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EXISTENCE OF WEAK SOLUTIONS FOR A PARABOLIC
ELLIPTIC-HYPERBOLIC TRICOMI PROBLEM

By

John Michael RAsSIAS

Abstract. It is well-known that the pioneer of mixed type boundary
value problems is F. G. Tricomi (1923) with his Tricomi equation:
Yuxx + tyy = 0. In this paper we consider the more general case of
above equation so that

Lu = Ki(9)ttes + (Ko (1)) +ru= f

is hyperbolic-elliptic and parabolic, and then prove the existence of
weak solutions for the corresponding Tricomi problem by employing
the well-known a-b-c energy integral method to establish an a-priori
estimate. This result is interesting in fluid mechanics.

The Tricomi Problem

Consider the parabolic elliptic-hyperbolic equation

Lu =K, (J’)uxx + (KZ(y)uy)/ + r(x’ y)u = f(xa y)a (*)

(2], [6]), in a bounded simply-connected domain D(< R?) with a piecewise-
smooth boundary G = 0D = g;Ug,Ug;, where f = f(x,y) is continuous, r =
r(x,y) (<0) and K; = K;(y) are once-continuously differentiable for x e [—1,1]
and y e [-m, M| with —m =inf{y : (x,y) e D}, and M =sup{y : (x,y) € D},
and K;(y) >0 for y>0, =0 for y=0, and <0 for y < 0. Also K, = K»(y) is
twice-continuously differentiable in [—m, M], K»(y) > 0 in D. Besides lim,_ K ()
exists, if K = K(y) = K1(y)/Ka2(y) > 0 whenever y > 0, = 0 whenever y = 0, and
< 0 whenever y < 0. :
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Finally g; is “the elliptic arc (for y > 0)” connecting points A’ = (—1,0) and
A =(1,0), g, is “the hyperbolic characteristic arc (for y < 0)” connecting points
A= (1,0) and P=(0,y,): [{7 /—K(1)dt = —1 (e.g. if K; = y and K, = 1, then
yp=—(3/2)"P = —131), g2(=PA): x=[}/—K(@)dit+1, and g5 is “the
hyperbolic characteristic arc (for y < 0)”’ connecting points 4’ = (—1,0) and P =
0,5,): g3(= A'P): x=— [/ /—K(1)dr — 1.

Denote “the elliptic subregion of D” by D, (= the space bounded by g, and
A'A), “the hyperbolic subregion of D’ by D, (= the space bounded by g,, g3 and
AA'), and ‘“‘the parabolic arc of D” by

D,(=A'4A)={(x,y)eD: —1<x<1,y=0}

Note that the order of equation (*) does not degenerate on the line y = 0. But
(*) 1s parabolic for y = 0 because K;(0) =0 and K;(0) > 0 hold simultaneously.
Assume boundary condition

u=0 on g;Ug,. (xx)

The Tricomi problem, or Problem (7") consists in finding a function u =
u(x, y) which satisfies equation (*) in D and boundary condition (**) on g; Ug,

(41, (51, [7D-

PRELIMINARIES. Denote a = (o,00): a1, a2 =0, |a| = o) + . Also if p=
(x,y) € R?  and p=(xyp) e R2 then denote pr=x*y* p,p>=xx+ yy,
Pl = (<p, o))"
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Finally denote
a o aq o
Dy =4, Dy=—, and (D*)(p)= (D'D;u)(p)

for sufficiently smooth functions u = u(p) : p = (x, y) € ®R%. Consider the adjoint
equation

L+WEK1(y)Wxx+(KZ(y)WY)I+r(x’ y)w=f(x, y)v [*]

([1]-12], [6]), in D, where L* is the formal adjoint operator of the formal operator
L and is L* = L. (Note that equations for characteristics of (*) and [*] are
identical). In fact,

(KZ(J’)Wy)/ = Kz (y)wyy + K;3(¥)wy, and
thus
Lw = (K (0)W), + (K2 (¥)W),, — (K3 (»)w), + r(x, y)w
= Lw, because (Kz(y)w),, = (K2(y)wy)" + (K3 (»)W),.

Note in general that if

2 2
Lu= Y a;(p)DiDju+ Y  ai(p)Du+ a(p)u, then
ij=1

i=1

2
L*w= ) DiDi(ay(p)w) - Z Di(ai(p)w) + a(p)w.

2
i,j=1 i=1

Assume adjoint boundary condition
w=0 on g;Ugs. []
Denote
C*(D) = {u(p)|p = (x,y) e D(= DUG): u=u(p)

is twice-continuously differentiable in D}.
This space is complete normed space with norm

[ullc2(5) = max{|D°u(p)| | p € D: |a| < 2}.
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Also denote

L*(D) = {u

| e < oo}.

The norm of space L?(D) is

1/2
lully = lll 200 = (jD |u(,,)|2d,,) ,

where p = (x, y), and dp = dxdy.
Besides denote

D(L) = {ue C*(D): u=0 on g, Ug},
which is the domain of the formal operator L, and
D(L*) ={we C*D): w=0 on g;Ugs},

which is the domain of the adjoint operator L*.
Finally denote

W2(D) = {u| D°u(-) € L*(D), |a| < 2}

which is the complete normed Sobolev space with norm
1/2
2 o012
leally = Neell 2y = (nuumm +|; I unu(m) ,
a|=2

or equivalently: ||ul|, = (Z ||Dau||iZ(D))l/2>

lo) <2

W2(D,bd) = DDy,
which is the closure of domain D(L) with norm | -||,, and
W3(D,bd*) = DL,
which is the closure of domain D(L*) with norm || -||,, or equivalently:
W2(D,bd") = {we W2(D): {Lu,wy = <{u, LYw), for all ue W3 (D,bd)}

on the corresponding norms.

DerINITION. A function u = u(p) € L?>(D) is a weak solution of Problem
(T) if
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fiwdo = <u, LTwho  ([4]2),p- 86-106)
holds for all we W3(D,bd") ([4]z), p. 86-106).

CriTeriON ([I]). (i). A necessary and sufficient condition for the existence of
a weak solution of Problem (7') is that the following a-priori estimate

Iwllo < CIILTwlo, (4P)

holds for all we W}(D,bd"), and for some C = const. >0 ([4]), p. 86-106).
(i1). A sufficient condition for the existence of a weak solution of Problem (7T')
is that the following a-priori estimate

Iwlly < CIIL wlly, [4P]

holds for all we W}(D,bd*), and for some C = const. > 0.

Also note that both the Hahn-Banach Theorem and the Riesz Representation
Theorem would play ([4]3), p. 92-95) an important role in this paper if above
criterion were not employed. For the justification of the definition of weak solutions
we apply Green’s theorem ([4];), p. 95-98) and classical techniques in order to
show that f = Lu in D and u =0 on g; Ugs.

A-Priori estimate ([AP])

We apply the a — b — ¢ classical energy integral method and use adjoint
boundary condition [**]. Then claim that the a-priori estimate [4P] holds for all
w e WZ(D,bd"), and for some C = const. > 0.

In fact, we investigate

JT =2{M" w,LTw)y = JJ 2MYwLtwdxdy (1)
D

where
M*w =a"(x, y)w+ bt (x, y)wx + ¢t (x, y)w, in D,
with choices:

y+c fory>0
2 fory<0

(2

a+=—%, and b =x—c; in D, andc*z{

where ¢; =1+ ¢y, and ¢y, ¢;: are positive constants.
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Consider the ordinary identities:
2aKiWwwy = (2aKiwwy), — 2aK1w§ — (axKj wz)x + a Kiw?,
2aKrwwy, = (2aKawwy), — 2aK2w§ - ((aKz)ywz)y + (aKz)yywz,
2bK1wywy = (bKj wﬁ)x - b, K, w)zc,
2bKawiwyy = (2bKawswy), — (bKaw}), + bKow) — 2(bK3) wiwy,
2cKiwywyx = (2cKiwewy), — (K wi)y + (K, )ywi — 2K cxwywy,
2cKawywy, = (cszf)y - (cKz)ywﬁ,
2arww = 2arw?, 2brww, = (brw?)_— (br) w?,
2crwwy, = (crwz)y - (cr)ywz, 2atww, = (ath)y - (at)ywz,
2btwewy, = 2btwyw),, 2ctwyw), = 2ctw§,
where ¢ (= coefficient of w), in L*w), or
1= Kj(»). 3)

Then employing above identities and Green’s theorem, and setting ¢ = K;(»)
we obtain from (1) and [*] that

Jt = J JDZ(a+w + b Wy + ) [Ki ()W + Ka(3)Wyy + 1w + tw,] dixdy

= I + I + L + I, 4)

where

It = JJD(A+W’% + B*w)z, + C*w? + 2D wyw)) dxdy,
II+G = % - ){2a+W(K1WxV1 + KzWyV2)}dS,
G(=0D

I = fi;c;(—ao){_[Kla:w + (a*Kp) va] + (BT w1 + cTv)r] + [(@*v2)f}w? ds,

and

I, — § (A*w? + Brw? + 2D% wow,) ds,
G
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with
AT = 24" K, - b} K + (¢TK)),,
Bt = -24a"K, + b;Kz — (C+K2)y +2c*t,
+ _ [+ + + +
"= [20 r+ Klaxx + (a+K2)yy] - [(b+r)x + (C r)y] - [(a t)y],
DT = —[K] Cjc. + (b+K2)y — b+t], and
/I+ = (b+v1 — c+v2)K1, B+ = (—b+V1 + C+V2)K2,

Dt = b+K2vz 4 C+K1V1, where

v=(v,n) = (%,—Z—f), (ds > 0), (5)

is the outer unit normal vector on the boundary G of the mixed domain D.
Note that in D,y >0 (if at =—-1/2,b" =x—c¢;, c" =y + ):

AT =K — (Ki) +((y + 2)K1), = Ki + (y + c2)K],
B" =K+ (K2) — (y + 2)K2), + 2(y + 2)t = Ko + (¥ + ©2) K3,

ot o [_, _ %K,f’] — (= e+ (0 + )] - [—%Kz"}

=—[3r+(x—c)rx+ (¥ +c2)ry], and
DT = ~[((x = c1)Kz), — (x — e1)]]

= —[(x —e1)K; — (x = c1)K;] =0,

because from (3): ¢ = K;(y).
Similarly in D,y <0 (if a* = ~1/2, b = x— ¢y, ¢* = ¢3):

AT =K — (Ky) + (CzKl)y = K],
Bt =K, + (Kz) — (Csz)y + 2ct = 2K5 + Csz’,

ct = [_, - % KZ,,] —[((x = e)r), + (ear),] = [“% ]

=—[2r+(x—cp)ry + cjry], and

DY = —[((x = e1)K2), — (x — e1)] = 0,

because from (3): 1 = K;(y).
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Therefore
Ij =Ifp + L + I, (6)

where Q = A*w2 + B*w2 +2D*w,w, = Q(ux, uy),

Ifp = JJ Q(wx, wy) dxdy, or
D,y=0

=[] K+ ki + G+ (r+ e)kwllady,  (6)
yz

L= JJ Q(wx, wy) dxdy, or
D,y<0

I = ” (cKDW? + (2K + co K w2 dxdy, (6),
D,y<0
and

I = ” C*w?dxdy, or
D

—JJ [3r + (x — c1)rx + (¥ + c2)ry|w? dxdy
+ D,y>0
Iy = (6)s
_JJ 2r + (x —c1)rx + czry]w2 dxdy.
D,y<0
On G: claim that
Ij; > 0. (7)

In fact,

IltgnUgs) = _J {w(Kiwxvi + Kawyva)} ds = 0, (M

g1Ugs3

because w =0 on g; Ugs from [**].
Also that

It = J (W(Kiwsvi + Kawyva)} ds > 0. (7),
92
In fact, on g,:

dx=+vV—-Kdy, or v, =—-VvV—-Kv,

because dx = —v,ds and dy = v, ds from (5).
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Also
dw = wydx +wydy = (—wxV2 + wyv1) ds

= (WxV—K + w))v1 ds (with K = K, /K3)

Y —Kiwy + \/szy
= 141 ds
v K>
_ K] Wx — / _KIKZWy Vi ds
- =K1K,
Kiwyvy + szva

= ds (because: Krv; = —/—K 1K)

—v =K1 K> (

or
(K1 WyVy + szyV2 dS| —v =K1K dw. (7)3

Therefore from (7), and by integration by parts we get that
=1 J md(wz)__-J (V=KK) W d,

because w =0 at the end-points of g, (as w=0 on g; and w=10 on g3).

But
dy=vids >0 on g,.
Thus
1 (KiKy)'
It =—J ——=_yw2dy>0 7
gz 4 o /_K‘“‘I‘K""2 y ( )4

from condition [R;p], completing the proof of (7), and thus of (7) (from (7),).
Claim now that

Iz > 0. (8)

In fact,

1 | 1
Ligug) = J { [EKleZ] + [(b*v; +ctv)r] + [_§K2IV2] }wz ds, or
g1Ug;
I;EglUgs) - J;; Ug {[(>" v + c+vz)r]w2} ds =0, (8),
1 3

because w =0 on g, Ugz from [**] and 7= K; from (3).
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Also that

1 1,
I2+gz = ng{ [§K2"’2] + [((x — c1)v1 + c2v2)r] + [—-Eszz} }wz ds,

or

L, = J {[(x = c1)v1 + c2v2]r}w? ds > 0, (8),
g2

from condition [R,,] and the fact that (x — ¢;)vi +c2v2 <0 on g, (ason g, : v >
0,vy<0and x—¢ = on v/ —K(t)dt — ¢y < 0) completing the proof of (8), where

12+G = Igznggs) + 12;2 = 12-.;2(> 0)'
Claim then that
By = 0" (nsw)ds >0, 9)
G

where
Ot (wx,wy) = ATw2 + BYw? + 2D w,w,

is quadratic form with respect to wy, and w, on G.
In fact, note that on g, (if a* =—1/2, bt =x—c1,c" =y+c2):

At =[(x— )i — (y+e)v2)Ki, BY = [-(x—ci)vi + (y + c2)n]Ks,
Dt = (x — c))Kava + (¥ + c2) Ky vy
From adjoint boundary condition [**] we get
0=dwl, = wy dx + wydy, or
wy = Ntv, w, =Ny, (9a)

where Nt = normalizing factor. Therefore

13-21 = L Q+(Wx’ Wy) ds = J (N+)2[(x —c1)v1 + (y + c2)va)H ds, (10)

g1

where
H = K\v? + K»v3 (>0 on gy). (10a)

It is clear from (10)—(10a) and condition [R;| that

B = | (07 ety = o+ e 20 (10b)
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Similarly on g5 (if at = —1/2, b" = x — ¢y, ¢" = ¢3):

I :J Q*(wx,wy)ds:J (NY)?[(x — e1)vi + camp]H ds,  or
g3

393
g3
I, =J (N*)[(x = 1) dy — e2 dx]H =0, (1)
g3
because
H=0 on g3, (11a)
as g; is characteristic.
Finally claim that on g, (if a* = —1/2, b* = x — ¢}, ¢t = 3):
I, = J Ot (wy, wy)ds > 0. (12)
g2

In fact, O = Q*(w,,w,) is non-negative definite on g,. It is clear that

At = [(x —ct)vi —c2v2]Ki >0 on g,

because of
(x —c1) Ny, = J vV—=K(t)dt —co <0 on g,

d
V1=—)—)

dS g2

> 0, V2=—%

<0, K|, <0

g2

v2 = —v—Kv, on g, and of condition [R¢]. In fact,

[(x = e — eama]l,, [(J V=R dt - co) +V°K cz] .
= (J: \/T(t)dt+cz\/j—co)v1 >0 on g,

from condition [Rg]. Therefore

+ (J: A /—K(t) dl.-l- coV—K — Co) viKi >0 on g. (12a)

Also

B+ = [—(x - C])vl + Csz]Kz, or

_ y
Bt = _<J V-K(t)dt+ c;vV—-K — Co>V1K2 >0 on g, (12b)
0
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because of condition [Rg), vi|,, >0, K3|,, > 0, and of above facts. Note that
AT = (-K)B* on g,. [12a]
Besides

Dt = (x — c1)Kava + c2Kyvq, or

Dt = [— (J: V—-K (1) dt - co) K,vV—-K + czKl] vi, oOr

Dt = -V —-K1 K> (J: \/ —-K(t) dt + cvV—K — Co) vy on g, (12¢)

because

—Kl/Kz\/ —-K=v-K and Kz\/-—K = \[—Kle.
Note that

Dt =+v—KB" on g, [12¢]

because v—K1K; = V—-KK.
Finally from [12a] and [l12c], we get

AtBt —(D*)’=0 on g. [12d]
Therefore the quadratic form Q% is

Q+ = Q+(Wx,wy) = (V _wa + Wy)z(E+) >0 on g2, Or

Otds=—(V—Kwyx+ wy)z(r v -K(t)dt+ c2vV—K — c0>K2 dy, or
0

I, =— J (V—Kwy + wy)2 (J: V—K(t)dt + c2V—K — co) K>dy > 0, [12]
92

because of condition [Rs], dy(= v ds)|g2 >0, and K, > 0 on g,, completing the
proof of (12).
Therefore
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1 (KiK2)'
=1 J K1k 24
¢ 4 92 V_KIKZW 4

+ ‘ {[(x = c1)v1 + cava]r}w? ds

Jg2

+| A= ey - v+ e axiE
Jg

_ (V—Kwx 4+ w,)? (r V—K(t)dt + cavV-K — CO)KZ dy.  (14)
Jo»

0

But on g,(: dx =+v—-Kdy)

[(x = c1)vi + eam]ds = (x — ¢1) dy — cadx = [(x — ¢1) — c2V—K] dy
= (Jy V—K(t)dt — c;vV—K — co) dy (<0). (14a)
0
Thus

It = j (N*)(x = 1) dy = (y + e2) dx]H

0

SR (R )

L S

0

where H = Kjv + K;v2 (>0 ong;), and N* = normalizing factor: w, = N*v,
wy = N"v; (on gi).

Note from (15) that the two conditions ([R),]-[R1s]) could be replaced by the
following condition [R;] on g,:

[R1] : (K1 K2) + 4rv/—KiK; (Joy V—K(t)dt — c)vV-K — co) >0. (16)

Similarly

If =If oo+ 1} ,c00 OF (17)
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B[] -ere -t b+ anw?
D,y>0
+ (K1 + (y+ ) K)w2 + (K2 + (¥ + cz)Kz')wﬁ} dxdy
+ JJ {—=@r+(x—ci)rx + czry)w2
D,y<0

+ (2K )W? + (2K, + czKé)wﬁ} dxdy.
It is clear now from (4), (15), and that
Jt=I5+ 15 > I,

pa’ +£b2 > 2|ab|, > 0.

But from (1) we get
2MYwLtw = 2atwLtw + 2b wyL*w + 2c*w,L*w.

Therefore from (1), and we find

JT < || 2|M*wLtw|dxdy
b

< || {2latw||Ltw|+ 2|6 wy| |Ltw| + 2|cTw,| |LTw|} dxdy
v J D

L

IA

(@ w) +— (L )| + | iy (BFwe)? + — (L w)?
1y u

JJD 2

+ [,u3 (cTw,) + ;‘1— (L+w)2] } dxdy, or
3

Jt < ” T (w, wx, wy) dxdy + (——1—+i+i) JJ (L*w)? dxdy,
D M Ky U3 D _

where y; = const. > 0(i = 1,2,3), and

T+ = T*(w,we,wy) = 1 (@)W + 1 (67)% (wx)* + 13(c¥)* ().

Denote

1 1 1
Cih=4/—+—+— (>0).
My Hy M3

(18)

(19)

(20)

(21)

(22)

(23)
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Thus from [(19) and (22)-(23) we get
If <Jt < JJDT+(W, Wy, wy) dxdy + C||[L*w||3, or
I — JJD T+ (w, wy,w,) dxdy < C?||L*w]||Z. (24)
Therefore from (2), and we find
“ { - [(3r+(x—cl)rx+(y—f—cz)ry)—i—lul]w2
D,y=0 4
+ (K1 + (y + &)K]) — mp(x — e1)*]w]

+ (K2 + (¥ + ) K;) — ps(y + Cz)z]wf} dxdy

Ay d e an cue

+[(e2K]) =ty (x — 1) ]w?
+ [(2K2 + C'2K2,) — U3 (Cz)z]wi} dxdy

< CH|L w5 (25)

But

w2 = (” +] ) (2 + w2+ w?) dxdy. (26)
D,y>0 D,y<0
Thus from (25)—(26) and conditions ([R3]—[R4]—[Rs]) we get

2 2
Clwll? < CEIL w2, or
2
w2 < C2LL* Wi,

with C = C;/C; = const. > 0, completing the proof of the a-priori estimate [A4P].
Note that

G = \/min(511,521,531) + min(512>522,532) (> O)’ (27)
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where
0 =const. >0 (i=1,2,3;j=1,2) in conditions ([R3]-[R4]-[Rs]).

Therefore by above Criterion ([I]) the following Existence Theorem holds.

Existence Theorem

Consider Problem (7') with parabolic elliptic-hyperbolic equation:

Lu = Ki(Y)uxx + (K2()uy)' + r(x, y)u = f(x, ),

and boundary condition: # =0 on g; Ug,. Also consider the simply-connected

domain D(<=%R?) bounded by a piecewise-smooth boundary G = éD = g; Ug, U

gs:curve g (for y > 0) connecting 4’ = (—1,0) and 4 = (1,0), and charac-

teristics g2, g3 (for y <0) such that g»: x= [ \/-K(dt+1, g3: x=— [

v/—K()dt— 1, and K = K1 /K, : lim,_ K(y) exists, Ki(y) > 0 whenever y > 0,

=0 whenever y =0, and < 0 whenever y <0, as well as K3(y) >0 in D.
Assume conditions:

[Rig): <0 on g,
[Ris): (KiK3)' >0 on g,
[Ri): K/ >0(i=1,2) in D,
[R2]: (x —c1)dy — (y + c2)dx = 0: “‘star-likedness” on g,

(Rs]: 4Br+ (x—c)rs+ (y+e2)ry) + 4y < — 4611 <0 fory>0
3 42r+(x—ci)re+cary) +uy < — 4912 <0 for y <O,

(Ry]: Ki+(y+c)K —p(x—c1)> 201 >0 fory=0
. CzKl’ — Uy(x — 61)2 >0 >0 fory <0,

[Rs]: K2+()’+¢2)K2I-/13(}’+Cz)22531 >0 fory=0
5.
2K> + 2K} — p3(c2)* = 3, > 0 for y <0,

where J;; are positive constants (i =1,2,3;j=1,2), and

[Rs]: J: v —=K(t)dt+ con/—K(y) —co <0 on g3,

where K;(i =1,2), r, and f are sufficiently smooth, and ¢; = 1 + ¢y, and ¢y, c3,
and yg; (i=1,2,3) are positive constants.
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Then there exists a weak solution of Problem (7)) in D.

SPECIAL CASE: In D take

Ky=y and K; =y —ky,(>0), where k=constant >2 and

Yp t

¥, = constant (< 0): J ———F—dt=—1(y, <t<0), or equivalently

0 t—-kyp

J’p=1/(\/k—l—ktan‘1 (<0) for k> 2.

=)

Then conditions [Ry3], [R4], [Rs] and [Re] hold on y = 0 and in general in D.
Note that substituting |/~t/(t - ky,) = ¢, one gets that

1/———dtzk tan~', [————+\/—y(y — ky,),
JO t—kyp yp y_'kyp y(y yp

where

29 -1 4
[ ey do=onte e

Note that conditions ([Ris]—[Ris]) could be substituted by condition [R;] (16).

OpeN: If r =0, then (25) does not yield existence of weak solution.
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