
TSUKUBA J MATH.
Vol. 23 No. 3 (1999), 505-528

ON EQUATIONS OF THE TYPE $Au=g(x,u,Du)$ WITH
DEGENERATE AND NONLINEAR BOUNDARY

CONDITIONS

By

Thomas RUNST and Yavdat IL’YASOV

1. Introduction and Main Results

Let $\Omega\subset R^{n}$ be a bounded domain with $C^{\infty}$ boundary $\partial\Omega$ . Let

Au $(x)=-\sum_{i=1}^{n}\frac{\partial}{\partial x_{i}}(\sum_{j=1}^{n}a_{ij}(x)\frac{\partial u}{\partial x_{j}}(x))+c(x)u(x)$

be a second order elliptic differential operator with real $C^{\infty}$ functions $a_{ij},$ $c$ on $\overline{\Omega}$

satisfying the following properties:

(p1) $a_{ij}(x)=a_{ji}(x),$ $i,j=1,$
$\ldots,$

$n,$
$x\in\overline{\Omega}$ .

(p2) There exists a positive constant $C_{0}$ such that for all $x\in\overline{\Omega}$ and all $\xi\in R^{n}$

$\sum_{i,j=1}^{n}a_{ij}(x)\xi_{i}\xi_{j}\geq C_{0}|\xi|^{2}$ .

(p3) $c(x)\geq 0$ in $\overline{\Omega}$ .

Let $Du$ be the gradient of $u$ . We consider the following class of degenerate
boundary value problems for semilinear second order elliptic differential operators

(P) $Au=g(x, u, Du)$ in $\Omega$ , $ Bu=a\frac{\partial u}{\partial v}+bu=\varphi$ on $\partial\Omega$

in the framework of Sobolev spaces $W_{p}^{2}(\Omega)$ with $p>n$ , where $B$ is a degenerate
boundary operator. Let us remark that

$W_{p}^{2}(\Omega)\rightarrow C^{1}(\overline{\Omega})$ if $p>n$ ,

where $-\nu$ denotes the continuous embedding. Here:
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(p4) $a$ and $b$ are real-valued $C^{\infty}$ functions defined on $\partial\Omega$ .

(p5) $\partial/\partial v=\sum_{i,j=1}^{n}a_{ij}n_{j}(\partial/\partial x_{j})$ is the conormal derivative corresponding with
the operator $A$ , where $n=(n_{1}, \ldots,n_{n})$ is the unit exterior normal to the
boundary $\partial\Omega$ .

Note that (P) is nondegenerate (or coercive) if and only if either $a\neq 0$ on $\partial\Omega$ or
$a\equiv 0$ and $b\neq 0$ on $\partial\Omega$ . If $a\equiv 1$ and $b\equiv 0$ , then we have the Neumann problem.
The case when $a\equiv 0$ and $b\equiv 1$ hold coincides with the Dirichlet problem.
Furthermore, if $a(x^{\prime})\neq 0$ on $\partial\Omega$ , then we get the third boundary problem (or
Robin problem). We remark that the so-called Lopatinskij-Shapiro comple-
mentary condition does not hold at the points $ x^{\prime}\in\partial\Omega$ with $a(x^{\prime})=0$ . The main
theorem for elliptic boundary value problems, see Wloka [23, Hauptsatz 13.1],
implies that the ellipticity of a differential operator and the Lopatinskij-Shapiro
condition are equivalent to the Fredholm property of a boundary value prob-
lem if one uses spaces of Besov type $B_{p,p}^{s-1/p}(\partial\Omega)$ for the description of the
boundary operator $B$ . To overcome these difficulties one introduces a subspace of
$B_{p,p}^{1-1/p}(\partial\Omega)$ which is associated to our degenerate boundary operator. For more
details, we refer to Taira [19] and Runst [14].

We make the following three assumptions $(H1)-(H3)$ :

(H1) $a(x^{\prime})\geq 0$ and $b(x^{\prime})\geq 0$ on $\partial\Omega$ .

(H2) $b(x^{\prime})>0$ on $\Sigma=\{x^{\prime}\in\partial\Omega : a(x^{\prime})=0\}$ .

(H3) $c(x)\geq 0$ in $\Omega,$ $c\not\equiv O$ in $\Omega$ .

Problem (P) with homogeneous nondegenerate boundary conditions has been
studied by Amann [2], Amann and Crandall [3] and Kazdan and Kramer [6]. In
these papers, it is assumed that the nonlinear function $g(x, \xi, \eta)$ is continuous with
respect to all of its variables and grows at most quadratically in $\eta$ , i.e., one
assumes that there exists a nonnegative and increasing function $ d:[0, \infty$ ) $\rightarrow R$

such that the Bemstein condition (cf. Bemstein [4], Nagumo [10]) holds:

(1) $|g(x, \xi, \eta)|\leq d(|\xi|)(1+|\eta|^{2})$ for all $(x, \xi, \eta)\in\overline{\Omega}\times R\times R^{n}$ .

In this case, condition (1) is sufficient to obtain an a priori estimate of $\Vert u|L_{\infty}\Vert$

which generates an a priori estimate of $\Vert Du|L_{\infty}\Vert$ , and finally an estimate of
$\Vert u|W_{p}^{2}\Vert$ for the solution $u$ . We remark that if $g$ grows faster than quadratically in

$\eta$ , then Serrin [18] has proved that there are smooth data for which the Dirichlet
boundary value problem has no solution. Furthermore, we refer also to the
counterexamples given in Section 4.
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In the above-mentioned papers, it was shown the existence of solutions in the
Sobolev space $W_{p}^{2}(\Omega),$ $p>n$ , provided that suitable sub-and supersolutions are
known. In [6], the authors have given conditions of Landesman-Lazer type which
imply the existence of sub- and supersolutions for a semilinear elliptic boundary
problem of type (P) under homogeneous Dirichlet boundary condition. In a paper
by Inkmann [5], existence and multiplicity results for (P) with nonlinear boundary
condition

$Bu=\frac{\partial u}{\partial v}=f(x, u)$ on $\partial\Omega$

have been proved.
A survey of existence and multiplicity $re$sults for nonlinear coupled systems of

the type (P) with inhomogeneous degenerate and nonlinear boundary conditions
may be found in Schmitt [17] in the framework of H\"older space $C^{2+\alpha}(\overline{\Omega})$ for
some $\alpha\in(0,1)$ . In this paper, the conditions imposed on the function $g(x, \xi, \eta)$

(which also satisfies (1)) are of geometrical nature, in the sense that a nonempty
bounded open convex set $M$ in $\xi$-space exists such that the vector field $g(x, \cdot, \eta)$ is
always outwardly directed on $\partial M$ for all $x\in\overline{\Omega}$ and certain values of $\eta$ . We refer
to [17, Theorem 2.3.]. In this paper, it was shown that from these conditions one
can derive sub- and supersolution type results.

In a recent paper by Taira [21], the author extended the results obtained
by Amann and Crandall [3] to the case of degenerate boundary conditions. He
used essentially the same approach as that of Amann and Crandall [3] to prove
existence and uniqueness theorems in the framework of Sobolev spaces $W_{p}^{2}(\Omega)$ ,

$p>n$ .
On the other side, Pohozaev [11] considered the nonlinear problem

(2) $\Delta u=g(x, u, Du)$ in $\Omega$ , $ u=\varphi$ on $\partial\Omega$ .

He extended the condition (1) in the following way: Assume that the nonlinear
function $g$ belongs only to $L_{p}(\Omega)$ for any arbitrarily fixed $u\in W_{p}^{2}(\Omega),$ $p>n$ . In
this case, condition (1) is not longer sufficient for the proof of an a priori estimate
of $\Vert Du|L_{\infty}$ I for the solution $u$ of (2), if one has an a priori estimate of $\Vert u|L_{\infty}\Vert$ . It
was shown there that the following assumptions on $g$ imply an a priori estimate
of $\Vert Du|L_{\infty}\Vert$ for the solution $u$ of (2) from an a priori estimate of $\Vert u|L_{\infty}\Vert$ :

(H4) Let $g(x, \xi, \eta):\Omega\times R\times R^{n}\rightarrow R$ satisfy the Caratheodory condition: $g$ is
measurable with respect to $x$ for all $(\xi, \eta)\in R\times R^{n}$ and continuous with
respect to $(\xi, \eta)$ for almost all $ x\in\Omega$ .



508 Thomas RUNST and Yavdat IL’YASOV

(H5) Let the growth condition

(3) $|g(x, \xi, \eta)|<b(x, \xi)(1+|\eta|^{\mu})$

be fulfiled with $\mu=2-n/p$ for almost all $ x\in\Omega$ and all $(\xi, \eta)\in R\times R^{n}$ ,
where the function $b(x, \xi)$ satisfies also the Caratheodory condition, and
such that for any fixed $c>0$

$\sup_{|\xi|<c}b(\cdot, \xi)\in L_{p}(\Omega)$
.

Note that (3) coincides with (1) in the special case $ p=\infty$ .
One of the aims of this paper is to prove that one can extend the results

of [11] to degenerate and nonlinear boundary operators. With respect to the
mentioned papers of Amann and Crandall [3], Taira [21], etc., we suppose weaker
smoothness assumptions on the function $g$ in the sense of [11], and we can also
consider inhomogeneous and nonlinear boundary conditions. The investigations
of such problems are motivated by nonlinear diffusion processes, see e.g. Keller
[7] and Schmitt [17].

We use the following notations.
A function $u\in W_{p}^{2}(\Omega),$ $p>n$ , is a solution of (P) if

$Au=g(x, u, Du)$ a.e. in $\Omega$ , $ Bu=\varphi$ on $\partial\Omega$ .

A function $u_{+}\in W_{p}^{2}(\Omega)$ is called a supersolution of problem (P) if it satisfies the
condition

$Au_{+}\geq g(x, u_{+}, Du_{+})$ a.e. in $\Omega$ , $ Bu_{+}=\varphi$ on $\partial\Omega$ .

Similarly, a function $u_{-}\in W_{p}^{2}(\Omega)$ is called a subsolution of problem (P) if it
satisfies the condition

$Au-\leq g(x, u_{-}, Du_{-})$ a.e. in $\Omega$ , $ Bu_{-}=\varphi$ on $\partial\Omega$ .

Now we can formulate our existence result. We remark that the definition of the
function spaces of type $B_{p,p}^{*,1-1/p}(\partial\Omega)$ will be given in the next section.

THEOREM 1. Suppose that $(H1)-(H3)$ are fulfiled, and that $g$ satisfies the
conditions (H4), (H5), and a Lipschitz condition given by

(H6) it holds

(4) $|g(x, \xi, \eta_{1})-g(x, \xi, \eta_{2})|\leq b_{1}(x, \xi, \eta_{1}, \eta_{2})\cdot|\eta_{1}-\eta_{2}|$
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for almost all $ x\in\Omega$ and all $(\xi,\eta_{1}, \eta_{2})\in R\times R^{n}\times R^{n}$ , where the function
$b_{1}(x, \xi, \eta_{1}, \eta_{2})$ satisfies the Caratheodory condition, and for any fixed $c>0$

$\sup\{b_{1}(\cdot, \xi, \eta_{1}, \eta_{2}) : |\xi|<c, |\eta_{1}|<c, |\eta_{2}<c\}\in L_{p}(\Omega)$ ,

for some $p>n$ .

Let $\varphi\in B_{p,p}^{*,1-1/p}(\partial\Omega)$ . If there exist a subsolution $u_{-}$ and a supersolution $u_{+}$ in
$W_{p}^{2}(\Omega)$ of (P) with $u_{-}\leq u_{+}$ in $\overline{\Omega}$ , then (P) has a solution $u\in W_{p}^{2}(\Omega)$ such that
$u_{-}\leq u\leq u_{+}$ in $\overline{\Omega}$ .

The following uniqueness theorem is a generalization and an improvement of
[21, Theorem 2].

THEOREM 2. Suppose that $(H1)-(H5)$ are satisfied for some $p>n$ . Let
$\varphi\in B_{p,p}^{*,1-1/p}(\partial\Omega)$ . If $g(x, \xi, \eta)$ is strictly decreasing with respect to $\xi$ for almost all
$ x\in\Omega$ and all $\eta\in R^{n}$ , then (P) has at most one solution $u\in W_{p}^{2}(\Omega)$ .

Finally, we apply Theorem 1 and Theorem 2 to prove the existence and the
uniqueness of the solution for special classes of nonlinear boundary conditions.

THEOREM 3. Let all assumption of Theorem 1 be satisfied. Further, let
$\gamma(x^{\prime}, \xi):\partial\Omega\times R\rightarrow R$ be a smooth function. Assume that

(5) $\frac{\partial\gamma}{\partial\xi}(x^{\prime}, \xi)\geq 0$ for all $(x^{\prime}, \xi)\in\partial\Omega\times R$

and

(6) $\gamma(x^{\prime}, 0)=0$ for all $ x^{\prime}\in\partial\Omega$ .

(a) If there exist a subsolution u-and a supersolution $u_{+}$ in $W_{p}^{2}(\Omega)$ ofproblem

(7) $Au=g(x, u, Du)$ in $\Omega$ , $ B_{\gamma}u=\frac{\partial u}{\partial v}+\gamma(x^{\prime}, u)=\varphi$ on $\partial\Omega$

with $u_{-}\leq u_{+}$ in $\overline{\Omega}$ , then (7) has a solution $u\in W_{p}^{2}(\Omega)$ such that $u_{-}\leq u\leq u_{+}$ in $\overline{\Omega}$ .
(b) If $g(x, \xi, \eta)$ is stric $tly$ decreasing with respect to $\xi$ for almost all $ x\in\Omega$ and

all $\eta\in R^{n}$ , then (7) has at most one solution $u\in W_{p}^{2}(\Omega)$ .

The paper is organized in the following way. In Section 2, an existence and
uniqueness theorem for the corresponding linearized boundary value problem is
given. The next section deals with an a priori estimate $\Vert u|W_{p}^{2}\Vert$ for the solution $u$

of (P). In Section 4, we prove Theorems 1-3. These results follow from a priori
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estimates, a generalization of Aleksandrov’s maximum principle, see Aleksandrov
[1], to degenerate boundary conditions and Leray-Schauder degree arguments.

2. Linear Theory

Let $\Omega\subset R^{n}$ be a bounded and smooth domain with boundary $\partial\Omega$ . Fur-
thermore, let $(A, B)$ have the same meaning as before. At first we consider the
corresponding linearized boundary problem

(1) $Au=f$ in $\Omega$ , $ Bu=\varphi$ on $\partial\Omega$

in the framework of Sobolev spaces.
Suppose that $ 1<p<\infty$ . If $k=1,2,$ $\ldots$ , then the Sobolev space $W_{p}^{k}(\Omega)$ is

defined by

$W_{p}^{k}(\Omega)=\{u\in L_{p}(\Omega)$ : $\Vert u|W_{p}^{k}\Vert=\sum_{|\alpha|\leq k}\Vert D^{\alpha}u|L_{p}(\Omega)\Vert<\infty\}$ .

Let $B_{p,p}^{k-1/p}(\partial\Omega)$ be the Besov space of all boundary function $\varphi$ of functions
$u\in W_{p^{k}}(\Omega)$ (in the sense of traces) equipped with the norm

$\Vert\varphi|B_{p,p}^{k-1/p}\Vert=\inf$ { $\Vert u|W_{p}^{k}\Vert$ : $u\in W_{p}^{k}(\Omega)$ with $ u_{|\partial\Omega}=\varphi$ }.

We introduce a subspace of $B_{p,p}^{1-1/p}(\partial\Omega)$ which is associated to our boundary
operator $B$ : Let

$B_{p,p}^{*,1-1/p}(\partial\Omega)=\{\varphi=a\varphi_{1}+b\varphi_{2} : \varphi_{1}\in B_{p,p}^{1-1/p}(\partial\Omega), \varphi_{2}\in B_{p,p}^{2-1/p}(\partial\Omega)\}$ ,

and the norm is given by

$\Vert\varphi|B_{p,p}^{*,1-1/p}\Vert=\inf\{\Vert\varphi_{1}|B_{p,p}^{1-1/p}\Vert+\Vert\varphi_{2}|B_{p,p}^{2-1/p}\Vert : \varphi=a\varphi_{1}+b\varphi_{2}\}$ .

REMARK. It is not hard to check that $B_{p,p}^{*,1-1/p}(\partial\Omega)$ becomes a Banach space.
We remark that $B_{p,p}^{*,1-1/p}(\partial\Omega)=B_{p,p}^{2-1/p}(\partial\Omega)$ if $a\equiv 0$ on $\partial\Omega$ and
$B_{p,p}^{*,1-1/p}(\partial\Omega)=B_{p,p}^{1-1/p}(\partial\Omega)$ if $a>0$ on $\partial\Omega$ . In this sense, the space $B_{p,p}^{*,1-1/p}(\partial\Omega)$

can be considered as a interpolation space with respect to our boundary operator $B$ .
Now the following existence and uniqueness result for problem (1) holds (see

[19, Theorem 1], [14]):

PROPOSITION 1. Let $(H1)-(H3)$ be satisfied Then the map

$(A, B)$ : $W_{p}^{2}(\Omega)\rightarrow L_{p}(\Omega)\times B_{p,p}^{*,1-1/p}(\partial\Omega)$

is an algebraic and topological isomorphism for all $p,$ $ 1<p<\infty$ .
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We remark that this result was proved in [14] in the more general framework
of the two scales of function spaces of $Besov-Triebel$-Lizorkin type.

For our further investigations, the following maximum principle due to
Aleksandrov [1, Theorem 2] will become important. We formulate a special result
which is sufficient for our considerations. Hereby the notation $\geq$ is used in the
sense of distributions, i.e., a distribution $f\in D^{\prime}(\Omega)$ is said to be non-negative
$(f\geq 0)$ if and only if $f(\varphi)\geq 0$ for any test function $\varphi\in D(\Omega)$ with $\varphi\geq 0$ .

LEMMA 1. Let $a_{1},$
$\ldots,$

$a_{n}$ and $a_{0}$ be function in $L_{n}(\Omega)$ such that $a_{0}\geq 0$ in $\Omega$ .
Suppose that $u\in W_{n}^{2}(\Omega)$ satisfies

$Au+\sum_{j=1}^{n}a_{j}\frac{\partial u}{\partial x_{j}}+a_{0}u\leq 0$ $a.e$ . in $\Omega$ .

Then $u$ does not take its positive maximum in $\Omega$ if it is not a constant function.

Using this lemma we are able to show the following assertion. The subset $\Sigma$

has the same meaning as in (H2).

LEMMA 2. Let $a_{1},$
$\ldots,$

$a_{n}$ and $a_{0}$ be functions in $L_{n}(\Omega)$ such that $a_{0}\geq 0$ in $\Omega$ .
If a function $u\in W_{p}^{2}(\Omega),$ $p>n$ , satisfies

$Au+\sum_{j=1}^{n}a_{j^{\frac{\partial u}{\partial x_{j}}}}+a_{0}u\geq 0$ $a.e$ . in $\Omega$ ,

then $u\geq 0$ in $\Omega$ .
Further, $\iota fu\not\equiv O$ in $\Omega$ satisfies the boundary conditions

$Bu=a\frac{\partial u}{\partial v}+bu=0$ on $\partial\Omega$ ,

then it holds

$u>0$ in $\overline{\Omega}\backslash \Sigma$ , $u=0$ on $\Sigma$ and $\frac{\partial u}{\partial v}<0$ on $\Sigma$ .

PROOF. Note that an application of Lemma 1 to $-u$ shows

$u\geq 0$ in $\Omega$ .

Now we assume that $u\not\equiv O$ . If there is a point $ x_{0}\in\Omega$ with $u(x_{0})=0$ , then
Lemma 1, see also [1, Theorem 2(I)], imply that $u\equiv 0$ in $\Omega$ . Hence we obtain
$u>0$ in $\Omega$ .
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If there is a point $ y_{0}\in\partial\Omega$ with $u(y_{0})=0$ , then it follows from the boundary
point lemma (see [12, Section 2.3, Theorem 8]) that $\partial u/\partial v(y_{0})<0$ . Furthermore,

we have

$Bu(y_{0})=a(y_{0})\frac{\partial u}{\partial v}(y_{0})=0$ .

This implies that $ y_{0}\in\Sigma$ .
Conversely, if $ y_{0}\in\Sigma$ , then we have by (H2) that $b(y_{0})>0$ . Therefore,

$Bu(y_{0})=b(y_{0})u(y_{0})=0$

implies $u(y_{0})=0$ . We have proved $u(y_{0})=0$ if and only if $ y_{0}\in\Sigma$ , and
$\partial u/\partial v(y_{0})<0$ on $\Sigma$ . The proof is finished. $\blacksquare$

Further, we apply the following mapping property of the nonlinear Nemytskij
operator

$T_{\gamma}(u)$ : $x\mapsto\gamma(x, u(x))$ ,

see [16, Section 5.3, Subsection 5.5.2]. We remark that for $p>n$ we have the
continuous embedding

$B_{p,p}^{1-1/p}(\partial\Omega)\rightarrow C(\partial\Omega)$ .

PROPOSITION 2. Let $\gamma(x^{\prime}, \xi)$ be a smooth function with respect to $ X^{\prime}\in\partial\Omega$

and $\xi\in R$ . Let $p>n$ and $u\in B_{p,p}^{1-1/p}(\partial\Omega)$ . Then there exists a constant $c_{\gamma}>0$ ,

independent of $u$, such that

(2) $\Vert\gamma(\cdot, u)|B_{p,p}^{1-1/p}(\partial\Omega)\Vert\leq c_{\gamma}\Vert u|B_{p,p}^{1-1/p}(\partial\Omega)\Vert(1+\Vert u|L_{\infty}(\partial\Omega)\Vert)$ .

Furthermore, the map $u\rightarrow\gamma(\cdot, u(\cdot))$ is continuous from $B_{p,p}^{1-1/p}(\partial\Omega)$ into $B_{p,p}^{1-1/p}(\partial\Omega)$ .

We emphasize that the above results hold also under weaker smoothness
conditions on the coefficients $a_{ij}$ of the differential operator A and on the
coefficients $a$ and $b$ of the boundary operator $B$ , respectively. For example,
Lemma 2 holds for $a_{i_{\dot{j}}}\in C^{1}(\overline{\Omega}),$ $a\in C^{1+\alpha}(\partial\Omega)$ and $b\in C^{2+\alpha}(\partial\Omega),$ $\alpha>0$ .

Furthermore, for the proof of Proposition 1 one uses mapping properties of
pseudo-differential operators which remain true if $a$ and $b$ are sufficiently smooth,

see for example Marschall [9]. Finally, we remark that Proposition 2 is true if the
function $\gamma$ belongs to the Lipschitz space Lip $\mu,$ $\mu>2$ , see $e.g$ . $[13]$ and [16,

Subsection 5.3.4, Theorem 2; Subsection 5.5.2, Theorem 3].
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3. A Priori Estimate

Recall that $g(x, \xi, \eta)$ satisfies the Caratheodory condition, see (H4), and the
growth condition (H5). Let $p>n$ . Hence the nonlinear Nemytskij operator

$T_{g}(u)$ : $x\mapsto g(x, u(x),$ $Du(x))$

is defined on $W_{p}^{2}(\Omega),$ $p>n$ , and is a continuous operator from $W_{p}^{2}(\Omega)$ into
$L_{p}(\Omega)$ , see Krasnoselskij [8]. We start with the a priori estimate for the solutions
of (P). Let $b(x, \xi)$ have the same meaning as in (H5). Hence $b(x, \xi)>0$ for
almost all $(x, \xi)\in R\times R^{n}$ .

PROPOSITION. Let $(H1)-(H5)$ be satisfied for some $p>n$ . Let

$b_{M}(x)=\sup\{b(x, \xi) : |\xi|\leq M\}$ .

Then there exists a function $\psi$ : $[0, \infty]\times[0, \infty]\times[0, \infty]\rightarrow[0, \infty]$ , bounded on every
compact set, such that for any solution $u\in W_{p}^{2}(\Omega),$ $p>n$ , of the problem (P) it
holds that

(1) $\Vert u|W_{p}^{2}\Vert\leq\psi(M, \Vert b_{M}|L_{p}\Vert, \Vert\varphi|B_{p,p}^{*1-1/p})\Vert)$ ,

provided $\Vert u|L_{\infty}\Vert\leq M$ .

PROOF. Let $u\in W_{p}^{2}(\Omega)$ be a solution of (P) and $\mu=2-n/p$ , see (H5). Then
it holds

$Au=g(x, u, Du)=\frac{g(x,u,Du)}{1+|Du|^{\mu}}(1+|Du|^{\mu})$ .

Hence the function $u$ satisfies

(2) $Au+b_{M}(x)u=g_{1}(x)|Du|^{\mu}+g0(x)$ in $\Omega$ , $ Bu=\varphi$ on $\partial\Omega$ ,

where

$b_{M}(x)>0$ , $g1(x)=\frac{g(x,u,Du)}{1+|Du(x)|^{\mu}}$ , go $(x)=gl(x)+b_{M}(x)u(x)$ .

The following method of using a parameter $t$ has been applied by many authors.
We refer to Amann and Crandall [3] and Taira [21]. We use arguments going
back to Pohozaev [11].
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Let $t\in[0,1]$ . Then we consider the family of parameterized problems

(Pt) $Au+b_{M}(x)u=g1(x)|Du|^{\mu}+tg0(x)$ in $\Omega$ , $ Bu=a\frac{\partial u}{\partial v}+bu=t\varphi$ on $\partial\Omega$

in the framework of Sobolev spaces $W_{p}^{2}(\Omega)$ with $p>n$ .
We shall show that for fixed $t\in[0,1]$ problem $(P_{t})$ has at most one solution.

This implies that the solution of $(P_{t})$ with $t=1$ coincides with the solution of the
original problem (P).

Let $0\leq t_{1}\leq t_{2}\leq 1$ . We assume that $v\in W_{p}^{2}(\Omega)$ is a solution of $(P_{t_{1}})$ and
$z\in W_{p}^{2}(\Omega)$ is a solution of $(P_{t_{2}})$ . Hence $w=z-v$ solves

(3) $Aw+b_{M}(x)w=g_{1}(x)\sum_{i=1}^{n}h_{i}(x)\frac{\partial w}{\partial x_{i}}$

$+(t_{2}-t_{1})$go $(x)$ in $\Omega$ , $ Bw=(t_{2}-t_{1})\varphi$ on $\partial\Omega$ .

The function $h_{i},$ $i=1,$ $\ldots,n$ , are given by

(4) $ h_{j}(x)=\int_{0^{1}}H_{j}(x, \tau)d\tau$

with

(5) $H_{i}(x, \tau)=\mu[\sum_{k=1}^{n}(\tau\frac{\partial w}{\partial x_{k}}+\frac{\partial v}{\partial x_{k}})^{2}]^{-1+\mu/2}(\tau\frac{\partial w}{\partial x_{i}}+\frac{\partial v}{\partial x_{i}})(x)$

if

(6) $\sum_{k=1}^{n}(\tau\frac{\partial w}{\partial x_{k}}+\frac{\partial v}{\partial x_{k}})^{2}(x)\neq 0$ ,

and

(7) $H_{j}(x, \tau)=0$

otherwise.
Now we set $K=(t_{2}-t_{1})(1+\Vert u|L_{\infty}\Vert)$ .

LEMMA 1. Let $0\leq t_{1}\leq t_{2}\leq 1$ be fixed Then

(8) $\Vert w|L_{\infty}\Vert\leq(t_{2}-t_{1})(1+\Vert u|L_{\infty}\Vert)$ .



On equations of the type $Au=g(x, u, Du)$ 515

PROOF. Note that $w+K$ is a solution of

$A(w+K)+b_{M}(x)(w+K)=g1(x)\sum_{i=1}^{n}h_{j}(x)\frac{\partial(w+K)}{\partial x_{i}}$

$+(t_{2}-t_{1})go(x)+b_{M}(x)K+c(x)K$ in $\Omega$ ,

$B(w+K)=(t_{2}-t_{1})\varphi+bK$ on $\partial\Omega$ .

Now we apply the arguments of Pohozaev [11]. By our assumptions, we have
$c(x)\geq 0,$ $b_{M}(x)>0,$ $b_{M}\in L_{p}(\Omega),$ $g1\in L_{np/(p-n)}(\Omega)$ and $h_{i}\in L_{p}(\Omega),$ $i=1,$

$\ldots,$
$n$ ,

with $p>n$ . Hence the assumptions of Lemma 2 in Section 2 are satisfied.
Furthermore, it holds by the definition of $b_{M},$ $g_{0}$ and (H5) that

$(t_{2}-t_{1})g_{0}(x)+b_{M}(x)K+c(x)K\geq 0$ in $\Omega$ .

Hence Lemma 2 in Section 2 yields $w+K\geq 0$ in $\Omega$ . Similarly one shows $w\leq K$

in $\Omega$ . The proof of Lemma 1 is finished. $\blacksquare$

In order to continue the proof of our proposition we need the uniqueness of
the solution of $(P_{t})$ . This is an easy consequence of Lemma 1, see (8) with $t_{1}=t_{2}$ .

LEMMA 2. Let $t\in[0,1]$ be fixed, and let $p>n$ . Then $(P_{t})$ has at most one
solution $u\in W_{p}^{2}(\Omega)$ .

CONTINUATION OF THE $PR\infty F$ OF PROPOSITION. Let $w=z-v$ be defined as in
Lemma 1. Hence $w$ is a solution of

(9) $Aw+b_{M}(x)w=g_{1}(x)$ ( $|$ DZ $|^{\mu}-|Dv|^{\mu}$ ) $+(t_{2}-t_{1})go(x)$ in $\Omega$ ,

$ Bw=(t_{2}-t_{1})\varphi$ on $\partial\Omega$ .

Now Proposition 1 in Section 2 yields

(10) $\Vert w|W_{p}^{2}\Vert\leq C(\Vert Aw+b_{M}w|L_{p}\Vert+\Vert\varphi|B_{p,p}^{*,1-1/p}\Vert)$ .

Note that the constant $C$ depends only on $A,$ $\Omega,$ $n,$ $p$ and $\Vert b_{M}|L_{p}\Vert$ .
Let $1/2<\theta=1/\mu<1$ . An application of the Gagliardo-Nirenberg in-

equality, see Zeidler [24, Appendix $(54b)$ ] and [16, Subsection 5.2.5], yields

(11) $\Vert Dw|L_{\infty}\Vert\leq C_{1}\Vert w|W_{p}^{2}\Vert^{\theta}\Vert w|L_{\infty}\Vert^{1-\theta}$

holds for $w\in W_{p}^{2}(\Omega)$ with $p>n$ . Here $C_{1}$ depends only on $\Omega,$ $n$ and $p$ .
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On the other hand, (9) gives

(12) $\Vert Aw+b_{M}(x)w|L_{p}\Vert\leq 2^{\mu-1}\Vert g1|L_{p}\Vert\Vert Dw|L_{\infty}\Vert^{\mu}+2^{\mu}\Vert gl|L_{p}\Vert\Vert Dv|L_{\infty}\Vert^{\mu}$

$+(t_{2}-t_{1})\Vert go|L_{p}\Vert$

and

(13) $\Vert Bw|B_{p,p}^{*,1-1/p}\Vert\leq(t_{2}-t_{1})\Vert\varphi|B_{p,p}^{*,1-1/p}\Vert$

for all $0\leq t_{1}<t_{2}\leq 1$ . New (8) and (10) $-(13)$ show

(14) $\Vert w|W_{p}^{2}\Vert\leq 2C(\Vert go|L_{p}\Vert+\Vert\varphi|B_{p,p}p\Vert)+2^{\mu+1}C\Vert|L_{p}\Vert\Vert Dv|L_{\infty}\Vert^{\mu}$

if

(15) $0<t_{2}-t_{1}\leq h$ ,

where

$h=h(A, \Omega, n,p, \Vert b_{M}|L_{p}\Vert)=(2C_{1})^{-\mu/(\mu-1)}(C\Vert g\mathfrak{l}|L_{p}\Vert)^{-1/(\mu-1)}(1+M)^{-1}$

is independent of $t_{1}$ and $t_{2}$ .
Let $k=1,2,$ $\ldots$ , be fixed, and $t_{1}=t^{(k-1)}$ and $t_{2}=t^{(k)}$ . Now let $v=v^{(k-1)}$

and $z=v^{(k)}$ be the solution in $W_{p}^{2}(\Omega)$ of $(P_{t^{(k- 1)}})$ and $(P_{t^{(k)}})$ , respectively. Then
we obtain from (14) that

(16) $\Vert v^{(k)}|W_{p}^{2}\Vert\leq 2C(\Vert go|L_{p}\Vert+\Vert\varphi|B_{p,p}^{*,1-1/p}\Vert)$

$+\Vert v^{(k-1)}|W_{p}^{2}\Vert+2^{\mu+1}C\Vert g_{1}|L_{p}\Vert\Vert Dv^{(k-1)}|L_{\infty}\Vert^{\mu}$

for all $t^{(k)},$ $t^{(k+1)}$ in $[0,1]$ with $0<t^{(k)}-t^{(k-1)}\leq h$ . Now we put $t^{(0)}=0$ . Then
$v^{(0)}\equiv 0$ is the unique solution of $(P_{t^{(0)}})$ . The continuous embedding
$W_{p}^{2}(\Omega)\rightarrow C^{1}(\overline{\Omega})$ for $p>n$ yields

$\Vert Dv^{(k-1)}|L_{\infty}\Vert\leq c\Vert v^{(k-1)}|W_{p}^{2}\Vert$ .

Now our proposition follows from (16) by a finite iteration procedure. $\blacksquare$

4. Proof of the Main Results

Let $(H1)-(H6)$ be satisfied. We prove the existence of the solution of (P)

under the assumption that there exist a subsolution $u_{-}$ and a supersolution $u_{+}$ of
(P) in $W_{p}^{2}(\Omega),$ $p>n$ , with $u_{-}\leq u+in\overline{\Omega}$ . We start with the following lemma
which is important for our further considerations.
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PROPOSITION. We suppose that the real function $G_{0}(x, \xi, \eta)$ defined on
$\Omega\times R\times R^{n}$ satisfies the Caratheodory condition (H4) and

$\sup_{(\xi,\eta)\in R\times R^{n}}|G_{0}(\cdot, \xi, \eta)|\in L_{p}(\Omega)$

with $p>n$ . Then the boundary value problem

$Au=G_{0}(x, u, Du)$ in $\Omega$ , $ Bu=\varphi$ on $\partial\Omega$ ,

where $\varphi\in B_{p,p}^{*,1-1/p}(\partial\Omega)$ , has a solution $u\in W_{p}^{2}(\Omega)$ .

PROOF. Proposition 1 in Section 2 shows that for any $v\in C^{1}(\overline{\Omega})$ the
semilinear boundary problem

$Au=G_{0}(x, v, Dv)$ in $\Omega$ , $ Bu=\varphi$ on $\partial\Omega$

has a unique solution $u\in W_{p}^{2}(\Omega)$ with $p>n$ . Therefore, we can introduce a
continuous linear operator $S$ such that for any $v\in C^{1}(\overline{\Omega})$ the function
$u=Sv\in W_{p}^{2}(\Omega)$ is the unique solution of the above problem. The assumptions on
$G_{0}$ yield the existence of a constant $c$ such that the a priori estimate

$\Vert u|W_{p}^{2}(\Omega)\Vert\leq c$

holds for all solution $u$ . The operator

$S:C^{1}(\overline{\Omega})\rightarrow C^{1}(\overline{\Omega})$

is compact. Now Leray-Schauder degree arguments, see [16, Chapter 6], prove
the existence of a solution of our problem in $C^{1}(\overline{\Omega})$ which belongs by definition
of $S$ to $W_{p}^{2}(\Omega)$ . The proof is finished. $\blacksquare$

PROOF OF THEOREM 1. Let $T$ be the truncating operator defined for
$u\in W_{p}^{2}(\Omega),$ $p>n$ , by

(1) Tu $(x)=\left\{\begin{array}{l}u_{+}(x)\\u(x)\\u_{-}(x)\end{array}\right.$ $ifu(x)<u_{-}^{+}(x)ifu_{-}(x)\leq u(x)\leq ifu(x)>u(x),.u_{+}(x)$ ,

Then we consider the modified boundary value problem

(2) $Au=g$ ( $x$ , Tu, $Du$ ) in $\Omega$ , $ Bu=\varphi$ on $\partial\Omega$ .

The following lemma shows the connection between the solvability of (P) and (2).
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LEMMA 1. Let all assumptions of Theorem 1 be satisfied If $u\in W_{p}^{2}(\Omega)$ is a
solution of (2), then we have

(3) $u_{-}\leq u\leq u_{+}$ in $\overline{\Omega}$ .

$PR\infty F$ OF LEMMA 1. We consider $w=u_{+}-u$ . Then

(4) $Aw\geq g(x, u_{+}, Du_{+})-g$ ( $x$ , Tu, $Du$ ) in $\Omega$ , $Bw=0$ on $\partial\Omega$ .

Assume that the contrary to (3) holds. Then there exists a set $\Omega_{w}\subset\Omega$ given by

$\Omega_{w}=\{x\in\Omega : w(x)<0\}$

with nonzero Lebesgue measure, and (1) implies

$Aw\geq g(x, u_{+}, Du_{+})-g(x, u_{+}, Du)$ in $\Omega_{w}$ .

Now assumption (H6) yields

$Aw\geq-b_{1}((x, u_{+}(x),$ $Du_{+}(x),$ $Du(x))|Dw|$ in $\Omega_{w}$ .

Note that $b_{1}\in L_{p}(\Omega)$ with $p>n$ . Therefore the term on the right side is a non-
positive function in $L_{p}(\Omega)$ . Hence Lemma 1 in Section 2 shows that $w$ attains
a strictly negative minimum on $\partial\Omega$ , a contradiction to the boundary condition
in (4). This proves that $u\leq u_{+}$ holds in $\Omega$ . The other case can be shown
analogously. The proof of Lemma 1 is finished. $\blacksquare$

C0NT1NUATI0N OF THE PROOF OF $THE0REM$ $1$ . If

$M=\max\{\max u_{+}(x),$ $-m_{\in}i_{\frac{n}{\Omega}}u_{-}(x)\}$

then Lemma 1, Proposition in Section 3 and the embedding $W_{p}^{2}(\Omega)\rightarrow C^{1}(\overline{\Omega})$ for
$p>n$ show

(5) $\max_{x\in\overline{\Omega}}|Du(x)|\leq\Vert u|C^{1}\Vert\leq c\Vert u|W_{p}^{2}\Vert$

$\leq c\psi(M, \Vert b_{M}|L_{p}\Vert, \Vert\varphi|B_{p,p}^{*,1-1/p}\Vert)=M_{1}$ ,

where $c$ is independent of $u\in W_{p}^{2}(\Omega)$

Now we put

$M_{2}=\max\{M_{1},$
$\max_{x\in\overline{\Omega}}|Du_{+}(x)|,$

$\max_{x\in\overline{\Omega}}|Du_{-}(x)|,\}$ ,
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and

$G_{1}(x, \xi, \eta)=\{_{g(x,\xi,M_{2}\frac{\eta}{|\eta|})}g(x,\xi,\eta)$
$if|\eta|if|\eta|>M_{2}\leq M_{2}.$

’

We consider the solvability of the semilinear boundary value problem

(6) $Au=G_{1}$ ( $x$ , Tu, $Du$) in $\Omega$ , $ Bu=\varphi$ in $\partial\Omega$ .

The assumptions $(H4)-(H6)$ show that $G_{1}(x, \xi, \eta)$ satisfies the Caratheodory
condition, (H6), and the following growth condition

$|G_{1}(x, \xi, \eta)|\leq\{_{b(x,\xi)(1+M_{2}^{\mu})}^{b(x,\xi)(1+|\eta|^{\mu})}$ $ifif\left|\begin{array}{l}\eta\\\eta\end{array}\right|>M_{2}^{2}\leq M$

,

Furthermore, the function

$G(x, \xi, \eta)=\left\{\begin{array}{l}G_{l}(x,u_{+}(x),\eta)\\G_{1}(x,\xi,\eta)\\G_{1}(x,u_{-}(x),\eta)\end{array}\right.$ $if\xi^{+}<u_{-}^{+}(x)ifu(x)\leq\xi\leq if\xi>u(x),u_{+}(x)$ ,

satisfies (H4),

(7)
$\sup_{(\xi,\eta)\in R\times R^{n}}|G(\cdot, \xi, \eta)|\in L_{p}(\Omega)$

with $p>n$ , and

$G(x, u(x),$ $Du(x))=G_{1}(x, Tu(x),$ $Du(x))$ .

Consequently, we can apply our proposition to the problem (6). Therefore we
obtain that (6) has a solution $u\in W_{p}^{2}(\Omega)$ , where $p>n$ .

Note that $u_{-}$ is a subsolution and $u_{+}$ is a supersolution of

(8) $Au=G_{1}(x, u, Du)$ in $\Omega$ , $ Bu=\varphi$ on $\partial\Omega$ .

Then Lemma 1 shows that

$u_{-}\leq u\leq u_{+}$ in $\overline{\Omega}$ .

Consequently, we have Tu$(x)=u(x)$ . Hence the solution $u$ of (6) is also a
solution of (8). Finally, Proposition in Section 3, (5) and the construction of
$G_{1}=g$ for $|\eta|\leq M_{1}\leq M_{2}$ prove that $u$ is a solution of (P), too. Hence
Theorem 1 is shown. $\blacksquare$
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Our next step is to prove the uniqueness of the solution of (P) if $g$ is strictly
decreasing.

PROOF OF THEOREM 2. Assume that $u,$ $v\in W_{p}^{2}(\Omega)$ are two solutions of
problem (P), i.e., we have

$Au=g(x, u, Du)$ a.e. in $\Omega$ , $ Bu=\varphi$ on $\partial\Omega$ ,

$Av=g(x, v, Dv)$ a.e. in $\Omega$ , $ Bv=\varphi$ on $\partial\Omega$ .

We put $w(x)=u(x)-v(x)$ . Assume to the contrary that

$\max_{X\in^{\frac{}{\Omega}}}w(x)=M>0$ .

If there is a point $ x_{0}\in\Omega$ with $w(x_{0})=M$ , then Lemma 2 in Section 2 yields

$w(x)=u(x)-v(x)\equiv M$ in $\Omega$ .

Hence we have $Du=Dv$ in $\Omega$ . Now the assumption that $g(x, \xi, \eta)$ is strictly
decreasing with respect to $\xi$ for almost all $ x\in\Omega$ and all $\eta\in R^{n}$ , and (H3) imply

$0=Aw-g(x, u, Du)+g(x, v, Dv)=cM-(g(x, u, Du)-g(x, v, Du))>0$

in $\Omega$ . We obtain a contradiction.
Now we assume that there is a point $ x_{0}^{\prime}\in\partial\Omega$ such that

$w(x_{0}^{\prime})=M>0$ .

Then an application of Lemma 2 in Section 2 gives a contradiction. The other
case can be handled similarly. The proof of Theorem 2 is complete. $\blacksquare$

We give an easy example for the application of Theorem 1. Let $p>n$ . In the
following corollary we consider functions of the type

$u=u_{0}+t\varphi_{1}$ , $t\in R$ .

Here $u_{0}\in W_{p}^{2}(\Omega)$ is the unique solution of

$Au_{0}=0$ in $\Omega$ , $ Bu_{0}=\varphi$ on $\partial\Omega$ ,

where $\varphi\in B_{p,p}^{*,1-1/p}(\partial\Omega)$ . Furthermore, $\varphi_{1}\in C^{\infty}(\overline{\Omega})$ is the unique eigenfunction
corresponding to the first eigenvalue $\lambda_{1}>0$ of the eigenvalue problem

$Au=\lambda u$ in $\partial\Omega$ , $Bu=0$ on $\partial\Omega$

which satisfies $\varphi 1>0$ in $\overline{\Omega}\backslash \Sigma$ and $\Vert\varphi \mathfrak{l}|L_{\infty}\Vert=1$ . For the existence and further
remarks, we refer to Taira [20] and [15].
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COROLLARY 1. Let all assumptions of Theorem 1 be satisfied for some $p>n$ .
Suppose that there exist real numbers $l_{+}$ and $t_{-},$ $l_{+}\geq t_{-}$ , such that

$g(x, u_{0}+t_{+}\varphi_{1}, Du_{0}+t_{+}D\varphi_{1})-t_{+}\lambda_{1}\varphi_{1}\leq 0$ in $\Omega$

and
$g(x, u_{0}+t_{-}\varphi_{1}, Du_{0}+t_{-}D\varphi_{1})-t_{-}\lambda_{1}\varphi_{1}\geq 0$ in $\Omega$ .

Then the boundary value problem (P) has a solution $u\in W_{p}^{2}(\Omega)$ satisfying

$u_{0}+t_{-}\varphi_{1}\leq u\leq u_{0}+t_{+}\varphi_{1}$ in $\Omega$ .

PROOF. We apply Theorem 1 with the supersolution $u+=u_{0}+t_{+}\varphi \mathfrak{l}$ and the
subsolution $u_{-}=t_{0}+t_{-}\varphi_{1}$ . $\blacksquare$

REMARK 1. Let us consider the semilinear elliptic boundary value problem

(9) $\Delta u=g(x, u, Du)$ in $\Omega$ , $u=0$ on $\partial\Omega$ .

In Amann and Crandall [3] and Kazdan and Kramer [6], it was shown that
Proposition in Section 3 holds if (H4) and the Bemstein condition, i.e., (H5) with
$\mu=2$ and $ p=\infty$ , are satisfied. It means that we have

(10) $|g(x, \xi, \eta)|\leq b(x, \xi)(1+|\eta|^{2})$

and

$\sup_{|\xi|\leq c}b(\cdot, \xi)\in L_{\infty}(\Omega)$
.

An example of Nagumo [10] shows that the growth condition of $g$ with respect to
$\eta$ is needed for the solvability of (9).

Let $\epsilon>0$ and $h>0$ . Consider the semilinear boundary value problem

(11) $u^{\prime\prime}=u(1+(u^{\prime})^{2})^{1+\epsilon}$ in $(0,1)$ , $u(O)=0,$ $u(1)=h$ .

In Schmitt [17, p. 269], it was shown that (11) has no solution if

$h\geq\frac{(b-a)^{\epsilon/(1+\epsilon)}}{\gamma(\epsilon)}$ ,

where $\gamma(\epsilon)$ is a constant which depends only on $\epsilon$ .

REMARK 2. Pohozaev considered the solvability of (9) under the the more
general condition (H4) and (H5). The following example in [11] shows that the
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index $\mu=2-n/p$ is not improvable in the sense that (H4) and (H5) does not, in
general, imply Proposition in Section 3 if $\mu>2-n/p$ . Note that $\mu=2-n/p$

coincides with the Bemstein condition in the case $ p=\infty$ .
Let $0<v<1,0<\epsilon<1,$ $\mu>2-1/p,$ $ 1<p<\infty$ and

$b(x)=v^{1-\mu}(v-1)(x+\epsilon)^{v-2-\mu(v-1)}$ . Consider the boundary problem

(12) $u^{\prime\prime}=b(x)|u^{\prime}|^{\mu}$ in $(0,1)$ , $u(O)=0,$ $u(1)=(1+\epsilon)^{v}-\epsilon^{v}$ .

For fixed parameters the solution of (12) is given by

$u(x)=(x+\epsilon)^{v}-\epsilon^{v}$ .

Then for any given $ 1<p<\infty$ and $\mu>2-1/p$ there exist constants $c_{1},$ $c_{2}$ and
$c_{3}$ such that

(13) $\Vert u|L_{\infty}\Vert\leq c_{1}$ , $\Vert b|L_{p}\Vert\leq c_{2}$ , $\Vert\varphi|B_{p,p}^{2-1/p}\Vert\leq c_{3}$

uniformly with respect to $\epsilon\in(0,1)$ .
On the other hand, it was shown that

(14) $\Vert u^{\prime}|L_{\infty}\Vert\rightarrow\infty$ if $\epsilon\downarrow 0$ .

Therefore (14) implies

$\Vert u|W_{p}^{2}\Vert\rightarrow\infty$ if $\epsilon\downarrow 0$ .

Now we prove Theorem 3, i.e., we investigate the solvability of the following
semilinear elliptic boundary value problem, where the boundary operator is
nonlinear.

(15) $Au=g(x, u, Du)$ in $\Omega$ , $ B_{\gamma}u=\frac{\partial u}{\partial v}+\gamma(x^{\prime}, u)=\varphi$ on $\partial\Omega$ .

PROOF OF THEOREM 3. We give only an outline of the proof, where we
indicate the differences to the proof of Theorem 1 and Theorem 2, respectively.
At first we show the corresponding estimate with respect to our boundary
condition $B_{\gamma}$ in (15), see Proposition in Section 3, where we had in (1) of
Section 3

$\Vert Bu|B_{p,p}^{*,1-1/p}(\partial\Omega)\Vert=\Vert\varphi|B_{p,p}^{*,1-1/p}(\partial\Omega)\Vert$ .

In our case, $B_{\gamma}$ can be written as a nonlinear perturbation of the Neumann
boundary condition. Recall that we have $u\in C^{1}(\overline{\Omega})$ with $\Vert u|L_{\infty}\Vert\leq M$ . Then it
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holds

(16) $\Vert u|B_{p,p}^{2-1/p}(\partial\Omega)\Vert$

$\leq c^{\prime}(\Vert\frac{\partial u}{\partial v}|B_{p,p}^{1-1/p}(\partial\Omega)\Vert+\Vert u|B_{p,p}^{1-1/p}(\partial\Omega)\Vert)$

$\leq c^{\prime}(\Vert u|B_{p,p}^{1-1/p}(\partial\Omega)\Vert)+\Vert\gamma(\cdot, u)|B_{p,p}^{1-1/p}(\partial\Omega)\Vert+\Vert\varphi|B_{p,p}^{1-1/p}(\partial\Omega)\Vert)$

$\leq c^{\prime\prime}(\Vert u|B_{p,p}^{1-1/p}(\partial\Omega)\Vert+M+\Vert u|B_{p,p}^{1-\epsilon}(\partial\Omega)\Vert+\Vert\varphi|B_{p,p}^{1-1/p}(\partial\Omega)\Vert)$

$\leq c_{1}\Vert\varphi|B_{p,p}^{1-1/p}(\partial\Omega)\Vert+c_{2}\Vert u|B_{p,p}^{1-\epsilon}(\partial\Omega)\Vert$ ,

where $c_{1}$ and $c_{2}$ are independent of $u$ and $\varphi$ . Here $0<\epsilon<1/p$ is small enough
such that $1-\epsilon>(n-1)/p$ . We applied the results from Section 2, especially
Proposition 2, i.e.,

$\Vert\gamma(\cdot, u)|B_{p,p}^{1-1/p}(\partial\Omega)\Vert\leq c_{\gamma}(M+\Vert u|B_{p,p}^{1-\epsilon}(\partial\Omega)\Vert)$ .

If the dimension $n$ satisfies $n\geq 2$ , then we have the continuous embedding
$L_{\infty}(\partial\Omega)\rightarrow B_{p,p}^{0}(\partial\Omega)$ . Applying this embedding and the known interpolation
property

$\Vert v|B_{p,p}^{\theta s_{0}+(1-\theta)s_{1}}\Vert\leq C\Vert v|B_{p^{0}p}^{s}\Vert^{\theta}\Vert v|B_{p^{1}p}^{s}\Vert^{1-\theta}$ , $0<\theta<1$ ,

we obtain

(17) $\Vert u|B_{p,p}^{1-\epsilon}(\partial\Omega)\Vert\leq c(1+\Vert u|B_{p,p}^{2-1/p}(\partial\Omega)\Vert^{\theta})$

for $s_{0}=2-1/p,$ $s_{1}=0$ and $0<\theta=(1-\epsilon)/(2-1/p)<1$ . Here $c$ is independent
of $u$ . From (16) and (17) it follows

$\Vert u|B_{p,p}^{2-1/p}(\partial\Omega)\Vert\leq C_{1}(\Vert\varphi|B_{p,p}^{1-1/p}(\partial\Omega)\Vert+1+\Vert u|B_{p,p}^{2-1/p}(\partial\Omega)\Vert^{\theta})$ .

Note that $0<\theta<1$ holds. Hence there exists a positive number $K$ such that

$\Vert u|B_{p,p}^{2-1/p}(\partial\Omega)\Vert\leq K$

holds. This and (17) imply the existence of a positive number $K_{1}$ with

$\Vert u|B_{p,p}^{1-\epsilon}(\partial\Omega)\Vert\leq K_{1}$ .

Using the estimates in (16) we get finally
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(18) $\Vert\frac{\partial u}{\partial v}|B_{p,p}^{1-1/p}(\partial\Omega)\Vert\leq c_{1}^{\prime}\Vert\varphi|B_{p,p}^{1-1/p}(\partial\Omega)\Vert+c_{2}^{\prime}\Vert u|B_{p,p}^{1-\epsilon}(\partial\Omega)\Vert$

(19) $\leq\tilde{c}(1+\Vert\varphi|B_{p,p}^{1-1/p}(\partial\Omega)\Vert)$ ,

where $\tilde{c}=\tilde{c}(n, p, \Omega)$ is independent of $u$ . Now we can apply Proposition 1 in
Section 2. (In the special case $n=1$ , one uses that $L_{\infty}(\partial\Omega)\rightarrow B_{p,\infty}^{0}(\partial\Omega)$ and a
corresponding interpolation property. For details and the definition of the
classical Besov spaces, we refer e.g. to [16, Subsections 6.3.2 and 2.1.2].)

In our subsequent considerations in the proof of Theorem 1, we proved
estimates of the difference of two solutions $w=z-v$ . Here we replace, for
example, the boundary condition $ Bw=(t_{2}-t_{1})\varphi$ on $\partial\Omega$ , see (9) in Section 3, by

$ B_{\gamma}w=\frac{\partial w}{\partial v}+\gamma(x^{\prime}, z(x^{\prime}))-\gamma(x^{\prime}, v(x^{\prime}))=\frac{\partial w}{\partial v}+a(x^{\prime})w=(t_{2}-t_{1})\varphi$ ,

where

$a(x^{\prime})=\frac{\partial\gamma}{\partial\xi}(x^{\prime}, \xi(x^{\prime}))\geq 0$ on $\partial\Omega$ ,

i.e., we have a Robin boundary condition. Let $M$ have the meaning as before.
Then we define

$\gamma_{M}(x^{\prime})=\sup\{\frac{\partial\gamma}{\partial x}(x^{\prime}, \xi)+\frac{\partial\gamma}{\partial\xi}(x^{\prime}, \xi)$ : $x^{\prime}\in\partial\Omega,$ $|\xi|\leq M\}$ .

Therefore an application of Proposition 1 in Section 2 shows that we can estimate
the family of Robin boundary operators by

(20) $ C(\max\{1, \Vert\gamma_{M}|C^{2}\Vert\})\Vert\varphi|B_{p,p}^{1-1/p}\partial\Omega\Vert$ ,

where $C=C(n, \Omega, p)$ is independent of $\varphi$ . Finally, by our assumptions on $g$ , it
follows that $v^{(0)}=0$ is the unique solution of $(P_{t^{(0)}})$ . $\blacksquare$

We finish our consideration with an application of the a priori estimate in
Section 3.

COROLLARY 2. Let all assumptions of Proposition in Section 3 be satisfied
Suppose that $\gamma(x^{\prime}, \xi):\partial\Omega\times R\rightarrow R$ is a smooth function. Let there exist real
numbers $\alpha$ and $\beta,$ $\alpha<0<\beta$ , such

(21) $g(x, \alpha, 0)>0>g(x,\beta, 0)$ for all $x\in\overline{\Omega}$ ,

(22) $b(x^{\prime})\alpha\leq\gamma(x^{\prime}, \alpha)$ , $b(x^{\prime})\beta\geq\gamma(x^{\prime},\beta)$ on $\partial\Omega$ .
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Then

(23) $Au=g(x, u, Du)$ in $\Omega$ , $Bu=\gamma(x^{\prime}, u)$ on $\partial\Omega$

has a solution $u\in W_{p}^{2}(\Omega)$ whose range is contained in $[\alpha,\beta]$ .

PROOF. Proposition 1 in Section 2 shows that for $v\in C^{1}(\overline{\Omega})$ the boundary
value problem

(24) $Au=g(x, v, Dv)$ in $\Omega$ , $Bu=\gamma(x‘, v)$ on $\partial\Omega$

has a unique solution $u\in W_{p}^{2}(\Omega),$ $p>n$ , denoted by $u=Sv$ . We remark that the
smoothness of $g$ implies that $u$ belongs to $C^{2}(\overline{\Omega})$ . The operator

$S:C^{1}(\overline{\Omega})\rightarrow C^{1}(\overline{\Omega})$

is completely continuous. Now we apply Leray-Schauder degree arguments. Let
$M$ be given by

$M=\max\{|\alpha|, |\beta|\}$ .

Then $M_{1}$ has the same meaning as in (5). Now we define the set

(25) $K=$ { $u\in C^{1}(\overline{\Omega}):\alpha<u<\beta,$ $|Du|<M_{1}+1$ in $\overline{\Omega}$ }.

Let $0<t<1$ such that there exists $u\in\partial K$ with $u=tS(u)$ . Hence $u\in C^{1}(\overline{\Omega})$

satisfies

$Au=tg(x, u, Du)$ in $\Omega$ , $Bu=t\gamma(x, u)$ on $\partial\Omega$ .

By our a priori estimate we derive $|Du|\leq M_{1}$ . Hence there exists a point $x_{0}\in\overline{\Omega}$

such that either $ u(x_{0})=\alpha$ or $ u(x_{0})=\beta$ holds. Assume the first case, i.e., we have
$ u(x_{0})=\alpha$ . (The other case can be considered similarly.)

If $ x_{0}\in\Omega$ , then it holds $Du(x_{0})=0$ . Therefore, by the properties of $A$ we
obtain in analogy to [16, p. 499] that

Au $(x_{0})=A\alpha\leq c(x_{0})\alpha\leq 0$ .

This implies a contradiction to (21).
If $ x_{0}\in\partial\Omega$ , then the function $v(x)=\alpha-u(x)$ attains its maximum at $x_{0}$ .

Therefore,

$\frac{\partial u(x_{0})}{\partial v}=-\frac{\partial v(x_{0})}{\partial v}\leq 0$ .
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Assume that $a(x_{0})=0$ . This implies that $b(x_{0})>0$ and $b(x_{0})\alpha=t\gamma(x_{0}, \alpha)$ . Since
$\alpha<0$ , we get a contradiction to (22). Thus $a(x_{0})>0$ and

$ a(x_{0})\frac{\partial u}{\partial v}(x_{0})=t\gamma(x_{0}, \alpha)-b(x_{0})\alpha$ .

Hence we get $b(x_{0})\geq t\gamma(x_{0}, \alpha)$ .

CASE 1. We assume that $b(x_{0})>0$ . Then we deduce that

$b(x_{0})\iota\alpha>b(x_{0})\alpha\geq t\gamma(x_{0}, \alpha)$ ,

i.e., we get with $b(x_{0})\alpha>\gamma(x_{0}, \alpha)$ a contradiction to (22). Therefore, we have
shown that for all $t\in(0,1)$ the equation $u=\iota S(u)$ has no solution $u\in\partial K$ . Now
we can apply usual Leray-Schauder degree arguments to prove the existence of a
solution $u\in K$ under the assumption that $b(x_{0})\neq 0$ .

CASE 2. Assume that $b(x_{0})=0$ . Let $0<\epsilon<1$ . Now we replace $b(x^{\prime})$ by
$ b(x^{\prime})+\epsilon$ . Because of the fact that $b\geq 0$ on $\partial\Omega$ we get that the new boundary
operator $B$ satisfies all assumptions of the first case. This implies that we find
solutions $u_{\epsilon}\in K$ . Now limiting and compactness arguments show that there exists
a subsequence of $\{u_{\epsilon}\}\in C^{1}(\overline{\Omega})$ (denoted also by $\{u_{\epsilon}\}$ ) such that

$u_{\epsilon}\rightarrow u$ for $\epsilon\rightarrow 0$

in $C^{1}(\overline{\Omega})$ . Further, $u$ is a solution of the origin problem and satisfies all desired
properties. $\blacksquare$

REMARK 3. Our corollary is a generalization of Pohozaev [11, Theorem 5.1]
to nonlinear boundary conditions. Furthermore, we extend the results due to
Schmitt [17, Theorem 6.1, Theorem 6.2], where boundary value problems of the
type

$Au=g(x, u)$ in $\Omega$ , $Bu=\gamma(x^{\prime}, u)$ on $\partial\Omega$

and

$u^{\prime\prime}=g(x, u, u^{\prime})$ in $(a, b)$ , $\gamma_{1}(u(a), u^{\prime}(a))=0=\gamma_{2}(u(b), u^{\prime}(b))$ ,

respectively, were considered. Hereby the nonlinear function $g$ satisfies the
Nagumo condition (10).
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