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ON A CLASS OF EVEN-DIMENSIONAL MANIFOLDS
STRUCTURED BY A $\mathscr{T}$-PARALLEL CONNECTION

By

Filip DEFEVER1 and Radu ROSCA

Abstract. Geometrical and structural properties are proved for a
class of even-dimensional manifolds which are equiped with a $\mathscr{T}-$

parallel connection.

1. Introduction

Riemannian manifolds $(M, g)$ structured by a $\mathscr{T}$-parallel connection have been
defined in [12]. We recall that if $M$ is such a manifold carrying a globally defined
vector field $\mathscr{T}(\mathscr{T}^{a})$ and $\theta_{b}^{a}$ (resp. $e_{a}$ ) are the connection forms (resp. the vectors
of an orthonormal basis), the connection forms satisfy

$\theta_{b}^{a}=\langle \mathscr{T}, e_{b}\wedge e_{a}\rangle$ , (1)

where $\wedge is$ the wedge product. The equations (1) imply $\nabla_{F}e_{a}=0$ and this agrees
with the definition of a $\mathscr{T}$-parallel connection.

In the present paper we assume that $M$ is of even dimension $2m$ . In Section 3
we prove that $M$ is a space-form with the following properties:

(i) $M$ carries a locally conformal symplectic form $\Omega$ having $^{\varpi b}(=\alpha)$ as
covector of Lee;

(ii) $\mathscr{T}$ is closed torse forming

$\nabla \mathscr{T}=(c+t)dp-\alpha\otimes \mathscr{T}$,

where $dp$ is the soldering form of $M,$ $c$ is a constant, $t=\Vert \mathscr{T}\Vert^{2}/2$ , and $d\alpha=0$ ;
(iii) $\mathscr{T}$ defines a relative conformal transformation of $\Omega[14]$ (see also [7]), i.e.

$ d(\mathscr{L}_{F}\Omega)=4(c+f)\alpha\wedge\Omega$ ,

where $f$ is the principal scalar field on $M$ ;
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(iv) the components $\mathscr{T}^{a}(a=1, \ldots, 2m)$ of $\mathscr{T}$ are eigenfunctions of the Lap-
lacian $\Delta$ and have all as eigenvalue $f$ .

In Section 4 we consider the tangent bundle $TM$ of the manifold $M$ discussed
in Section 3. Let $V(v^{a})$ be the Liouville vector field [3] on $TM$ and $\psi$ the associated
Finslerian 2-form [3]; the following properties are proved

(i) the complete lift $\Omega^{c}[18]$ of $\Omega$ defines a conformal symplectic structure on
$TM$ and $\mathscr{T}$ defines as for $\Omega$ a relative conformal transformation of $\Omega^{c}[14][7]$ ;

(ii)

$d(\mathscr{L}_{J}\Omega^{c})=2(c+1)\alpha\wedge\Omega^{c}$ ,

and since $\mathscr{L}_{V}\Omega^{C}=\Omega^{C}$ , and $\mathscr{L}_{V}\psi=\psi$ , both $\Omega^{c}$ and $\psi$ are homogeneous and of
class 1;

(iii) if $X$ is a skew-symmetric Killing vector field [15] having $^{\Gamma}$ as generative,
then $\Omega^{c}$ is invariant by $X$ , i.e. $\mathscr{L}_{X}\Omega^{C}=0$ , and $X$ defines also an infinitesimal con-
formal transformation of the canonical symplectic form $\Pi=f\psi$ , i.e.

$\mathscr{L}_{X}\Pi=-g(X^{\Gamma})\Pi$ ;

(iv) the vertical lift $X^{V}$ of $X$ defines a relative conformal transformation of
the Finslerian form $\psi$ , i.e.

$ d(\mathscr{L}_{X^{V}}\psi)=(dg(X, \mathscr{T})+g(X, \mathscr{T})X^{b})\wedge\psi$ .

2. Preliminaries

Let $(M, g)$ be a Riemannian $C^{\infty}$ -manifold and let $\nabla$ be the covariant differ-
ential operator with respect to the metric tensor $g$ . We assume that $M$ is oriented
and $\nabla$ is the Levi-Civita connection of $g$ . Let $\Gamma TM=\Xi(M)$ be the set of sections
of the tangent bundle, and

$b:TM\rightarrow bT^{*}M$ and $\#:TM\leftarrow\# T^{*}M$

the classical isomorphisms defined by $g$ (i.e. $b$ is the index lowering operator, and
$\#$ is the index raising operator).

Following [11], we denote by

A $(M, TM)=\Gamma Hom(\Lambda^{q}TM, TM)$ ,

the set of vector valued q-forms $(q<\dim M)$ , and we write for the covariant
derivative operator with respect to $\nabla$

$d^{\nabla}$ : A $(M, TM)\rightarrow A^{q+1}(M, TM)$ . (2)
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It should be noticed that in general $d^{\nabla^{2}}=d^{\nabla}\circ d^{\nabla}\neq 0$ , unlike $d^{2}=d\circ d=0$ . If
$p\in M$ then the vector valued l-form $dp\in A^{1}(M, TM)$ is the canonical vector
valued l-form of $M$ , and is also called the soldering form of $M[2]$ . Since $\nabla$ is
symmetric one has that $d^{\nabla}(dp)=0$ . A vector field $Z$ which satisfies

$d^{\nabla}(\nabla Z)=\nabla^{2}Z=\pi\wedge dp\in A^{2}(M, TM)$ , $\pi\in\Lambda^{1}M$ , (3)

is defined to be an exterior concurrent vector field [13] (see also [10]). The l-form
$\pi$ in (3) is called the concurrence form and is defined by

$\pi=\lambda Z^{b}$ , $\lambda\in\Lambda^{0}M$ . (4)

Let $\mathcal{O}=\{e_{a}|a=1, \ldots 2m\}$ be a local field of orthonormal frames over $M$ and let
$\mathcal{O}^{*}=covect\{\omega^{a}\}$ be its associated coframe. Then E. Cartan’s structure equations
can be written in indexless manner as

$\nabla e=\theta\otimes e$ , (5)

$ d\omega=-\theta\wedge\omega$ , (6)

$ d\theta=-\theta\wedge\theta+\Theta$ . (7)

In the above equations $\theta$ (resp $\Theta$) are the local connection forms in the tangent
bundle $TM$ (resp. the curvature 2-forms on $M$).

3. Manifolds structured by a $\mathscr{T}$-parallel connection

Let $(M, g)$ be a $2m$-dimensional oriented Riemannian $C^{\infty}$ -manifold and

$\mathscr{T}=\mathscr{T}^{a}e_{a}$ , $\mathscr{T}^{b}=\alpha=\sum \mathscr{T}^{a}\omega^{a}$ (8)

be a globally defined vector field and its dual form respectively. Let
$\theta_{b}^{a}(a, b\in\{1, \ldots 2m\})$ be the local connection forms in the tangent bundle $TM$ .
Then, by reference to [12], $(M, g)$ is structured by a $^{\Gamma}$-parallel connection if the
connection forms $\theta$ satisfy

$\theta_{b}^{a}=\langle \mathscr{T}, e_{b}\wedge e_{a}\rangle$ , (9)

where $\wedge means$ the wedge product of vector fields. Making use of Cartan’s struc-
ture equations (5), we find by (8) and (9) that

$\theta_{b}^{a}=\mathscr{T}^{b}\omega^{a}-\mathscr{T}^{a}\omega^{b}$ , (10)

and in consequence of (10), the equations (5) take the form

$\nabla e_{a}=\mathscr{T}^{a}dp-\omega^{a}\otimes \mathscr{T}$ . (11)
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Since one has that $\theta_{b}^{a}(\mathscr{T})=0$ , then following [6] one may say that the connection
forms $\theta_{b}^{a}$ are relations of integral invariance for $\mathscr{T}$ .

From (11) it also follows that

$\nabla_{J}e_{a}=0$ , (12)

which expresses that all the vectors of the O-basis $\mathcal{O}=\{e_{a}\}$ are $^{-}0$-parallel and
this legitimates our definition regarding the structure of $M$ . Further, making use
of E. Cartan’s structure equations (6) one derives that

$d\omega^{a}=\alpha\wedge\omega^{a}$ , (13)

where we have set $\alpha=\mathscr{T}^{b}$ . Hence, by (13) it follows that all the pfaffians $\omega^{a}$ of
the covector basis $\mathcal{O}^{*}$ are exterior recurrent forms [1]. Consequently, the pfaffian $\alpha$

can be seen to be in fact a closed form, i.e.

$d\alpha=0$ . (14)

Since

$\alpha=\mathscr{T}^{b}=\sum \mathscr{T}^{a}\omega^{a}$ , (15)

one has by (11) $d\mathscr{T}^{a}\wedge\omega^{a}=0$ , and by reference to [9], one may write

$d\mathscr{T}^{a}=f\omega^{a}$ , $f\in\Lambda^{0}M$ , (16)

and call $f$ the distinguished scalar on $M$ . By (16) and (14) it can now be seen
that $\alpha$ is also an exact form, and that one may set

$\alpha=-\frac{df}{f}$ . (17)

Further, taking the covariant differential of $\mathscr{T}$ , one finds by (11) and (16) that

$\nabla \mathscr{T}=(f+2t)dp-\alpha\otimes \mathscr{T}$, (18)

where we have set

$2t=\Vert \mathscr{T}\Vert^{2}$ . (19)

Hence, according to [17] (see also [16] [15] [9]), equation (18) expresses that $\mathscr{T}$ is
a torse forming vector field, which in addition, by (11), has the property to be
closed; by (19) one may also write

$ dt=f\alpha$ . (20)
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Further, operating on (11) by the exterior covariant operator $d^{\nabla}$ , one gets

$d^{\nabla}(\nabla e_{a})=\nabla^{2}e_{a}=2(f+t)\omega^{a}\wedge dp$ . (21)

This reveals that all the constituents of the vector basis $\{e_{a}\}$ are exterior con-
current vector fields [13] with $2(f+t)$ as exterior concurrent scalar. Under these
conditions it suffices to make use of the general formula

$V^{2}Z=Z^{a}oa\otimes e_{b}$ , (22)

where $Z\in\Xi(M)$ and $\Theta_{a}^{b}$ are the curvature 2-forms on $M$ , to derive

$\Theta_{a}^{b}=2(f+t)\omega^{a}\wedge\omega^{b}$ . (23)

It is well known that the equation (23) shows that the manifold $M$ under con-
sideration is a space form of curvature

$\kappa=-2(f+t)$

(see also [9]), and we agree to set

$f+t=c=const.$ . (24)

In another perspective, we agree to call the 2-form $\Omega$ of rank $2m$ given by

$\Omega=\sum\omega^{j}\wedge\omega^{j^{*}}$ , $j=1,$ $\ldots m,$ $i^{*}=i+m$ , (25)

the fundamental almost symplectic form of $M$ . Taking the exterior derivative of
$\Omega$ , and in view of (13), one finds that

$ d\Omega=2\alpha\wedge\Omega$ . (26)

This affirms the fact that $M$ is endowed with a locally conformal symplectic
structure having $\alpha$ as covector of Lee. Then, as is known [5], calling the mapping
$Z\rightarrow-i_{Z}\Omega=bZ$ the symplectic isomorphism, one has

$b\mathscr{T}=\sum(\mathscr{T}^{i^{*}}\omega^{j}-\mathscr{T}^{j}\omega^{j^{*}})$ , (27)

and by (16) one finds that

$ d(b\mathscr{T})=2f\Omega$ . (28)

Taking now the Lie derivative of $\Omega$ with respect to the Lee vector field $\mathscr{T}$, yields

$\mathscr{L}_{J}\varpi\Omega=2c\Omega+2\alpha\wedge^{b}\mathscr{T}$, (29)
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and by exterior differentiation one gets

$ d(\mathscr{L}_{}\Omega)=4(f+c)\alpha\wedge\Omega$ . (30)

Hence, following a known definition [14] (see also [7]), the above equation means
that $\mathscr{T}$ defines a relative conformal transformation of $\Omega$ .

Recall now that if $\tau\in\Lambda^{0}M$ is any scalar field, then the Laplacian of $\tau$ is
expressed by

$\Delta\tau=\delta df=-divdf=-div\nabla \mathscr{T}$,

where $\nabla\tau$ is the gradient of $\tau$ . Coming back to the case under discussion, then with
the help of (16) one derives that

$\nabla \mathscr{T}^{a}=f\mathscr{T}^{a}$ . (31)

This shows that $\mathscr{T}^{a}$ is an eigenfunction of $\Delta$ corresponding to the eigenvalue $f$ .
Hence one may say that the vector field $\mathscr{T}$ forms an eigenspace $E^{2m}$ of eigen-
value $f$ .

THEOREM 3.1. Let $M$ be a $2m$-dimensional Riemannian manifold structured by
$a\mathscr{T}$-parallel connection and let $\mathscr{T}(\mathscr{T}^{a})$ be the vector field which defines this con-
nection and $\mathscr{T}^{b}$ the dualform of $\mathscr{T}$. Any such manifold is a space-form and is endowed
with a locally conformal symplectic form $\Omega$ having $\mathscr{T}^{b}$ as covector of Lee, i.e.

$ d\Omega=2\mathscr{T}^{b}\wedge\Omega$ ,

and $\mathscr{T}$ defines a relative conformal transformation of $\Omega$ , i.e.

$ d(\mathscr{L}_{J}\Omega)=4(c+f)\mathscr{T}^{b}\wedge\Omega$ ,

where $c$ is a constant and $f$ is the distinguished scalar on M. The vector field $\mathscr{T}$ is
closed torse forming and its components $\mathscr{T}^{a}$ form an eigenspace $E^{2m}$ of eigenvalue $f$

4. Geometry of the tangent bundle

Let now $TM$ be the tangent bundle of the manifold $M$ discussed in Section
3. Denote as usual by $V(v^{a})(a\in\{1, \ldots 2m\})$ the Liouville vector field (or the
canonical vector field [3]). Under these conditions, one may consider the set
$\mathscr{B}^{*}=\{\omega^{a}, dv^{a}\}$ as an adapted cobasis in $TM$ . Following [3] one denotes by $i_{v}$ the
vertical derivation ( $i_{v}$ is a derivation of degree $0$ on $\Lambda TM$), i.e.

$i_{v}\lambda=0$ , $i_{v}dv^{a}=\omega^{a}$ , $i_{v}\omega^{a}=0$ . (32)
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Next, the complete lift of $\Omega$ is, as is known from [18], expressed by

$\Omega^{c}=\sum(dv^{j}\wedge\omega^{i^{*}}+\omega^{l}\wedge dv^{j^{*}})$ . (33)

Then, on behalf of (13), the exterior differential of $\Omega^{c}$ is given by

$d\Omega^{c}=\alpha\wedge\Omega^{c}$ . (34)

Hence, the complete lift $\Omega^{c}$ of $\Omega$ defines on $TM$ a conformal symplectic structure,
as $\Omega$ does on $M$ . Moreover, similarly as for $\Omega$ , one can derive that

$d(\mathscr{L}_{J}\varpi\Omega^{c})=2(c+1)\alpha\wedge\Omega^{c}$ , (35)

which proves that $\mathscr{T}$ defines a relative conformal transformation of $\Omega^{c}$ .
Next, as is known [4], the Liouville vector field $V$ is expressed by

$V=\sum V^{a}\frac{\partial}{\partial v^{a}}$ , (36)

and the basic l-form

$\mu=\sum V^{a}\omega^{a}$ (37)

is called the Liouville l-form. By (33) one has that

$i_{V}\Omega^{c}=\sum(V^{i}\omega^{i^{*}}-V^{i^{*}}\omega^{i})$ , (38)

and by (34) and (38) one gets

$\mathscr{L}_{V}\Omega^{c}=\Omega^{c}$ . (39)

Equation (39) shows that $\Omega^{c}$ is a homogeneous 2-form of class 1 [4] on TM.
Further, taking the exterior differential of the Liouville form $\mu$ , one derives

that

$ d\mu=\alpha\wedge\mu+\psi$ , (40)

where we have set

$\psi=\sum dv^{a}\wedge\omega^{a}$ . (41)

Then, since one first calculates that

$ i_{V}\psi=\mu$ , $\alpha(V)=0$ , (42)
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one finally gets that

$\mathscr{L}_{V}\psi=\psi$ , (43)

which shows that, as $\Omega^{c}$ , the form $\psi$ is also a homogeneous 2-form of class 1.
Moreover, by (32) one has that

$i_{v}\psi=0$ , (44)

which together with (43) proves that $\psi$ is a Finslerian form [3].
In another order of ideas, we recall that the vertical lift $Z^{V}[18]$ of any vector

field $Z$ on $M$ with components $Z^{a}$ is expressed by

$z^{V}=\left(\begin{array}{l}0\\Z^{a}\end{array}\right)=Z^{a}\frac{\partial}{\partial v^{a}}$ (45)

Therefore, in the case under consideration, one has

$c7^{-V}=\sum \mathscr{T}^{a}\frac{\partial}{\partial v^{a}}$ , $a\in\{1, \ldots 2m\}$ , (46)

and by (41) and (32), one finds that

$i_{v}\psi=0$ . (47)

But, by (40) and (17), one has

$ i_{\Gamma}V\psi=\alpha$ , (48)

and one derives

$\mathscr{L}_{V}\psi=0$ , (49)

which shows that $\psi$ is invariant by $\mathscr{T}^{V}$ .
Next, setting

$\Pi=f\psi$ , (50)

it follows from (17) and (32) that

$dII=0$ . (51)

Therefore, the exact symplectic 2-form $\Pi$ can be viewed as the canonical sym-
plectic form of the manifold $TM$ . Since, as is known from [18], the Killing prop-
erty for vector fields is invariant by complete liftings, we will now consider a skew-
symmetric Killing vector field $X[12]$ on $M$ having $\mathscr{T}$ as generative. Hence, one
must write

$\nabla X=X\wedge \mathscr{T}$, (52)
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where $\wedge denotes$ the wedge product of vector fields. Since by (11) one has that

$\nabla X=\sum dX^{a}\otimes e_{a}+g(X, \mathscr{T})dp-X^{b}\otimes \mathscr{T}$, (53)

one gets from (52)

$ dX^{a}+g(X, \mathscr{T})\omega^{a}=X^{a}\alpha$ , $(\alpha=\mathscr{T}^{b})$ . (54)

Then, since

$X^{b}=\sum X^{a}\omega^{a}$ ,

it follows from (13) that

$dX^{b}=2\alpha\wedge X^{b}$ , (55)

which is in agreement with Rosca’s lemma [15] conceming skew-symmetric Killing
en conformal skew-symmetric Killing vector fields.

Next, since a problem of current interest consists of infinitesimal transfor-
mations due to the Lie derivaties, one finds in a first step

$i_{X}\Omega^{c}=\sum(X^{i}dv^{i^{*}}-X^{i^{*}}dv^{i})$ . (56)

Hence, taking the Lie derivative of the complete 2-form $\Omega^{c}$ , one deduces that

$\mathscr{L}_{X}\Omega^{c}=0$ , (57)

and this reveals that $\Omega^{c}$ is invariant by $X$ . We also notice that taking the Lie
bracket $[\mathscr{T}, X]$ one gets by (53) and (18)

$[\mathscr{T}, X]=-fX$ , (58)

and this shows that $\mathscr{T}$ defines an infinitesimal conformal transformation of $X$ .
Further, by (17), (41), (45) and (51), one calculates that

$\mathscr{L}_{X}\Pi=-g(X, \mathscr{T})\Pi$ , (59)

and this affirms that $X$ defines an infinitesimal conformal transformation of the
canonical symplectic form on $TM$ . Finally, let

$X^{V}=\sum X^{a}\frac{\partial}{\partial v^{a}}$

be the vertical lift of $X$ . By (41) one has that

$i_{X^{V}}\psi=\sum X^{a}\omega^{a}$ , (60)



368 Filip DEFEVER and Radu ROSCA

and, taking the Lie derivative with respect to $X^{\nabla}$ , one derives consecutively that

$L_{X^{\nabla}}\psi=g(X, \mathscr{T})\psi+3\alpha\wedge X^{b}$ , (61)

and

$ d(L_{X^{V}}\psi)=(dg(X, \mathscr{T})+g(X, \mathscr{T})X^{b})\wedge\psi$ . (62)

Hence, (62) shows that the vertical lift $X^{V}$ of the Killing vector field $X$ defines a
relative conformal transformation of the Finslerian form $\psi$ .

THEOREM 4.1. Let $TM$ be the tangent bundle mamfold, having as basis the
$2m$-dimensional space-form manifold $M(\Omega, \mathscr{T}, \mathscr{T}^{b}=\alpha)$ discussed in Section 3. The
complete $l_{l}ft\Omega^{c}$ of the conformal symplectic form $\Omega$ defines also on $TM$ a con-
formal symplectic structure and the structure vector field $\mathscr{T}$ defines also a relative
conformal transformation of $\Omega^{c},$ $i.e$.

$d(\mathscr{L}_{}\Omega^{c})=2(c+1)\alpha\wedge\Omega^{c}$ .

In addition, if $V$ (resp. $\psi$ ) means the Liouville vector field on $TM$ (resp. the Fin-
slerian form), one has

$\mathscr{L}_{V}\Omega^{C}=\Omega^{C}$ , and $\mathscr{L}_{V}\psi=\psi$ ,

which shows that both $\Omega^{c}$ and $\psi$ are homogeneous and of class 1. If $X$ is a skew-
symmetric Killing vector field having $\Gamma$ as generative, then $\Omega^{c}$ is invariant by $X,$ $i.e$.

$\mathscr{L}_{X}\Omega^{c}=0$ ,

and $X$ defines also an infinitesimal conformal transformation of the canonical sym-
plectic form $\Pi=f\psi$ on $TM$. Finally, the vertical lift $X^{V}$ of $X$ defines a relative
conformal transformation of the Finslerian form $\psi$ .
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