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0. Introduction

Let M,(c) be a 4n-dimensional quaternion space form with the metric g of
constant quaternion sectional curvature 8c. The standard models of quaternion
space forms are the quaternion projective space P,(Q),(c > 0), the quaternion
space Q,(c =0) and the quaternion hyperbolic space H,(Q),(c < 0). Let M be
a connected real hypersurface in M,(c) with the induced metric.

In particular in [9], J. S. Pak characterized real hypersurfaces in P,(Q) in
terms of the second fundamental form.

When we give a Riemannian manifold and its submanifold, the rank of
determined second fundamental form is called the type number.

B. Y. Chen and T. Nagano ([2]) investigated totally geodesic submanifolds
in Riemannian symmetric spaces, and as one of their results the following holds

THEOREM A ([2]). Spheres and hyperbolic spaces are only simply connected
irreducible symmetric spaces admitting a totally geodesic hypersurface.

Then it will be an interesting problem to study the type number ¢ of real
hypersurfaces in simply connected irreducible symmetric spaces excepted for
spheres and hyperbolic spaces.

As a partial answer, it is known that there exists a point such that #(p) > 2 in
any real hypersurface in complex space form with nonzero constant holomorphic
sectional curvature and complex dimension >3 (cf. [8], [10]). Naturally we can
consider the following question.

Does M,(c) satisfy the similar fact?

We answer this question affirmatively, i.e., we shall prove the following
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MAIN THEOREM. Let M be a connected real hypersurfaces in M,(c) (¢ # 0,
n>?2). Then there exists a point p in M such that t(p) > 2.

1. Preliminaries

A quaternion Kihler manifold is a Riemannian manifold (M,g) on which
there exists a 3-dimensional vector bundle V of tensors of type (1,1) satisfying
the following properties:

(1) In any open set W in M, there is a local base {J;(i =1,2,3)} of ¥ such
that

(1.1) Jr =1,

(1.2) JiJiz1 = Jiza = =Jiptdi (imod 3),

where I denotes the identity endmorophism.

Such a local base {J;(i=1,2,3)} is called a canonical local base of the
bundle V in W.

(2) There is a Riemannian metric g on M such that

for any X, Y € X(W), where X(W) is the set of all vector fields on W.

(3) The Levi-Civita connection D on M satisfies following conditions: If
{Ji(i=1,2,3)} is a canonical local base of ¥V in W, then there exists three local
1-forms p; (i=1,2,3) on M such that

(1.4) DxJi = pipa(X)iz1 — pig(X)Jiz2 (i mod 3),

for all X € X(M).

Let Q(X) be the 4-plane spanned by vectors X,/ X, JoX and J3X, for any
X e T.M, x € M. If the sectional curvature of any section for Q(X) depends only
on X, we call it Q-sectional curvature.

A quaternion space form of Q-sectional curvature 8¢ is connected quaternion
Kahler manifold with constant Q-sectional curvature 8¢, which denotes by M,(c).

Let M be a real hypersurface in M,(c) (n = 2,c #0). In a neighborhood of
each point, we choose a unit normal vector field N in M,(c). The Levi-Civita
connection D in M,(c) and V in M are related by the following formulas for any
X,Y e X(M):

(1.5) DxY =VyY + (AX, YN,
(1.6) DyN = —AX,
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where <, ) denotes the Riemannian metric on M induced from the metric g on
M,(c) and A is the shape operator of M.

It is known that M has an almost contact metric structure induced from the
quaternion structure J; on M,(c¢), i.e., we define a tensor ¢, of type (1, 1), a vector
field & and a 1-form 5, on M by the following,

(1.7) (X, Y>=9g(JiX,Y), <& X)=n(X)=g(JiX,N).
Then from we have

(1.8) <X, Y)+<X,4,Y)> =0, <$X,$,Y)=(X,Y)—n(X)n(Y),

(1.9) &1 = Epa = —$in & (imod 3).
From [1.3), we obtain

(1.10) $=—T+n,®& n&) =1, ¢& =0,
(1.11) 7;(&iv1) = 1:(Si2) =0 (i mod 3),

(1.12) ¢ = Gir1Pir2 — N2 ® Sin1 = P2y + 11 ®iy2 (imod 3).
Furthermore from and (1.7), we get
(1.13) (Vx$)Y = pi1(X)inY — piya(X)4in Y

+7,(Y)AX — {AX,Y»¢ (i mod 3).

In terms of we have the following Codazzi equation

3
(VxA)Y — (Vy )X =c Y :(X)$Y — n(Y)$:X — 2{$; X, Y &).
i=1

2. Formulas

We assume that the rank of A4 is not larger than m on an open set W, then
there exists an open set W, such that ¢ takes the constant m. Then the Codazzi
equation gives

(21) —A(VxY —VyX) = (VxA)Y — (VyA)X

3
=cY (m(X)$Y — (V)X — 2{¢;X, Y)&D),
i=1

for any vector fields X, Y e ker 4|y, .
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Taking the inner product of (2.1) with Z € ker 4|y, , from and ¢ # 0, we
have

3
(22) 0= (m(X)<$Y,Z) +n(Y)X$,Z,X) = 2(Z)<: X, YD)
i=1

Putting Z = X in (2.2), we obtain

3

(23) D m(X)4Y, Xy =0.

i=1

3. Proof of the Main theorem

Since Theorem A, we get m > 1. Suppose that m = 1. Let 4 be the nonzero
principal curvature with principal subspace T;. Choose a local orthonormal frame
field U,e,,...,es—» on M such that ey,...,es4_2 1S In kerA|WO and UeT;. We
use the following convention on the range of indices otherwise stated: r,s,... =
1,...,4n— 2.

Putting Z =e¢, in (2.2), we get

3
(3.1) Z(’?i(X)<¢iYa ery —Ni(Y){$:X,e,> — 2{$;X, Y n,(e;)) = 0.
i=1

LEMMA. There exists a number i such that n,(U) # 0.

ProoF. We assume that
(3.2) n:(U) =0,

for any number i. Then multiplying (3.1) by {¢;U,e,> and summing up for r,
since (1.8)~(1.12) and we have

— i1 (X)) Y, UD + 1,1 (Y)<di X, UD
+ ’71‘+2(X)<¢i+1 Y, U) - '7i+2(Y)<¢i+lX’ U)>=0 (imod3).

Putting X = e, in above equation and summing up for r, from (1.9)~(1.11) and

we obtain
<¢i Ua Y> = 01

together with equation {(¢;U,U) =0, we get
(3.3) $;U =0.
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Putting X = U and Y =¢; in and taking the inner product with U, then
using (1.10), {3.2) and 3.3) we get 4 =0, which is a contradiction. O

On the other hand, implies

3
(3.4) Z ni(X)<pier, X = 0.
i=1

Multiplying (3.1) by <4;U,e,> and summing up for r, from [1.9), (1.10), (1.12)
and equation ) . <¢;U,e e, = ¢,;U, we get

3
1:(U) > 12 (X) + 01 (X)U, 410X = 1,(X)CU, 41 X > =0 (imod 3).
Jj=1

Putting X = e, in above equation and summing up for r, by we have

U)(z,,,(z) ) 0

According to above equation implies

(3.5) \i n? (Z e,) =

J=1

Multiplying by #;(e,) and summing up for r, then using [1.9), and
we have

3

(3.6) D (XU, ;X5 =0.

J=1

Again multiplying by {#,X,e,> and summing up for r and since (1.8), (1.12)
and (3.6) we obtain

(3.7) n:(X) (IIXH Zn, )

Suppose that #,(X) = 0 for any number i. Then we observe #,(¢;) =#,(U) = 1.
This implies &; = U for any number i, which is a contradiction. Thus by we
get

3
Y omX) = | X|*.
j=1
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Putting X = e, in above equation and summing up for r, we have

an(Zer) =4n — 2,

J=1

which contradicts (3.5).
It completes the proof of Main Theorem.

REMARK (ADDED IN ProoF). J. E. D’Atri [3], J. Berndt [1] and A. Martinez
[6] gave some examples of real hypersurfaces in M,(c),c # 0. In case M,(c) is
H,(Q), the type number of these examples is maximum. In case M,(c) is P2(Q),
there is an example of 1 = 4 in the above. However, we don’t know an example
of real hypersurface in M,(c), ¢ # 0 such that ¢ = 2.
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