

ProoF. First we prove the first inequality. By the definition of L; in [6.6),
we see that

Pi=(p-1g-nf1- 2120 (1.39)
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Then, it follows from another expression of F(p,q) such as

F(p’q) -_—l+_2_(p_+_2__1

p ppg—1) 2 (7.40)

that d,F(p,q) < 0 is always valid for a fixed p. Making use of this fact together
with
(p—1)4~-p—2F(p,p))=(p—-1)4~p)+p*-3p-2
=2(p—-3)>0, - (7.41)
we have

F(p,q) < F(p,p) < %ﬁ. (7.42)

Therefore P; > 0 holds.
Next we prove the second inequality. Remark 4.4 implies that

|- LaF(pg) = o s (143)
Hence we get
_qp-1DP—-2)—plg—1)+2p(g—Nu
Pr= 2172~ ) | (7.49)

We note that, when p,q > 3,

ﬂzq(p—3)+q—p(l__4_>

2p 2p pq—1
glp—3) q-p
X 7.45
> o + ap ( )

Then the numerator of P, in (7.44) is estimated from below in the following way.

aqp-1)(p—2)—plg—1)+q(p—-3)(g— 1)+(q—p)2(q— 1)
> (P—3)q2+(p2—-5p+5)q+p+(q—p)2(q—1)
AP CES (U}

= (p-9+ - (746)
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The third line in follows from the fact that p? — 5p + 5 is monotonously
increasing in 3 < p < 4. Therefore P, > 0 holds.
8. Proof for F(p,q) =0 with p # ¢

In this case, it follows from Remark 4.4 that

1
3<p<4 and 0<,u=%<§. (8.1)

A key fact is that the strict inequality in holds here. We shall put
[onlls, = IW0nll Lo (5,),  [lvnlls, = W2vnl| L2 (sy)- (8.2)
First we define a closed subspace Y of X by
Y = {(,0) : [ulls, <2C,a8 luls, < 2Me7,
Ilvlls, < 2Cp.q.8 lIvlls, < 2Me}. (8.3)
Then we presumably assume that
ltn-1lls,, < 2Cf, g8,

”un—l IlSlz S 2M1£17,

(8.4)
lon-1lls, <2Cp g6,
lon-1lls, <2Me?,
where M, S11,S12 are defined in 6.6), (6.5) and
N u—1/2 _ v
S = {(X, t) € R2 X [O, T], (#C) (log %‘) = KEq_l y
(8.5)
_ u—1/2 i v
Sy = {(x, ) e R? x [0, T]; (E——%z@> (log i—%:sk—) < Ke?™!
Here we put
2 -1
K <2Ck (2Cf1,gl)qu2’g2, 86)

M = CflaglK + Ckz(chhgl)q'

K, K will be determined later.
Now, we assume that

Kieh >3, (log2) = Ke?™!.. (8.7)
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Then it follows from Theorem 1 and (8.4) that

t—r+ 2k\PI2
wi(r, )|ua(x, 1) < thglﬁ(T)

+ Ck{(2Cf2,928)pJ“ (r, 1) + (2M8q)p.]] (r,0)},

t—r 4 2k\F 12 t—r+3kY (8.8)
wa(r, t)|vn(x,2)| < —x log—k—

X {sz,gzé‘ + Ck(2thgl€)qJ21 (r, t)
—+ Ck(2M181’)qJ22(r, t)},

where Jy; is the one in (6.10) and J;,J2, are already defined by (6.11). Here we
have

i () (2 (252

(8.9)

In order to estimate J;, we need the following lemma.

LEMMA 8.1. For I <1, b>0 and b >a > —k, it holds that

J = r m (ﬂ J;czk)_l <log B 13")_1 dp < Ck (log b *,;3")1‘1. (8.10)

ProoF. This is almost the same as Lemma 3.1. When b >a > b/2 —k,

we have
J' b/2 + k)"l ( b/2 + Zk)" r dp
<\|\— log ——— 8.11
Vb + 2k ( k Tk b/2-k /b — (&1
which implies that .
J < Ck(log %zkiy_‘) . (8.12)
When b/2 — k > a, we have
/ b/2—k -1 -1
J < 1 J (,B + 2k> (log B+ 3k) ap
Vb+2k ™~ \/b/2+kla k k
b/2 + k>‘1 ( b/2 + 2k>f’ Jb dp |
+ | —— log —— . 8.13
( k £k bj2—k \/b — B (8.13)

Therefore the lemma follows.
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The application to J; is trivial by / = pv < 1. We note again that Remark 6.1
implies

1 —q£;—3 >0 when F(p,q) =0 with p #gq. (8.14)

Hence it follows from estimates in the previous case of 0 < u < 1/2 that

J11(r, Z) < Ck,

T + 3k>1‘f’”

Ji(r,t) < Ck <log z

_ u—1/2 _ v (815)
(t_f+_2k) | (log ‘__’_t3_k) In(r 1) < Ck,

k k

t—r+2k
k

u—1/2
) Jzz(r, t) < Ck.

The difference can be found in only the estimate for J5;. The logarithm term

disappears by with p # q.
Therefore we obtain

”un”Sn < 2Cf1,918’

”un“Su < 2M18p’

(8.16)
“Un”sl < 2Gy, 456,
llonlls, < 2Me?
if the following inequalities hold.
1-pv
Ckz{acfz,gze)" + (2nen? (1og ) }<2K18—L'><“‘”/2 < Ghait
2 ol T +3\7
2Ck*“(2Me?)7 ( log A < M&f

(8.17)

) v
Ckz{(ZCﬁ,g,e)q + (ZMIaP)q(log T_;?)k) }(Keq_l)"1 < Cp, 0,6,

3k
Cp, g Ke + CkZ{ (2Ch.0,6)7 + (2M181’)q(10g T Z ) } < 2Me.
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Hence the boundedness of a sequence {(u,,v,)}n in this weighted L® space is
obtained if (8.7) and (8.17) hold. By definition of all constants, one can see that
(8.17) follows from

T+ 3k

1-pv
(2M)PePa-1) (log ) < max{(2Cy, 4,)", (Ck*)"' M},

(8.18)
T + 3k

(2M) 4P~ (log ) < max{(2C;, 4,)7, (Ck?)™' M}.

This completes the proof of Proposition 4.3 by Remark 4.4 because we can
take

luolls,, < Chiai8
”uOIISu < M]Ep,

(8.19)
”1’0”51 < szygze’

llvolls, < Me?.

Next we shall estimate the differences under (8.17). Similarly to above case,
by the definition of the each domain and (8.7), we have

ltuns1 — unlls,, < 2071 2K) 4212 { pCk?(2Cy,, 1,8)7 " |0m — vnt |5,
+ pCk*(log 2Kie™5)' P (2Me?)? ™" ||v, — va- |, }
llttns1 — Un|ls,, < 2p_1PCk2(2sz,ng)p_] lvn — va-1lls,

T + 3k
k

1-pv .
+ 277 1pCk? <log ) (2M£")”_1 lon — va-1lls,

(8.20)
lon1 — valls, < zq_lK_lel_q{quz(zcﬁ,gnE)q—l”un — tn-1ls,,

+ qCk>(2M167) ™ |ty — tn-1 || 5, }
- -1
lvns1 — Un”s,_ <29 qukz(chl:gla)q Nl — un—1||s,,

T+ 3k
k

+ 297 14Ck? (log ) M e?) T |uy — 1y s, -

Therefore a convergence of {(un,v,)} follows by provided
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2P 2pg C2k* (2K, )(4—1))/21(_1 (2Ch, 9, )p_l (2Ch,q1) !

+ Ce?4 VD (log 2K e 1) 77 < 471

CelP-Dla-1) Cgl—p+q(b—1)+p(q—1)(10g 2 Klg_Ll)l_pv (log H) <47

CeP~! 4 Cepi! (log

Ced(P=1) 4 Cgalp—1)+p(g-1) (log

k

1—pv
T—|];3k) <41

1—pv+v
T + 3k> < 4

k (8.21)

24 2pgC2 e (2K:) PP KT (2C,0,)P 7 (2,0 + CetPTD <47

CelP~Da-D(1og 2K; 8—L1)1—pv + Cgl-atpla-1)+a(p-1) (log

1—pv
T-};Sk) < 41

Ce?™! 4 Cera! (log T+ 3k 3k> < 47!

Cgp(q—l)(log 2K e D )1~Pv + Cei(p=1)+p(g-1) (log

k

<471

T + 3\
k

where C = C(f1, f5,91,92,P,¢,k) >0 may be a different constant from each
other.

Now we can fix K; and K to satisfy and (8.6), so that the first term

of the first and fifth inequalities in (8.21) is less than 8~!. The other inequalities
follow from (8.17) with a sufficiently small e.

(4]

[5]

[6].
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R
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