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ON A CLASS OF EVEN-DIMENSIONAL MANIFOLDS
STRUCTURED BY A J-PARALLEL CONNECTION

By

Filip Derever! and Radu Rosca

Abstract. Geometrical and structural properties are proved for a
class of even-dimensional manifolds which are equiped with a 7-
parallel connection.

1. Introduction

Riemannian manifolds (M, g) structured by a .7 -parallel connection have been
defined in [12]. We recall that if M is such a manifold carrying a globally defined
vector field 7 (7 “) and 6; (resp. e,) are the connection forms (resp. the vectors
of an orthonormal basis), the connection forms satisfy

9;::<7,€b/\€a>, (1)

where A is the wedge product. The equations (1) imply Vse, = 0 and this agrees
with the definition of a Z-parallel connection.

In the present paper we assume that M is of even dimension 2m. In Section 3
we prove that M is a space-form with the following properties:

(i) M carries a locally conformal symplectic form Q having J° (=a) as
covector of Lee;

(i) 7 1is closed torse forming

VT =(c+t)dp —a® T,

where dp is the soldering form of M, ¢ is a constant, ¢ = ||7]|*/2, and da = 0;
(iii) J defines a relative conformal transformation of Q [14] (see also [7]), i.e.

d(ZrQ) =d(c+ flanQ,

where f is the principal scalar field on M;
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(iv) the components 7 ¢ (a=1,...,2m) of J are eigenfunctions of the Lap-
lacian A and have all as eigenvalue f.

In Section 4 we consider the tangent bundle TM of the manifold M discussed
in Section 3. Let ¥ (v?) be the Liouville vector field [3] on TM and ¢ the associated
Finslerian 2-form [3]; the following properties are proved

(i) the complete lift Q¢ [18] of Q defines a conformal symplectic structure on
TM and 7 defines as for Q a relative conformal transformation of Q¢ [14] [7];

(i)

d(Z7Q°) =2(c+ 1a A QF,

and since £y Q° = Q°, and Ly = ¢, both Q° and ¥ are homogeneous and of
class 1;

(iii) if X is a skew-symmetric Killing vector field having J as generative,
then Q¢ is invariant by X, i.e. £xQ°¢ =0, and X defines also an infinitesimal con-
formal transformation of the canonical symplectic form II = fy, i.e.

Lyll = —g(X,T)II,

(iv) the vertical lift X¥ of X defines a relative conformal transformation of
the Finslerian form y, i.e.

d(Lyvip) = (dg(X,T) + g(X, T)X") A .

2. Preliminaries

Let (M,g) be a Riemannian C*-manifold and let V be the covariant differ-
ential operator with respect to the metric tensor g. We assume that M is oriented
and V is the Levi-Civita connection of g. Let [TM = Z(M) be the set of sections
of the tangent bundle, and

b.TM 2> T*M and #:TM & T*M

the classical isomorphisms defined by g (i.e. ° is the index lowering operator, and
' is the index raising operator).
Following [II], we denote by

AY(M,TM) = T Hom(A'TM,TM),

the set of vector valued g-forms (¢ < dim M), and we write for the covariant
derivative operator with respect to V

d¥ A9 (M, TM) — A" (M, TM). (2)
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It should be noticed that in general d¥ = d” od” # 0, unlike d> =dod = 0. If
p €M then the vector valued 1-form dp e A'(M,TM) is the canonical vector
valued 1-form of M, and is also called the soldering form of M [2]. Since V is
symmetric one has that d¥(dp) = 0. A vector field Z which satisfies

d¥(VZ) =V2Z =nndpe A> (M, TM), mneA'M, (3)

is defined to be an exterior concurrent vector field (see also [10]). The 1-form
n in (3) is called the concurrence form and is defined by

n=212", AeA°M. (4)

Let O = {e,|a=1,...2m} be a local field of orthonormal frames over M and let
0* = covect{w’} be its associated coframe. Then E. Cartan’s structure equations
can be written in indexless manner as

Ve=0®e, (5)
do = -0 A o, (6)
dg=—-0n0+0. (7)

In the above equations 6 (resp ®) are the local connection forms in the tangent
bundle TM (resp. the curvature 2-forms on M).
3. Manifolds structured by a Z -parallel connection
Let (M,g) be a 2m-dimensional oriented Riemannian C®-manifold and
T =T %, T '=a=)» T0° (8)

be a globally defined vector field and its dual form respectively. Let
0, (a,be {1,...2m}) be the local connection forms in the tangent bundle 7M.
Then, by reference to [12], (M, g) is structured by a J-parallel connection if the
connection forms 6 satisfy

0, =<T,ep Aea), 9)

where A means the wedge product of vector fields. Making use of Cartan’s struc-
ture equations (5), we find by (8) and (9) that

0f = Ttw® — T0?, (10)
and in consequence of [10), the equations (5) take the form

Ve, =T %dp -0’ ® T . (11)
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Since one has that ; () = 0, then following [6] one may say that the connection
forms 6, are relations of integral invariance for 7.

From it also follows that

which expresses that all the vectors of the (-basis ¢ = {e,} are J-parallel and
this legitimates our definition regarding the structure of M. Further, making use
of E. Cartan’s structure equations (6) one derives that

dw’ = o A 0, (13)

where we have set « = . Hence, by it follows that all the pfaffians w® of
the covector basis O* are exterior recurrent forms [1]. Consequently, the pfaffian «
can be seen to be in fact a closed form, i.e.

do = 0. (14)
Since
a=7" =)y T, (15)
one has by d7 % A w* =0, and by reference to [9], one may write
d7° = fw?, feA’M, (16)

and call f the distinguished scalar on M. By and it can now be seen
that o« is also an exact form, and that one may set

&

=7 (17)
Further, taking the covariant differential of .7, one finds by and that
VT =(f+2)dp —a® T, (18)

where we have set
2t = ||T|%. (19)

Hence, according to (see also [9]), equation expresses that J is
a torse forming vector field, which in addition, by [11), has the property to be

closed; by (19) one may also write

dt = fa. (20)
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Further, operating on by the exterior covariant operator dV, one gets
dV(Ve,) = Ve, = 2(f + t)w® A dp. (21)

This reveals that all the constituents of the vector basis {e,} are exterior con-
current vector fields with 2(f + ¢) as exterior concurrent scalar. Under these
conditions it suffices to make use of the general formula

VZ = Z9° ® ep, (22)
where Z € E(M) and @®? are the curvature 2-forms on M, to derive
0° =2(f + o A . (23)

It is well known that the equation shows that the manifold M under con-
sideration is a space form of curvature

Kk=-=2(f+1)
(see also [9]), and we agree to set
f +t=c=const.. (24)
In another perspective, we agree to call the 2-form Q of rank 2m given by
Q=ZwiAwi*, i=1,...m, i*=i+m, (25)

the fundamental almost symplectic form of M. Taking the exterior derivative of
Q, and in view of [13), one finds that

dQ =2a A Q. (26)

This affirms the fact that M is endowed with a locally conformal symplectic
structure having o« as covector of Lee. Then, as is known [5], calling the mapping
Z — —izQ ="Z the symplectic isomorphism, one has

bfzz(g-i*wi_yiwi*), (27)

and by one finds that
dCT) =2fQ. (28)
Taking now the Lie derivative of Q with respect to the Lee vector field 7, yields

LrQ=2cQ+ 20 AT, (29)
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and by exterior differentiation one gets
d(ZL7Q) =4(f + c)a A Q. (30)

Hence, following a known definition (see also [7]), the above equation means
that J defines a relative conformal transformation of Q.

Recall now that if e A°M is any scalar field, then the Laplacian of 7 is
expressed by

At =8 df = —divdf = —div V.7,

where Vz is the gradient of 7. Coming back to the case under discussion, then with
the help of one derives that

VT = fT (31)

This shows that ¢ is an eigenfunction of A corresponding to the eigenvalue f.
Hence one may say that the vector field 4 forms an eigenspace E2™ of eigen-
value f.

THEOREM 3.1. Let M be a 2m-dimensional Riemannian manifold structured by
a I -parallel connection and let 7 (T ) be the vector field which defines this con-
nection and 7" the dual form of F. Any such manifold is a space-form and is endowed
with a locally conformal symplectic form Q having I > as covector of Lee, i.e.

dQ =27"rQ,
and J defines a relative conformal transformation of Q, i.e.
d(ZrQ) =4(c+ )T’ A Q,

where ¢ is a constant and f is the distinguished scalar on M. The vector field T is
closed torse forming and its components I * form an eigenspace E*™ of eigenvalue f.

4. Geometry of the tangent bundle

Let now TM be the tangent bundle of the manifold M discussed in Section
3. Denote as usual by V(v?) (a€{l,...2m}) the Liouville vector field (or the
canonical vector field [3]). Under these conditions, one may consider the set
AB* = {w? dv®} as an adapted cobasis in TM. Following [3] one denotes by i, the
vertical derivation (i, is a derivation of degree 0 on ATM), i.e.

A =0, i,dv®=w Iiwn’®=0. (32)
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Next, the complete lift of Q is, as is known from , expressed by
Q= (&' Ao + o Adv"). (33)
Then, on behalf of [13), the exterior differential of Q° is given by
dQ° =o A Q°. (34)

Hence, the complete lift Q¢ of Q defines on TM a conformal symplectic structure,
as Q does on M. Moreover, similarly as for Q, one can derive that

d(Z7Q°) =2(c+ a A QF, (35)

which proves that J defines a relative conformal transformation of Q°.
Next, as is known [4], the Liouville vector field V is expressed by

v=>" V“a—i;, (36)
and the basic 1-form
p=>y Vo (37)
is called the Liouville 1-form. By one has that
Q=Y (Vo' - Vo), (38)
and by and one gets
FrQ = QF°. (39)

Equation shows that Q¢ is a homogeneous 2-form of class 1 [4] on TM.
Further, taking the exterior differential of the Liouville form u, one derives
that

du=anu+y, (40)
where we have set

Y = Zdv“ A w°. '(41)
Then, since one first calculates that

vy =pn, o(V)=0, (42)
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one finally gets that

gV‘/’ = W1 (43)

which shows that, as Q¢ the form ¥ is also a homogeneous 2-form of class 1.
Moreover, by one has that

Ly =0, (44)

which together with proves that y is a Finslerian form [3].
In another order of ideas, we recall that the vertical lift Z" [18) of any vector
field Z on M with components Z¢ is expressed by

0 5,
Vv __ _ —7a
zZV = (Z) =2z (45)

Therefore, in the case under consideration, one has

g-V=Zf“%, ae{l,...2m}, (46)
and by and [32), one finds that
W =0. (47)
But, by (40) and (17), one has
igvip = a, (48)
and one derives
Ly =0, (49)

which shows that y is invariant by 7.
Next, setting

II = fy, (50)
it follows from and that
dil = 0. (51)

Therefore, the exact symplectic 2-form I7 can be viewed as the canonical sym-
plectic form of the manifold TM. Since, as is known from [18], the Killing prop-
erty for vector fields is invariant by complete liftings, we will now consider a skew-

symmetric Killing vector field X [12] on M having 4 as generative. Hence, one
must write

VX =XAJ, (52)
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where A denotes the wedge product of vector fields. Since by one has that
VX =) dX‘®e,+g(X,7)dp-X"® 7T, (53)
one gets from
dX*+g(X, T’ =X, (a=7T"). (54)
Then, since
Xt = ZX “w?,
it follows from that
dX’ =20 A X°, (55)

which is in agreement with Rosca’s lemma concerning skew-symmetric Killing
en conformal skew-symmetric Killing vector fields.

Next, since a problem of current interest consists of infinitesimal transfor-
mations due to the Lie derivaties, one finds in a first step

ixQ = (X'dv" — x"av'). (56)
Hence, taking the Lie derivative of the complete 2-form Q€ one deduces that
LQ° =0, (57)

and this reveals that Q¢ is invariant by X. We also notice that taking the Lie
bracket [, X] one gets by and

(7, X] = /X, (58)

and this shows that . defines an infinitesimal conformal transformation of X.
Further, by (17), [41), [45) and [51), one calculates that

Lyl = —g(X, I)I, (59)

and this affirms that X defines an infinitesimal conformal transformation of the
canonical symplectic form on 7M. Finally, let

0
Vo _
X = Z X ové
be the vertical lift of X. By one has that

iy =Y X, (60)
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and, taking the Lie derivative with respect to X, one derives consecutively that

Ly =g(X, T +3an X, (61)

and
d(Lyvy) = (dg(X,T )+ g9(X,T)X") A Y. (62)

Hence, shows that the vertical lift X" of the Killing vector field X defines a
relative conformal transformation of the Finslerian form .

THEOREM 4.1. Let TM be the tangent bundle manifold, having as basis the
2m-dimensional space-form manifold M(Q, 7,7’ = a) discussed in Section 3. The
complete lift Q¢ of the conformal symplectic form Q defines also on TM a con-
formal symplectic structure and the structure vector field I defines also a relative
conformal transformation of Q°, ie.

d(L7Q°) =2(c+ Da A Q°.

In addition, if V (resp. ¥) means the Liouville vector field on TM (resp. the Fin-
slerian form), one has

LyQ=Q° and Ly =,

which shows that both Q° and y are homogeneous and of class 1. If X is a skew-
symmetric Killing vector field having I as generative, then Q° is invariant by X, i.e.

LxQ =0,

and X defines also an infinitesimal conformal transformation of the canonical sym-

plectic form II = f\y on TM. Finally, the vertical lift XV of X defines a relative
conformal transformation of the Finslerian form .
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