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Abstract. We give a characterization of a totally umbilic
submanifold $M^{n}$ with parallel mean curvature vector of a Rie-
mannian manifold $\tilde{M}^{n+p}$ , that is an extrinsic sphere $M^{n}$ of $\tilde{M}^{n+p}$ , in
terms of the extrinsic shape of circles on $M^{n}$ in the ambient manifold
$\tilde{M}^{n+p}$ . This characterization is an improvement of Nomizu and
Yano’s result ([2}).

1. Introduction

To what extent can we determine the properties of a submanifold by observ-
ing the extrinsic shape of geodesics or circles of a submanifold? It is well-known
that a submanifold is totally geodesic (resp. totally umbilic with parallel mean
curvature vector) if and only if all geodesics (resp. circles) of the submanifold
are geodesics (resp. circles) in the ambient space.

From this point of view we here recall the following two surfaces. Let $f_{1}$ be a
totally umbilic imbedding of a 2-dimensional standard sphere $S^{2}(c)$ of curvature
$c$ into Euclidean space $R^{5}$ , and let $ f_{2}=\iota$ of be an isometric parallel immersion of
$S^{2}(c)$ into $R^{5}$ . Here $f$ is the second standard minimal immersion of $S^{2}(c)$ into
$S^{4}(3c)$ and $\iota$ is a totally umbilic imbedding of $S^{4}(3c)$ into $R^{5}$ . We know that for
each great circle $\gamma$ on $S^{2}(c)$ , both of the curves $ f_{1}\circ\gamma$ and $ f_{2}\circ\gamma$ are circles in the
ambient space $R^{5}$ . This implies that we cannot distinguish $f_{1}$ from $f_{2}$ by the
extrinsic shape of geodesics of $S^{2}(c)$ in $R^{5}$ . However we emphasize that we can
distinguish these two isometric immersions $f_{1}$ and $f_{2}$ by the extrinsic shape of
(small) circles of $S^{2}(c)$ in $R^{5}$ . In fact, for each small circle $\gamma$ on $S^{2}(c)$ , the curve
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$ f_{1}\circ\gamma$ is also a circle in $R^{5}$ but the curve $ f_{2}\circ\gamma$ is a helix of proper order 4 in the
ambient space $R^{5}$ (for details, see [1, 4]).

In this context we are interested in the extrinsic shape of circles of the
submanifold. Let $M^{n}$ be an n-dimensional connected Riemannian manifold with
$n\geq 2$ , and let $\tilde{M}^{N}(c)$ be an N-dimensional complete simply conneted space form
of constant curvature $c$ . Namely, $\tilde{M}^{N}(c)$ is isometric to $R^{N},$ $S^{N}(c)$ or $H^{N}(c)$ .
Our study is motivated by the following well-known result.

THEOREM A ([2]). Let $M^{n}$ be a Riemannian submanifold of $\tilde{M}^{n+p}$ through
an isometric immersion $f$ . Then $M^{n}$ is an extrinsic sphere of $\tilde{M}^{n+p}$ if and only
$\iota f$, for some positive constant $k$ and for every circle $\gamma=\gamma(s)$ of curvature $k$ in
$M^{n}$ , the curve $ f\circ\gamma$ is a circle in $\tilde{M}^{n+p}$ .

The purpose of this paper is to improve Theorem A.

THEOREM 1. Let $M^{n}$ be a Riemannian submanifold of $\tilde{M}^{n+p}$ through an
isometric immersion $f$ . Then $M^{n}$ is an extrinsic sphere of $\tilde{M}^{n+p}$ if and only if,

for some positive constant $k$ and for every circle $\gamma=\gamma(s)$ of curvature $k$ in $M^{n}$ ,
the curve $ f\circ\gamma$ is a Frenet curve of order 2 in $\tilde{M}^{n+p}$ .

As an immediate consequence of Theorem 1, we obtain the following.

THEOREM 2. Let $M^{n}$ be a Riemannian submanifold of a space form $\tilde{M}^{n+p}(c)$

through an isometric immersion $f$ . Then $M^{n}$ is totally umbilic in $\tilde{M}^{n+p}(c)$ if and
only if for some positive constant $k$ and for every circle $\gamma=\gamma(s)$ of curvature $k$

in $M^{n}$ , the curve $ f\circ\gamma$ is a plane curve in $\tilde{M}^{n+p}(c)$ .

Theorem 2 is related to the following well-known classification theorem of
planar geodesic submanifolds in a space form.

THEOREM $B$ ([4]). Let $M^{n}$ be a Riemannian submamfold of a space form
$\tilde{M}^{n+p}(c)$ through an isometric immersion $f$ . Suppose that for every geodesic
$\gamma=\gamma(s)$ in $M^{n}$ the curve $ fo\gamma$ is a plane curve in $\tilde{M}^{n+p}(c)$ (that is, $f$ is a planar
geodesic immersion). Then $M^{n}$ is totally umbilic in $\tilde{M}^{n+p}(c)$ or $M^{n}$ is locally
congruent to a compact symmetric space of rank one immersed into some totally
umbilic submanifold of $\tilde{M}^{n+p}(c)$ through the parallel minimal immersion.

2. Prehminaires

First of all we recall the notion of isotropic immersions. Let $M$ and $\tilde{M}$ be
Riemannian manifolds and $f$ : $M\rightarrow\tilde{M}$ be an isometric immersion. We denote
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by $\sigma$ the second fundamental form of $f$ . Then the immersion $f$ is said to be
isotropic at $x\in M$ if $\Vert\sigma(X, X)\Vert/\Vert X\Vert^{2}$ is constant for each $X\neq 0$ on the tangent
space $T_{X}(M)$ of $M$ at $x$ . If the isometric immersion is isotropic at every point, then
the immersion is said to be isotropic. Note that a totally umbilic immersion is
isotropic, but not vice versa.

The following is well-known ([3]).

LEMMA 2.1. Let $f$ be an isometric immersion of $M$ into $(\tilde{M}, \langle, \rangle)$ . Then $f$

is isotropic at $x\in M\iota f$ and only if the second fundamental form $\sigma$ satisfies
$\langle\sigma(X, X), \sigma(X, Y)\rangle=0$ for an arbitrary orthogonal pair $X,$ $Y\in T_{x}(M)$ .

We next recall the Frenet formula for a smooth Frenet curve in a Rie-
mannian manifold $M$ with Riemannian metric $\langle, \rangle$ . A smooth curve $\gamma=\gamma(s)$

parametrized by its arclength $s$ is called a Frenet curve ofproper order $d$ if there
exist orthonormal frame fields $\{V_{I}=\dot{\gamma}, \ldots, V_{d}\}$ along $\gamma$ and positive functions
$\kappa_{1}(s),$

$\ldots,$
$\kappa_{d-1}(s)$ satisfying the following system of ordinary equations

(2.1) $\nabla_{\dot{\gamma}}V_{j}(s)=-\kappa_{j-1}(s)V_{j-1}(s)+\kappa_{j}(s)V_{j+1}(s)$ , $j=1,$ $\ldots,$
$d$ ,

where $V_{0}\equiv V_{d+1}\equiv 0$ and $\nabla_{\gamma}$ denotes the covariant differentiation along $\gamma$ . We
call Equation (2.1) the Frenet formula for the Frenet curve $\gamma$ . The functions
$\kappa_{j}(s)(j=1, \ldots, d-1)$ and the orthonormal frame $\{V_{1}, \ldots, V_{d}\}$ are called the
curvatures and the Frenet frame of $\gamma$ , respectively.

A Frenet curve is called a Frenet curve of order $d$ if it is a Frenet curve of
proper order $r(\leqq d)$ . For a Frenet curve of order $d$ which is of proper order
$r(\leqq d)$ , we use the convention in (2.1) that $\kappa_{j}\equiv 0(r\leqq j\leqq d-1)$ and $V_{j}\equiv 0$

$(r+1\leqq j\leqq d)$ . In this paper a curve means a smooth Frenet curve. We call a
smooth Frenet curve a helix when all its curvatures are constant. A helix of order
1 is nothing but a geodesic and a helix of order 2, that is a curve which satisfies
$\nabla_{\dot{\gamma}}V_{1}(s)=\kappa V_{2}(s),$ $\nabla_{\gamma}V_{2}(s)=-\kappa V_{1}(s),$ $V_{1}(s)=\dot{\gamma}(s)$ , is called a circle of curva-
ture $\kappa$ .

For later use, we prepare the following lemmas.

LEMMA 2.2 ([2]). A circle $\gamma=\gamma(s)$ satisfies the $fo$llowing differential equation

(2.2) $\nabla_{\gamma}(\nabla_{\gamma}\dot{\gamma})+\langle\nabla_{\gamma}\dot{\gamma}, \nabla_{\gamma}\dot{\gamma}\rangle\dot{\gamma}=0$ ,

where the curvature $\kappa=\Vert\nabla_{\gamma}\dot{\gamma}\Vert$ is constant along $\gamma$ . Conversely, $lf$ a curve $\gamma=\gamma(s)$

satisfies (2.2), then it is a helix of order 2, that is, it is a circle or a geodesic.
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LEMMA 2.3. A Frenet curve $\gamma=\gamma(s)$ of order 2 satisfies the following dif-
ferential equation

(2.3) $\kappa(s)(\nabla_{\gamma}(\nabla_{\dot{\gamma}}\dot{\gamma})+\langle\nabla_{\dot{\gamma}}\dot{\gamma}, \nabla_{\dot{\gamma}}\dot{\gamma}\rangle\dot{\gamma})=\dot{\kappa}(s)\nabla_{\dot{\gamma}}\dot{\gamma}$ ,

where $\kappa(s)=\Vert\nabla_{\gamma}\dot{\gamma}\Vert$ . Conversely, if a Frenet curve $\gamma=\gamma(s)$ satisfies (2.3), then it
is of order 2.

$PR\infty F$ . We first suppose that $\gamma$ is a Frenet curve of order 2. Then by defi-
nition we have

(2.4) $\nabla_{\gamma}\dot{\gamma}=\kappa(s)V_{2}(s)$ ,

(2.5) $\nabla_{\gamma}V_{2}(s)=-\kappa(s)\dot{\gamma}$ .

We get from (2.4) and (2.5)

$\kappa(s)(\nabla_{\gamma}(\nabla_{\gamma}\dot{\gamma}))=\kappa(s)\nabla_{\gamma}(\kappa(s)V_{2}(s))=\dot{\kappa}(s)\nabla_{\gamma}\dot{\gamma}-\kappa(s)^{3}\dot{\gamma}$

as well as
$\langle\nabla_{\gamma}\dot{\gamma}, \nabla_{\dot{\gamma}}\dot{\gamma}\rangle=\kappa(s)^{2}$ ,

so that we obtain Equation (2.3).
Conversely, assume that (2.3) holds. We set $\kappa(s)=\Vert\nabla_{\gamma}\dot{\gamma}\Vert$ . If $\kappa(s)\equiv 0$ , then $\gamma$

is a geodesic. When $\kappa(s)>0$ , we can set $\nabla_{\gamma}\dot{\gamma}=\kappa(s)V_{2}(s)$ . Hence,

$\nabla_{\gamma}V_{2}(s)=\nabla_{\gamma}(\frac{1}{\kappa(s)}\nabla_{\gamma}\dot{\gamma})=-\kappa(s)\dot{\gamma}$ ,

by virtue of (2.3). Thus $\gamma$ is a Frenet curve of order 2. $\square $

Finally we review fundamental equations in submanifold theory. Let $M$ be
an n-dimensional Riemannian submanifold of $\tilde{M}^{n+p}$ with metric $\langle, \rangle$ . We denote
by $\nabla$ and $\tilde{\nabla}$ the covariant differentiations of $M$ and $\tilde{M}$ , respectively. Then the
second fundamental form $\sigma$ of the immersion is defined by

(2.6) $\sigma(X, Y)=\tilde{\nabla}_{X}Y-\nabla_{X}Y$ ,

where $X$ and $Y$ are vector fields tangent to $M$. For a vector field $\xi$ normal to $M$,
we write

(2.7) $\tilde{\nabla}_{X}\xi=-A_{\xi}X+D_{X}\xi$ ,

where $-A_{\xi}X$ (resp. $ D_{X}\xi$) denotes the tangential (resp. the normal) component of
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$\tilde{\nabla}_{X}\xi$ . We define the covariant differentiation V of the second fundamental form $\sigma$

with respect to the connection in (tangent bundle)+(normal bundle) as follows:

(2.8) $(\overline{\nabla}_{X}\sigma)(Y, Z)=D_{X}(\sigma(Y,Z))-\sigma(\nabla_{X}Y, Z)-\sigma(Y, \nabla_{X}Z)$ .

The second fundamental form $\sigma$ is said to be parallel if $(V_{X}\sigma)(Y, Z)=0$ for all
tangent vector fields $X,$ $Y$ and $Z$ on $M$.

3. Proof of Theorems

Let $x$ be any point of $M^{n}$ . In the following, we take and fix an orthonormal
pair of vectors $X,$ $Y\in T_{X}M$ .

Let $\gamma=\gamma(s)$ be a circle of curvature $k$ on $M^{n}$ satisfying the equations $\nabla_{\dot{\gamma}}\dot{\gamma}=$

$kY_{s}$ and $\nabla_{\gamma}Y_{s}=-k\dot{\gamma},$ $|s|<\epsilon$ for some $\epsilon>0$ with initial condition that $\gamma(0)=x$ ,
$\dot{\gamma}(0)=X$ and $Y_{0}=Y$ . Needless to say, the curve $\gamma$ satisfies (2.2). By assumption
the curve $ f\circ\gamma$ is a Frenet curve of order 2, thus from (2.3) it satisfies the
differential equation

(3.1) $\kappa(s)(\tilde{\nabla}_{\dot{\gamma}}(\tilde{\nabla}_{\dot{\gamma}}\dot{\gamma})+\langle\tilde{\nabla}_{\gamma}\dot{\gamma},\tilde{\nabla}_{\dot{\gamma}}\dot{\gamma}\rangle\dot{\gamma})=\dot{\kappa}(s)\tilde{\nabla}_{\dot{\gamma}}\dot{\gamma}$ ,

where $\kappa(s)=\Vert\tilde{\nabla}_{\gamma}\dot{\gamma}\Vert$ and $\tilde{\nabla}$ is the covariant differentiation of $\tilde{M}^{n+p}$ . We here note
that $\kappa(s)>0$ for any $s$, that is, the curve $ f\circ\gamma$ is of proper order 2. Indeed,
suppose that the Frenet curve $ f\circ\gamma$ satisfies $\kappa\equiv 0$ . This implies that the curve
$ fo\gamma$ is a geodesic in the ambient space $\tilde{M}^{n+p}$ , so that the curve $\gamma=\gamma(s)$ is a
geodesic in $M^{n}$ , which is a contradiction. It follows from (2.6), (2.7) and (2.8)
that

(3.2) $\tilde{\nabla}_{\gamma}(\tilde{\nabla}_{\gamma}\dot{\gamma})=\nabla_{\gamma}(\nabla_{\gamma}\dot{\gamma})+3\sigma(\nabla_{\gamma}\dot{\gamma},\dot{\gamma})-A_{\sigma(\gamma,\dot{\gamma})}\dot{\gamma}+(\overline{\nabla}_{\gamma}\sigma)(\dot{\gamma},\dot{\gamma})$ .

We find from (2.2), (2.6), (2.7), (3.1) and (3.2) that

(3.3) $\kappa(s)(3\sigma(\nabla_{\gamma}\dot{\gamma},\dot{\gamma})-A_{\sigma(\gamma,\dot{\gamma})}\dot{\gamma}+(\overline{\nabla}_{\dot{\gamma}}\sigma)(\dot{\gamma},\dot{\gamma})+\Vert\sigma(\dot{\gamma},\dot{\gamma})\Vert^{2}\dot{\gamma})$

$=\dot{\kappa}(s)(\nabla_{\gamma}\dot{\gamma}+\sigma(\dot{\gamma},\dot{\gamma}))$ .

Considering the tangential component and the normal component for the
submanifold $M$ in Equation (3.3), we obtain the following:

(3.4) $\kappa(s)(-A_{\sigma(\gamma,\dot{\gamma})}\dot{\gamma}+\Vert\sigma(\dot{\gamma},\dot{\gamma})\Vert^{2}\dot{\gamma})=\dot{\kappa}(s)\nabla_{\gamma}\dot{\gamma}$ .

(3.5) $\kappa(s)(3\sigma(\nabla_{\dot{\gamma}}\dot{\gamma},\dot{\gamma})+(\overline{\nabla}_{\gamma}\sigma)(\dot{\gamma},\dot{\gamma}))=\dot{\kappa}(s)\sigma(\dot{\gamma},\dot{\gamma})$ .

Note that
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$\kappa(s)=\Vert\tilde{\nabla}_{\gamma}\dot{\gamma}\Vert=\sqrt{k^{2}+\Vert\sigma(\gamma,\gamma)\Vert^{2}}>0$ .

Hence

$\kappa(s)\dot{\kappa}(s)=\frac{1}{2}\frac{d}{ds}\kappa(s)^{2}$

$=\frac{1}{2}\frac{d}{ds}\langle\sigma(\dot{\gamma},\dot{\gamma}), \sigma(\dot{\gamma},\dot{\gamma})\rangle$

$=\langle D_{\gamma}(\sigma(\dot{\gamma},\dot{\gamma})),\sigma(\dot{\gamma},\dot{\gamma})\rangle$

$=\langle(\overline{\nabla}_{\gamma}\sigma)(\dot{\gamma},\dot{\gamma})+2\sigma(\nabla_{\gamma}\dot{\gamma},\dot{\gamma}), \sigma(\dot{\gamma},\dot{\gamma})\rangle$ .

Thus, at $s=0$ we get the following:

(3.6) $\kappa(0)=\sqrt{k^{2}+\Vert\sigma(X,X)\Vert^{2}}$ .

(3.7) $\kappa(0)\dot{\kappa}(0)=\langle(\overline{\nabla}_{X}\sigma)(X, X)+2k\sigma(X, Y),\sigma(X, X)\rangle$ .

Evaluating (3.5) at $s=0$ , we find

(3.8) $\kappa(0)(3k\sigma(X, Y)+(\overline{\nabla}_{X}\sigma)(X, X))=\dot{\kappa}(O)\sigma(X, X)$ .

It follows from (3.7) and (3.8) that

(3.9) 3$k\kappa(0)^{2}\sigma(X, Y)-2k\langle\sigma(X, Y), \sigma(X, X)\rangle\sigma(X, X)$

$=\langle(\overline{\nabla}_{X}\sigma)(X, X), \sigma(X, X)\rangle\sigma(X, X)-\kappa(O)^{2}(\overline{\nabla}_{X}\sigma)(X, X)$ .

We here consider another circle $\tau=\tau(s)$ of the same curvature $k$ on $M^{n}$

satisfying the equations $\nabla_{\dot{\tau}}\dot{\tau}=kZ_{s}$ and $\nabla_{\dot{\tau}}Z_{s}=-k\dot{\tau},$ $|s|<\epsilon_{1}$ for some $\epsilon_{1}>0$ with
initial condition that $\tau(0)=x,\dot{\tau}(0)=X$ and $Z_{0}=-Y$ . By assumption the curve
$ f\circ\tau$ is a Frenet curve of order 2 in the ambient manifold $\tilde{M}$ . We set $\kappa_{1}(s)=$

$||\tilde{\nabla}_{\dot{\tau}}\dot{\tau}||>0$ . Applying the above discussion to the circle $\tau$ , we find

(3.9’) $-3k\kappa_{1}(0)^{2}\sigma(X, Y)+2k\langle\sigma(X, Y),\sigma(X, X)\rangle\sigma(X, X)$

$=\langle(\overline{\nabla}_{X}\sigma)(X, X), \sigma(X, X)\rangle\sigma(X, X)-\kappa_{1}(0)^{2}(\overline{\nabla}_{X}\sigma)(X, X)$ .

Equation (3.6) guarantees $\kappa(0)=\kappa_{1}(0)$ . Then, from (3.9) and (3.9’) we can see
that

$3k\kappa(0)^{2}\sigma(X, Y)-2k\langle\sigma(X, Y), \sigma(X, X)\rangle\sigma(X, X)=0$ .

This, together with (3.6), yields
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$(3k^{2}+\Vert\sigma(X, X)\Vert^{2})\langle\sigma(X, X), \sigma(X, Y)\rangle=0$ ,

so that

$\langle\sigma(X, X),\sigma(X, Y)\rangle=0$ .

Since $x$ is arbitrary, thanks to Lemma 2.1, we find that our immersion $f$ is
isotropic. So, again by using Lemma 2.1, we get $A_{\sigma(\dot{\gamma},\gamma)}\dot{\gamma}=\Vert\sigma(\dot{\gamma},\dot{\gamma})\Vert^{2}\dot{\gamma}$ . Hence,
from (3.4) we obtain $0=\dot{\kappa}(s)\nabla_{\gamma}\dot{\gamma}=\dot{\kappa}(s)kY_{s}$ , so that $\kappa=\kappa(s)$ is constant along the
curve $ fo\gamma$ . Therefore we can see that the curve $ f\circ\gamma$ is a circle in the ambient
space $\tilde{M}^{n+p}$ . Thus we get the statement of Theorem 1 (see Theorem A). $\square $

Next, let the ambient space $\tilde{M}^{n+p}$ be a space form $\tilde{M}^{n+p}(c)$ . We can easily
find that in the manifold $\tilde{M}^{n+p}(c)$ , a Frenet curve $\gamma=\gamma(s)$ is of order 2 if and
only if the curve $\gamma$ is a plane curve, (that is, the curve $\gamma$ is locally contained
in some 2-dimensional totally geodesic submanifold of $\tilde{M}^{n+p}(c))$ . Therefore we
establish the statement of Theorem 2. $\square $

We finally remark that in any Riemannian manifold, a plane curve means
a Frenet curve of order 2. However, in general the converse does not hold.
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