A NOTE ON KAEHLERIAN METRICS WITH CERTAIN PROPERTY FOR ∇R IC

By

Eriko Omachi

0. Introduction

Let M^{2n} be a 2n real dimensional Kaehlerian manifold, whose complex structure is given by a parallel tensor field $F = (F_i^i)$ satisfying

$$F_j^r F_r^i = \delta_j^i, \quad g_{ji} F_\ell^j F_k^i = g_{\ell k},$$

where $g = (g_{ji})$ is the Riemannian metric tensor of M^{2n} . Let $K = (K_{kji}^h)$ be the Bochner curvature tensor and $\hat{K} = (K_{kji})$ a tensor given by

(0.1)
$$K_{kji} = \nabla_k R_{ji} - \nabla_j R_{ki} + \frac{1}{4(n+1)} (g_{ki} \delta^h_j - g_{ji} \delta^h_k + F_{ki} F^h_j - F_{ji} F^h_k + 2F_{kj} F^h_i) r_h,$$

where $R = (R_{kji}^h)$ is the Riemannian curvature tensor, $Ric = (R_{ji}) = (R_{kji}^h)$ the Ricci tensor, and $r = R_k^h$ the scalar curvature.

Let us consider the condition

$$\nabla_k R_{ji} = \frac{1}{4(n+1)} (2r_k g_{ji} + r_j g_{ki} + r_i g_{kj} + \tilde{r}_j F_{ik} + \tilde{r}_i F_{jk}),$$

where $\tilde{r}_j = F_j^h r_h$ and $r_j = \nabla_j r$. This condition gives a necessary and sufficient condition for equality in the inequality

$$\frac{1}{m+1}|dr|^2 \le |\nabla \operatorname{Ric}|^2$$

which was proved in [2].

If M^{2n} satisfies (\sharp) \hat{K} vanishes [2]. But the converse is not true. The example of metric satisfying (\sharp) is unknown, except the case where r is constant.

On the other hand, if M^{2n} is Bochner-flat, i.e. K = 0, then \hat{K} vanishes. The

examples of non-flat Bochner-flat metric have been found by Tachibana and Liu [1]. The purpose of this paper is to show that Tachibana and Liu's metrics just give examples of non-flat metrics satisfying (#).

The author expresses her hearty thanks to Professor Shun-ichi Tachibana for his suggestions and encouragement.

1. Preliminaries

Throughout this paper, the complex coordinate $\{z^{\lambda}, z^{\lambda^*}\}$ shall be used, where $z^{\lambda^*} = \bar{z}^{\lambda}$, the conjugate of z^{λ} . We adopt the following ranges of indices:

$$1 \le i, j, k, \dots \le 2n,$$

$$1 \le \lambda, \mu, \nu, \dots \le n, \quad \lambda^* = \lambda + n.$$

With respect to the complex coordinate, the metric tensor g_{ji} and the complex structure F_j^i of M^{2n} satisfies

$$(1.1) g_{\mu\lambda} = g_{\mu^*\lambda^*} = 0, g_{\mu\lambda^*} = g_{\lambda^*\mu} = \bar{g}_{\mu^*\lambda},$$

(1.2)
$$\begin{split} F_{\mu}^{\lambda} &= i\delta_{\mu}^{\lambda}, \quad F_{\mu}^{\lambda^{\star}} &= 0, \\ F_{\mu\lambda} &= g_{\alpha^{\star}\lambda}F_{\mu}^{\alpha^{\star}} &= 0, \quad F_{\mu^{\star}\lambda} &= F_{\mu^{\star}}^{\alpha^{\star}}g_{\alpha^{\star}\lambda} &= -ig_{\mu^{\star}\lambda}, \end{split}$$

and the Ricci tensor Ric = (R_{ji}) and scalar curvature $r = R_{\lambda}^{\lambda} + R_{\lambda^*}^{\lambda^*} = 2R_{\lambda}^{\lambda}$ satisfy

(1.3)
$$R_{\mu\lambda} = R_{\mu^*\lambda^*} = 0, \quad R_{\mu^*\lambda} = R_{\lambda\mu^*},$$
$$\tilde{r}_{\mu} = F_{\mu}^{\alpha} r_{\alpha} = i \delta_{\mu}^{\alpha} r_{\alpha} = i r_{\mu},$$
$$\tilde{r}_{\mu} F_{\nu^*\lambda} = (i r_{\mu}) (-i g_{\lambda\nu^*}) = r_{\mu} g_{\lambda\nu^*}.$$

Putting $K_{kjih} = K_{kji}^r g_{rh}$, the Bochner curvature tensor is given by

$$K_{\lambda\mu^*\nu\rho^*} = R_{\lambda\mu^*\nu\rho^*}$$

$$-\frac{1}{n+2}(g_{\lambda\mu^*}R_{\nu\rho^*} + g_{\lambda\rho^*}R_{\nu\mu^*} + g_{\nu\rho^*}R_{\lambda\mu^*} + g_{\nu\mu^*}R_{\lambda\rho^*})$$

$$+\frac{R}{2(n+1)(n+2)}(g_{\lambda\mu^*}g_{\nu\rho^*} + g_{\lambda\rho^*}g_{\nu\mu^*}).$$

By virtue of (1.1)–(1.3), the condition (\sharp) is reduced to the following simple form:

$$\nabla_{\lambda}R_{\mu\nu^*} = \frac{1}{2(n+1)}(r_{\lambda}g_{\mu\nu^*} + r_{\mu}g_{\lambda\nu^*}).$$

2. Metrics with Vanishing Bochner Curvature Tensor

Let C^n be the complex number space with complex coordinate $\{z_{\lambda}\}$. In the following of this paper, we denote coordinates by z_{λ} instead of z^{λ} . A real valued holomorphic function $\phi = \phi(z, \bar{z})$ of $\{z_{\lambda}, \bar{z}_{\lambda}\}$ gives a Kaehlerian metric $g_{\mu\lambda^*} = \partial^2 \phi/\partial z_{\mu}\partial \bar{z}_{\lambda}$ to C^n or its subdomain. Under the assumption that ϕ is a function of $t = \sum_{\alpha=1}^n z_{\alpha}\bar{z}_{\alpha}$, Tachibana and Liu found $\phi = f(t)$ so that the corresponding Kaehlerian metric has the vanishing Bochner curvature tensor. In this case, the metric tensor $g_{\mu\lambda^*}$, the Christoffel symbols $\Gamma^{\nu}_{\mu\lambda}$, the Ricci tensor $R_{\mu\lambda^*}$ and the scalar curvature r are as follows (' means differentiation with respect to t):

$$(2.1) g_{\mu\lambda^*} = f'\delta_{\mu\lambda} + f''\bar{z}_{\mu}z_{\lambda},$$

(2.2)
$$\Gamma^{\nu}_{\mu\lambda} = \frac{f''}{f'} (\bar{z}_{\mu}\delta_{\nu\lambda} + \bar{z}_{\lambda}\delta_{\nu\mu}) + \sigma z_{\nu}\bar{z}_{\mu}\bar{z}_{\lambda},$$

where

(2.3)
$$\sigma = \frac{f'f''' - 2f''^2}{f'(f' + tf'')},$$

$$(2.4) R_{\mu\lambda^*} = \lambda \bar{z}_{\mu} z_{\lambda} + \mu \delta_{\mu\lambda},$$

where

(2.5)
$$\lambda = -\frac{(n+1)(f'f''' - f''^2)}{f'^2} - \sigma't - \sigma = \mu'$$

and

(2.6)
$$\mu = -\frac{(n+1)f''}{f'} - \sigma t,$$

(2.7)
$$r = \frac{2}{f'} \left(t\lambda + n\mu - \frac{tf''(t\lambda + \mu)}{f' + tf''} \right).$$

For convenience sake we put

(2.8)
$$\Delta = \frac{r}{2(n+1)(n+2)}.$$

On account of vanishing Bochner curvature tensor, the function f satisfies the differential equation

$$(2.9) 2\sigma f'' = \sigma' f',$$

which induces by integration

(2.10)
$$\sigma = af'^2 \quad (a \text{ is a constant})$$

or equivalently

(2.11)
$$f'f''' - 2f''^2 = af'^3(f' + tf'').$$

From this equation, Tachibana and Liu obtained the result: that f(t) gives a non-flat Bochner-flat Kaehlerian metric satisfying f''(0) = 0 is equivalent to that f takes one of the following two forms;

$$f(t) = \frac{1}{c} \sin^{-1} \left(\frac{c}{b}t\right) + k,$$

$$f(t) = \frac{1}{c} \sin h^{-1} \left(\frac{c}{b}t\right) + k,$$

where b and c are positive constants and k is any constant.

For these metrics the following formulae hold [1]:

$$(2.12) \sigma' = 2af'f''$$

$$(2.13) f'' = atf'^3,$$

(2.14)
$$f'^{2} \Delta = -\frac{nf'' + 2f'\sigma t}{n+2},$$

(2.15)
$$\lambda = -(n+2)af'^{2}(1+2at^{2}f'^{2}),$$

(2.16)
$$\mu = -(n+2)atf'^{2}$$

(2.17)
$$g_{\mu\nu} = f'(\sigma_{\mu\nu} + atf'^2 \bar{z}_{\mu} z_{\nu}).$$

3. Metrics Satisfying the Condition (#)

Now we shall show that above-mentioned metrics are examples of the space satisfying (\sharp) .

First we calculate each term of

$$\nabla_{\lambda}R_{\mu\nu^*} = \partial_{\lambda}R_{\mu\nu^*} - \Gamma^{\rho}_{\lambda\mu}R_{\rho\nu^*} - \Gamma^{\rho^*}_{\lambda\nu^*}R_{\mu\rho^*}.$$

From (2.4) and $\mu' = \lambda$, the first term is

(3.1)
$$\partial_{\lambda} R_{\mu\nu^*} = \lambda' \bar{z}_{\lambda} \bar{z}_{\mu} z_{\nu} + \lambda (\bar{z}_{\mu} \delta_{\lambda\nu} + \bar{z}_{\lambda} \delta_{\mu\nu}).$$

From (2.2), (2.9), (2.10) and (2.13), we have

(3.2)
$$\Gamma^{\rho}_{\lambda\mu} = af^{\prime 2} \{ z_{\rho} \bar{z}_{\lambda} \bar{z}_{\mu} + t(\bar{z}_{\lambda} \delta_{\rho\mu} + \bar{z}_{\mu} \delta_{\rho\lambda}) \},$$

from which the second term is

$$(3.3) \qquad \Gamma^{\rho}_{\lambda\mu}R_{\rho\nu^*} = \sum_{\rho} af'^2 \{ z_{\rho}\bar{z}_{\lambda}\bar{z}_{\mu} + t(\bar{z}_{\lambda}\delta_{\rho\mu} + \bar{z}_{\mu}\delta_{\rho\lambda}) \} \{ \lambda\bar{z}_{\rho}z_{\nu} + \mu\delta_{\rho\nu} \}$$

$$= af'^2 \{ (\lambda t + \mu)\bar{z}_{\lambda}\bar{z}_{\mu}z_{\nu} + 2\lambda t\bar{z}_{\lambda}\bar{z}_{\mu}z_{\nu} + \mu t(\bar{z}_{\mu}\delta_{\lambda\nu} + \bar{z}_{\lambda}\sigma_{\mu\nu}) \}.$$

Hence

$$(3.4) \qquad \nabla_{\lambda} R_{\mu\nu^*} = \{\lambda' - af'^2 (3\lambda t + \mu)\} \bar{z}_{\lambda} \bar{z}_{\mu} z_{\nu} + \{\lambda - af'^2 \mu t\} (\bar{z}_{\lambda} \delta_{\mu\nu} + \bar{z}_{\mu} \delta_{\lambda\nu})$$

from (3.1) and (3.3) on account of $\Gamma_{\lambda\nu^*}^{\rho^*} = 0$, where insides of $\{\}$ is calculated as follows: differentiating (2.15), and using (2.13), we have

(3.5)
$$\lambda' = -(n+2)a\{2f'f''(1+2at^2f'^2) + f'^22a(2tf'^2 + 2t^2f'f'')\}$$
$$= -2(n+2)a^2tf'^4(3+4at^2f'^2),$$

and from (2.15) and (2.16)

(3.6)
$$3\lambda t + \mu = -2(n+2)atf'^{2}(2+3at^{2}f'^{2}).$$

Hence

(3.7)
$$\lambda' - af'^{2}(3t\lambda + \mu) = -2(n+2)a^{2}tf'^{4}(3 + 4at^{2}f'^{2}) + 2(n+2)a^{2}tf'^{4}(2 + 3at^{2}f'^{2})$$
$$= -2(n+2)a^{2}tf'^{4}(1 + at^{2}f'^{2}),$$

and from (2.15) and (2.16),

(3.8)
$$\lambda - af't\mu = -(n+2)af'^{2}(1+2at^{2}f'^{2}) + (n+2)a^{2}t^{2}f'^{4}$$
$$= -(n+2)af'^{2}(1+at^{2}f'^{2}).$$

Substituting (3.7) and (3.8) into (3.4), we obtain

(3.9)
$$\nabla_{\lambda} R_{\mu\nu^*} = -2(n+2)a^2t f^{\prime 4} (1 + at^2 f^{\prime 2}) \bar{z}_{\lambda} \bar{z}_{\mu} z_{\nu}$$
$$- (n+2)af^{\prime 2} (1 + at^2 f^{\prime 2}) (\bar{z}_{\lambda} \delta_{\mu\nu} + \bar{z}_{\mu} \delta_{\lambda\nu})$$
$$= -(n+2)af^{\prime 2} (1 + at^2 f^{\prime 2}) (2atf^{\prime 2} \bar{z}_{\lambda} \bar{z}_{\mu} z_{\nu} + \bar{z}_{\lambda} \delta_{\mu\nu} + \bar{z}_{\mu} \delta_{\lambda\nu}).$$

Now we shall calculate the right hand side of (\sharp') for our metrics. Substituting (2.10) and (2.13) in (2.14), we have

$$\Delta = -atf'$$

from which

$$(3.10) r = 2(n+1)(n+2)\Delta = -2(n+1)(n+2)atf'.$$

Differentiating (3.10) by z_{λ} , and taking account of (2.13) we have

(3.11)
$$r_{\lambda} = -2(n+1)(n+2)a(\bar{z}_{\lambda}f' + tf''\bar{z}_{\lambda})$$
$$= -2(n+1)(n+2)af'(1+at^2f'^2)\bar{z}_{\lambda}.$$

Substituting (3.11) and (2.17), we can see that the right hand side of (\sharp') coincides to that of (3.9).

Thus we conclude that the metrics given by $(\sharp\sharp)$ satisfy (\sharp) .

References

- [1] Tachibana, S. and Liu, R. C., Notes on Kählerian metrics with vanishing Bochner curvature tensor, Kodai Math. Sem. Rep. 22 (1970), 313-321.
- [2] Omachi, E., Some inequalities on $|\nabla R|$, $|\nabla Ric|$ and |dr| in Riemannian manifolds, Tsukuba J. Math. 13 (1989), 495-503.
- [3] Omachi, E., On examples of Riemannian metric with certain property for Ricci tensor, to appear.

Eriko Omachi Otsuka 2-15-19 Bunkyo-ku, Tokyo 112-0012, Japan