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LIFE SPAN FOR SOLUTIONS OF THE
HEAT EQUATION WITH A NONLINEAR

BOUNDARY CONDITION

By

Juli\’an FERN\’ANDEZ BONDER and Julio D. ROSSI

Abstract. In this note we obtain estimates in terms of the size of
the initial data for the blow-up time of positive solutions of the heat
equation in $R_{+}$ with a nonlinear boundary condition $-u_{X}(0, t)=$

$u^{P}(0, t)$ .

Introduction

In this note we obtain estimates for the blow-up time of positive solutions of
the following parabolic problem

(1) $\left\{\begin{array}{l}u_{\iota}=u_{XX} inR_{+}(0,T_{\lambda}),\\-u_{X}(0,t)=u^{p}(0,t) in(0,T_{\lambda}),\\u(x,0)=\lambda\phi(x)>0 inR_{+}.\end{array}\right.$

where $p>1$ is fixed and $\lambda>0$ is a parameter.
Throughout this note we assume that the initial datum $\phi$ is continuous,

positive and bounded.
Existence, uniqueness, regularity and continuous dependence on the initial

data for this problem were proved, for instance, in [2].
For problem (1), it is well known that if $\lambda$ is large enough the solution blows

up in finite time $T_{\lambda}$ ( $T_{\lambda}$ depends on $\lambda$ ) if and only if $p>1$ , see for example, [1],
[3], [4], [8], [10]. This means that there exists a finite time $T_{\lambda}$ with

$\lim_{t\nearrow T_{\lambda}}\Vert u(\cdot, t)\Vert_{\infty}=+\infty$ .
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Here we are interested in the asymptotic behaviour of $T_{\lambda}$ when $\lambda$ goes to
infinity. We prove the following Theorem,

THEOREM 1. Under the above assumptions on $\phi$ , the function $\lambda-\rangle$
$T_{\lambda}$ is

decreasing and continuous with the following asymptotic behaviour at infinity,

$\lim_{\lambda\rightarrow\infty}\lambda^{2(p-1)}T_{\lambda}=T_{0}$ .

Here $T_{0}$ is the blow-up time of the solution of (1) with initial datum $u(x, 0)\equiv\phi(0)$ .

Some related papers that deal with the heat equation with a nonlinear source
in the entire space are [7] and [9].

Under further assumptions on the initial datum, $u(x, 0)=\psi(x)$ (a compat-
ibility condition and $\psi_{xx}\geq 0$ , that guarantee $u_{f}\geq 0$ ) it was proved in [6] and [8]
that the following $\cdot$ blow up rate holds,

(2) $c\leq(T-t)^{1/2(p-1)}\Vert u(\cdot, t)\Vert_{\infty}\leq C$

We observe that the exponent that appears in Theorem 1 is related to the
one in the blow-up rate (2). This is a consequence of the natural scaling in the
equation (1).

Proof of Theorem 1

The fact that $\lambda\mapsto T_{\lambda}$ is decreasing is an immediate consequence of the
maximum principle. To see this, let us call $u$ the solution of (1) with initial datum
$\lambda\phi$ and $v$ the solution of (1) with initial datum $\mu\phi$ . If $\lambda\leq\mu$ then, by a compar-
ison argument, $u(x, t)\leq v(x, t)$ for all $x>0$ and $0<t<\min\{T_{\lambda}, T_{\mu}\}$ . As $T_{\lambda}$ is
the blow-up time for $u,$ $\lim_{t\nearrow T_{j}}\Vert u(\cdot, t)\Vert_{\infty}=+\infty$ and hence $v$ can not be defined
beyond $T_{\lambda}$ , proving that $T_{\mu}\leq T_{\lambda}$ .

To see that is continuous we can assume that $\lambda\leq\mu$ , hence $T_{\lambda}\geq T_{\mu}$ . Now,
given $\epsilon>0$ we have to show that $T_{\lambda}-\epsilon<T_{\mu}$ if $\mu-\lambda<\delta$ , but this follows by the
continuous dependence with respect to the initial data (see [2]). In fact,

$\Vert u(\cdot, T_{\lambda}-\epsilon)\Vert_{\infty}\leq C=C(\epsilon)$

If we replace the power by a globally Lipchitz function $g(u)$ that agrees with
$u^{p}$ for every $u\leq 2C$ we deal with a regular problem, and hence there exists $\delta=$

$\delta(\epsilon)$ such that

$\Vert v(\cdot, T_{\lambda}-\epsilon)\Vert_{\infty}\leq 2C<+\infty$ , if $\mu-\lambda<\delta$ .



Life span for solutions of the heat equation 217

We observe that as long as $v\leq 2C$ it is a solution of the problem with $u^{p}$

as nonlinear flux at $x=0$ . By uniqueness, we can conclude that $v$ is bounded up
to $ T_{\lambda}-\epsilon$ . Therefore, $ T_{\mu}>T_{\lambda}-\epsilon$ as we wanted to prove.

Finally, let us study the asymptotic behaviour at infinity. This is the main
point of the paper.

Let $u$ be the solution of (1) and inspired by the natural scaling of the problem
we define

(3) $v_{\lambda}(x, t)=\frac{1}{\lambda}u(\lambda^{1-p}x, \lambda^{2(1-p)}t)$ .

As $u$ satisfies (1), $v_{\lambda}$ verifies

(4) $\left\{\begin{array}{l}(v_{\lambda})_{t}=(v_{\lambda})_{xx} inR_{+}\times(0,\tilde{T}_{\lambda}),\\-(v_{\lambda})_{X}(0,t)=v_{\lambda}^{p}(0,t) in(0,\tilde{T}_{\lambda}),\\v_{\lambda}(x,0)=\phi(\lambda^{l-p}x)\equiv\phi_{\lambda}(x) inR_{+}.\end{array}\right.$

where $\tilde{T}_{\lambda}=\lambda^{2(p-1)}T_{\lambda}$ .
We want to compute $\lim_{\lambda\rightarrow\infty}\tilde{T}_{\lambda}$ . For that purpose, let us define $w$ as the

solution of

(5) $\left\{\begin{array}{l}w_{f}=w_{XX} inR_{+}\times(0,T_{0}),\\-w_{X}(0,t)=w^{p}(0,t) in(0,T_{0}),\\w(x,0)=\phi(0) inR_{+},\end{array}\right.$

which is the natural ’‘limit” equation as $\phi_{\lambda}\rightarrow\phi(0)$ uniformly over compact sets
of $[0, +\infty$ ).

As $\phi(0)>0,$ $w$ blows up in finite time, $T_{0}$ (see [4]).
The Theorem will follows if we prove that

$\tilde{T}_{\lambda}\rightarrow T_{0}$ , as $\lambda\rightarrow\infty$ .

To prove this claim, let $\epsilon>0$ and take $ T^{\prime}=T_{0}-\epsilon$ . Let $M=\sup_{0<t<T^{\prime}}\Vert w(\cdot, t)\Vert_{\infty}$ .
As before, we take $g\in Lip(R)$ such that $g(s)=s^{p}$ for $s<2M$ . With this $g$ , we

define $\varphi$ the solution of the following problem,

(6) $\left\{\begin{array}{l}\varphi_{t}=\varphi_{xx} inR_{+}\times(0,T^{/}),\\-\varphi_{X}(0,t)=g(\varphi)(0,t) in(0,T),\\\varphi(x,0)=\phi_{\lambda}(x) inR_{+}.\end{array}\right.$

Observe that $\varphi=v_{\lambda}$ if $v_{\lambda}<2M$ .



218 Julian FERNANDEZ BONDER and Julio D. ROSSI

Let us see that $|w(0, t)-\varphi(0, t)|<\delta$ if $\lambda>\lambda_{0}(\delta)$ for all $t<T^{\prime}$ . For this
purpose, let us define $ z=w-\varphi$ . As $g\in Lip(R),$ $z$ verifies

(7) $\left\{\begin{array}{l}z_{f}=z_{xx} inR_{+}\times(0,T^{/}),\\-z_{X}(0,t)=g(w)(0,t)-g(\varphi)(0,t) in(0,T),\\z(x,0)=\phi(0)-\phi_{\lambda}(x) inR_{+}.\end{array}\right.$

Then we have

(8) $|z_{x}(0, t)|\leq K|z(0, t)|$ ,

where $K$ depends only on $M$.
Let $\Gamma(x, t)$ be the fundamental solution of the heat equation, namely

$\Gamma(x, t)=\frac{1}{(4\pi t)^{1/2}}\exp(-\frac{x^{2}}{4t})$ .

For $x\in R_{+}$ , by (8) we have (see [5])

(9) $ z(x, t)=\int_{R_{+}}\Gamma(x-y, t)z(y, 0)dy-\int_{0^{t}}\frac{\partial z}{\partial x}(0, \tau)\Gamma(x, t-\tau)d\tau$

$+\int_{0^{l}}\frac{\partial\Gamma}{\partial x}(x, t-\tau)z(0, \tau)d\tau$ .

Now we observe that $\Gamma$ satisfies

$\frac{\partial\Gamma}{\partial x}(0, t-\tau)=0$ , $\Gamma(0, t-\tau)=\frac{1}{2\sqrt{\pi}(t-\tau)^{1/2}}$ .

Hence, using the initial and boundary conditions we get that

$|z(0, t)|\leq\int_{R_{+}}\Gamma(-y, t)|z(y, 0)|dy+\frac{K}{2\sqrt{\pi}}\int_{0^{l}}\frac{|z(0,\tau)|}{(t-\tau)^{1/2}}d\tau$ .

Now we choose $t_{0}=t_{0}(K)$ such that

$\frac{K}{2\sqrt{\pi}}\int_{0^{l_{0}}}\frac{1}{(t_{0}-\tau)^{1/2}}d\tau\leq\frac{1}{2}$ .

Hence, for $t\in[0, t_{0}]$ we have

$\max_{[0,t_{0}]}|z(0, t)|\leq 2\max_{[0,t_{0}]}\int_{R_{+}}\Gamma(-y, t)|z(y, 0)|dy$
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We observe that for every $\delta_{1}>0$ there exists $\lambda_{1}>0$ such that

$\int_{R_{+}}\Gamma(-y, t)|z(y, 0)|dy=\int_{0^{L}}\Gamma(-y, t)|z(y, 0)|dy+\int_{L}^{+\infty}\Gamma(-y, t)|z(y, 0)|dy$

$\leq\eta\int_{0^{L}}\Gamma(-y, t)dy+C\int_{L}^{+\infty}\Gamma(-y, t)dy$

$\leq\delta_{1}$

if $\lambda>\lambda_{1}$ .
Now, choose $L$ large so that $\int_{L^{+\infty}}\Gamma(x-y, t)dy$ is small uniformly in $(x, l)\in$

$(0, L/2)\times(0, t_{0})$ , and take $\lambda_{2}>0$ such that $|z(y, 0)|<\eta$ for $y\in(O, L)$ and $\eta$

small.
With this bound on $|z(0, t)|$ we can control $z(x, t)$ for $(x, t)\in(O, L/2)\times$

$(0, t_{0})$ , in fact, from (8) and (9) we have

$|z(x, t)|\leq\int_{R_{+}}\Gamma(x-y, t)|z(y, 0)|dy+K\delta_{1}\int_{0^{t}}\Gamma(x, t-\tau)d\tau+\delta_{1}\int_{0^{l}}\frac{\partial\Gamma}{\partial x}(x, t-\tau)d\tau$

$\leq\int_{0^{L}}\Gamma(x-y, t)|z(y, 0)|dy+\int_{L}^{+\infty}\Gamma(x-y, t)|z(y, 0)|dy+C\delta_{1}$

$\leq\eta\int_{0^{L}}\Gamma(x-y, t)dy+C\int_{L}^{+\infty}\Gamma(x-y, t)dy+C\delta_{1}\leq\delta_{2}$

if $\lambda$ is big enough.
Now, as $t_{0}$ is independent of $\lambda$ , we can repeat this procedure beginning

with $z(x, t_{0})$ as initial datum to find that $|z(x, l)|<\delta_{3}$ for $(x, t)\in(O, L/4)\times$

$(t_{0},2t_{0})$ . Therefore, after a finite number of iterations we obtain that, for $\lambda$

large $(\lambda>\lambda_{0}(\delta))$

$|z(0, t)|<\delta$ for all $t<T^{\prime}$ ,

as we wanted to see.
Now, as $w(O, T‘)$ $\leq M$ and $|w(0, t)-\varphi(O, t)|<\delta$ , we have that $\varphi(0, t)<2M$

in $[0, T‘]$ . Therefore, by uniqueness, $\varphi=v_{\lambda}$ in $[0, T‘]$ . Hence $\tilde{T}_{\lambda}\geq T^{\prime}=T_{0}-\epsilon$ .
Now, take $\psi$ a compatible initial datum with compact support and $\psi_{XX}\geq 0$

such that $\psi(x)<\phi(0)$ and $\phi(0)-\psi(x)$ small enough in $(0, L)$ . From the previous
argument, it follows that the solution $\underline{w}$ of (1) with $\psi$ as initial datum verifies

$ w(0, T^{\prime})-\underline{w}(0, T^{\prime})<\delta$ .
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Hence $T(\psi)\geq T^{\prime}$ . By the assumptions on $\psi,$
$\underline{w}$ verifies (2). Then

$w(0, T^{\prime})-\delta\leq\underline{w}(0, T^{\prime})\leq\Vert\underline{w}(\cdot, T^{\prime})\Vert_{\infty}\leq C(T(\psi)-T^{\prime})^{-1/2(p-1)}$ .

Therefore it is easy to see that $ T(\psi)-T^{\prime}<\kappa$ if $\epsilon=T_{0}-T$ ‘ is small (depending
on $\kappa$). Now, choosing $\lambda$ large enough, we can obtain $\phi_{\lambda}(x)>\psi(x)$ , then $\tilde{T}_{\lambda}\leq$

$ T(\psi)<T^{\prime}+\kappa$ and hence as $ T_{0}-T^{\prime}=\epsilon$ , we conclude the desired result. $\square $
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