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1. Introduction
We know that any element 4 of the group SO(3) can be represented as
A =A1A2Ai, Al,A; €S01(2),A2€S02(2)

where SO (2) = {4 € SO3) | dex = ex} (k =1,2) ([1I]). In the present paper, we
shall show firstly that the similar results hold for the groups SU(3) and Sp(3)
(Theorem 1). Secondly, we shall show that any element a of the simply connected
compact Lie group Fj (resp. Eg¢) can be represented as
ar, oy € Spini(9), az € Spiny(9)
o= o0, _
(resp. oy, oy € Spini(10), ay € Spiny(10))

where  Sping(9) = {a € Fy,|aEx = Ex} (resp. Sping(10) = {o € E¢|aEx = Ey}
(Theorem 3 (resp. Theorem 7))). Lastly, we shall show that any element o of the

simply connected compact Lie group E; can be represented as
o = oqopaiasay, oy, 0,0y € Spini(12), 0,05 € Spiny(12)
where Sping(12) = {a € E7 | arcx = kpar, o0, = w0} (Theorem 10).
In this paper we follow the notation of [2]
2. Spinor-generators of the groups SO(3), SU(3) and Sp(3)

Let H be the quaternion field with basis 1, 7, j and k over R. Then we can
express each element a = ag + a1i + a2j + ask € H in the following polar form

3
a=r(cosf+usinf), u*=-l(ueH), r=la = Za,%,BGR.
k=0
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Hereafter, we briefly denote by re*® an element r(cos @ + usin ) after the model
of complex numbers.
The classical groups SO(n), SU(n) and Sp(n) are respectively defined by

SO(n) ={AeM(n,R)|'AA = E,det 4 = 1},
SU(n)={4eM(@n,C)|A*A = E,det4 = 1},

Sp(n) ={AeM(n H)|A*A = E}

where we follow the usual convention for matrices: M(n,K) (= the set of square
matrices of order n with coefficients in K = R, C or H), ‘A, A*(='4), E (= the
unit matrix) and det (= the determinant).

THEOREM 1. (1) Any element A € SO(3) can be represented as
A =A1A2A;, A],A; ESO](Z), AzGSOz(Z)

where SOr(2) = {A € SO(3) | Aex = ex} = Spin(2) (k=1,2), ey ='(1,0,0), ex =
’(0,1,0).
(2) Any element A € SU(3) can be represented as

A= AlAzA;, A],A{ € SU1(2), A2 € SU2(2)

where SUx(2) = {4 € SU(3) | Aex = e} = Spin(3) (k=1,2).
(3) Any element A € Sp(3) can be represented as

A= A1A2A{, Al,A; € Sp1(2), A2 € Sp2(2)

where Spi(2) = {A € Sp(3) | Aex = ex} = Spin(5) (k =1,2).

Proor. It suffices to prove (3), because we can reduce (1) and (2) to the
particular case of (3) in the proof below. First, for a given element A4 € Sp(3),
suppose Ae; = (aj,az,a3), a #0 (ar € H (k =1,2,3)). Then there exist an
element u € H satisfying u> = —1 and a real number « € R such that asa;! =
(las]/|az|)e**. Choose 6 € R such that cotd = |a3|/|az| and set

1 0 0
B = (0 e"/2cosd —e*/?sinf | € Spi(2).
0 e“/2sin@® e */2cosf
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Then we get
B]Ael = ’(bl,O,b3), bl,b3 e H.

Next suppose b3 # 0. Then there exist an element v € H satisfying v> = —1 and a
real number fe R such that b;b;! = (|b1|/|b3|)e”. Choose ¢ € R such that
cotyp = —|b;|/|b3| and set

e 2cosp 0 —e”sing
B, = 0 1 0 € Sp2(2).
e #2sing 0 e*¥2cosg

Then we get
B;)_B]Aé] = t(Cl,O, O), C1 € H.
Since |ci| =1, we can say c; =e"” (w2 =—1,we H, yeR). Set
e 0 0
B=| 0 1 0 ) € Sp2(2).
0 0 e™

Then, since it follows B;B,BjAe; =e;, ie, B}B,B1A € Spi(2), we can set
B3B,B1 A = B| € Sp1(2). This implies

A =A142A4], A1, A; € Spi(2), A2 € Sp2(2).

3. Some elements of Spin(9), Spini(10) and Spin,(12).

As for the definitions of Sping(9), Sping(10) and Sping(12) (k = 1,2), see
Section 4, 5 and 6.

LemMMA 2 (Section 4 and [2]). (1) Let ay(a) be the mapping o(a) defined in [2]
[Lemma 2.(1). Then ai(a) belongs to Spini(9) = Spin,(10) < Spin;(12).

(2) Forae @, a #0, let ay(a) : I — I be the mapping defined by changing all
of the indices from k to k41 (index modulo 3) in the definition of a(a) of [2]
[Lemma 2l.(1), that is,
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(. &G+ & &G—¢ (a,x3) .
&= 5 5~ oS 2|a| 7 sin 2|a]
1&6=6
63 Shald 63 < cos2|al + (4, )sm 2|a|
2 2 |a|
x| = x; cos|a| 445 a sm|a|
(&3 —¢&1)a . 2(a,x2)a . 5
{ x5y =x; — —2|T—sm2|a| — Tsm |a]
/ X1a .
X3 = x3 cos|a| — —-sin|a|,
( |a]

where az(a)X = X'. Then ay(a) belongs to Spiny(9) < Spiny(10) = Spiny(12).

LEMMA 3 (Section 5 and [2]). (1) Let B,(a) be the mapping B(a) defined in [2]
Lemma 2.(2). Then B,(a) belongs to Spini(10) < Spini(12).

(2) Forae €, a #0, let B,(a) : 3¢ — € be the mapping defined by changing
all of the indices from k to k + 1 (index modulo 3) in the definition of f(a) of [2]
Lemma 2.(2), that is,

53—é1+53+51 (a, x2)

4
/ . .
= — cos 2 i sin 2
61 2 P |a| + |a| |a|
186, =6
;& =8&1 | &3+ ¢ (a,x2) .
= cos?2 sin 2
|6 =255+ 2 Seos2al + 15 sin2la
)
x| = x cos|a] 483 a sm|a|
+ 2(a,x3)a .
{ x3=x + 1(53T|élll—sm2|a| - ——(—l—;—l—zzl-smzlal
X3 = x3cosl|a| + ifﬁsin|a|,
\ la|

where B,(a)X = X'. Then B,(a) belongs to Spiny(10) < Spiny(12).

LEMMA 4 (Section 6 and [2]). (1) Let y,(a) be the mapping y(a) defined in [2]
Lemma 3.(1). Then y,(a) belongs to Spin(12).
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(2) ForaeC, a#0, let p,(a) : BE — BE be the mapping defined by changing
all of the indices from k to k + 1 (index modulo 3) in the definition of y(a) of [2]
Lemma 3.(1), that is,

(&1 =¢&
& = 522_ < + 52;- fcos 2|a + —_(a[a)l)Z) sin 2|q]
& =&
x| = x cos|a| — f;z—rsinld
/ (my+ma . 2(a,x2)a . >
= ~—= "2 _sin2|al| — ——=—sin
x2 x2 + 2|a| |a| lalz |a|
x5 = x3 cos|a| — Msin|a|
\ |a]
( ’7{ =m
) _Ma—n Mm+7 _(ax) .,
=" +—5—cos 2lal mre sin 2|a|
’7§ =3
, ax;
{ ¥1 = y;cos|q +W51n|a|
&+ Ea . 2(a, yy)a .
Yy =Yy — %sm 2]a| — —22—s1n2|a|
xia .
y3 = yycoslal + —Hsm|a|
\
( _
éI: _62 £+52+fcos2|a[+(a’y2) sin2|a|
) 2 2 |a|
) m—=n M+ (a,x2) .
= — 2la| — sin 2|a|,
\ n 5 + > cos 2|a| a |a|

where yy(a)(X,Y,En) = (X', Y', & n'). Then y,(a) belongs to Spiny(12).

(3) Let 61(a) be the mapping d(a) defined in [2] Lemma 3.(2). Then 61(a)
belongs to Spini(12).

(4) Forae €, a # 0, let 65(a) : PBE — PE be the mapping defined by changing
all of the indices from k to k + 1 (index modulo 3) in the definition of d(a) of (2]
Lemma 3.(2), that is,
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(&) =¢&
& = % ;_ ¢ + 622_ écos 2|a| — i(a[a);Z) sin 2|a|
& =&
\ x; = xicos|a| + i%sinlal
/ (n, —ma . 2(a,x)a . »
= X7 — [—=————sin2|a| - ——*sin"|a
x5y = x3cos|a| + iMsinlal
L |a|
(m=m
ny = 12 ;_ T4 ”22_ 7 cos 2|a| — i(a|’a72) sin 2|q]
n3 = 13
axs .
\ ¥1 = ycosla] + i—l—a—l351n|a|
(& —¢&)a 2(a, y)a .
Vyy =Yy — zw-sm2|a| - ——2251n2|a|
, . X1d .
Y3 = yjcoslal + IWsmla|
{ &= éz;é - fz; écosZ|a| + ii%sinﬂal
\ n' = 2 ; n_ ”2; ”cos2|a| + i(al":;Z) sin 2|a|

where 82(a)(X, Y, é,n) = (X', Y', &', n'). Then d(a) belongs to Spiny(12).

4. Spin(9)-generators of the group Fy
The simply connected compact Lie group Fy is given by
Fy = {a€Isor(J) | (X x ¥Y) =aX xaY}.
The group F; has subgroups

Sping(9) = {o € F4|aEy = E} (k=1,2),
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where E; = (1,0,0;0,0,0), E; = (0,1,0;0,0,0) € 3, which is isomorphic to the
usual spinor group Spin(9) (2], [3]-

THEOREM 5. Any element o € Fy can be represented as
a=ajopoy, o, €Spini(9), ar € Spiny(9).

Proor. For a given element o€ Fy, it suffices to show that there
exist oy € Spini(9) and oy € Spiny(9) such that ayoj0E; = E;. Now, for «F; =
(&1,&,,&35x1,x2,x3) = Xp, choose ae € such that (a,x;) =0, |a| ==/4, and
define o;(a) € Spin;(9) of Lemma 2.(1). Then we get

ar(a)Xo = (1,83, &3 %1, %, x3) = X1. &1 =¢1,8,=¢€ R, x;. €€,
If x{ # 0, define ocl(nx{/4lx{|) € Spin;(9). Then we get
ar(mxy /4|x ) X1 = (&],&5,85;0,x5,x3) = Xo, & =¢&1,E e R, x) €C.

The condition X x X» =0 of the above form is equivalent to the following
equations:

&85 =0, & =xix], &/ —xé’xé’,

Y2 . " // " Il —
xyx3 =0, &yx; =0, $3xy =

(%)

By the first equation &;&5 = 0 of (x), it is enough to consider the two cases: (I)
& =0, (II) & #0 and & = 0.

(I) Because of (x) and &) = 0, we have xjx! =0, hence x} = 0. Therefore
X, is of the form

= (é;laoa é:/al I 270) éi/ = éia g € R) xé/ € G

Choose be @ such that (b,x7) =0, |b| =n/4, and define ay(b) € Spina(9) of
Lemma 2.(2). Then

w(b)X = (2,0,5,0,x0,00 = X3, &V =P eR Y et

If x23) =0, then by the condition X3 x X3 =0 we have that (¢ (3))2 (& (3))
x§3)x§3) =0 so that X; =0, which is a contradiction. Hence x(3) # 0. Consider

ar(nxs) /41x5|) € Spiny(9). Then
aa(mdd 4PN X = (62,0,89,0,0,0) = X, &2, e R.

From X; x X4 =0, we have &"¢® = 0. 1f ¢ =0, then X, = E; since & =
tr(Xq) = tr(Ey) = 1. If &Y =0, consider ay(n/2) € Spiny(9). Then
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w(n/2)Xs = (£7,0,0,0,0,0) = X5, &) =& e R.

Thus we obtain X5 = E|.
(II) Because of the condition £5x) = 0 in (%), we have xj = 0. Therefore X
is of the form

X> = (¢],87,0;0,0,x5), & eR, xjeC.
Then o)(7/2)X> is nothing but X, in Case (I), so that Case (II) can be reduced
to Case (I).
We have just completed the proof of Theorem 3.
5. Spin(10)-generators of the group Eg
The simply connected compact Lie group Eg is given by
Es = {aeIsoc(3€) |aX x aY = tar(X x Y),{aX,a¥> = (X, YD}.
The group Es has subgroups
Spini(10) = {ax € E¢ |aEx = Ex} (k= 1,2),

which is isomorphic to the usual spinor group Spin(10) (2], [3).

LEMMA 6. (1) For any element
X = (&1,8,¢3;x1,0,0), & eC,x1 €€
of SC, there exists some element oy € Spin|(10) such that
uX =(£,6,¢30,0,0), & =¢, & €eC
(2) For any element
X =(£,0,0;0,x2,x3), & €C,xce€C
of I, there exists some element oy € Spiny(9) such that
uX = (£,0,0;0,x),x3), & =& €C,xbeCC xeC.

ProoF. (1) For x; =p+iq (p,qe®), choose ae€, a+#0, such that
(a,p) = (a,q) =0, and define a;(na/4|al) € Spin;(9) of Lemma 2.(1). Then

a[(ﬂ:a/‘”al)X = (é;,é£7é;;x{7070) = X17 é{ - él) éé - 6; € C, X{ € GC.

Next, for x{ = p’'+iq’ (p',q' € €), choose be€, b +#0, such that (b,p') =
1
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(b,q") =0, and define B,(nb/4|b|) € Spin;(10) of Lemma 3.(1). Then
Bi(zb/4lb)) X, = (£7,0,0;x7,0,0) = Xz, & =& €C, x] e €S,

Next, for x| = p” +iq" (p”,q" € €), if q" #0, define a(nqg”/4|q"|) € Spini(9).

Then '

a(ng" [4lg") o= (&, &, &7 p®,0,00= X5, &V =&, =-& e ¢, pV €.

Finally, if p® # 0, define B,(zp® /4|p®)|) € Spin1(10). Then we get

B (np® /4| pP)) X5 = (&9, e:0,0,0), &P =¢, P ec

as desired.
(2) At first, we show that for any element

Z = (ClaOaO;Oa 22,23)7 Cl € Ra Zk € Q:y
there exists o) € Spin;(9) such that
uZ = ({,0,0;0,23,0), (j€R,z;eC.

In fact, if zz3 # 0, choose > 0 such that cot(?|zpz3]) = —|22|/|z3|, and define
1 (12223) € Spini(9). Then we get (z3-part of o1(17223)Z) =0. If z; =0, then
a1(n/2)Z is of the form as desired. Now for a given element X =
(¢1,0,0;0, x2, x3) e 3°, express it as X = Y +iZ,Y,Z € J and apply the result
above to Z, then we get the required form X = oY + i Z.

THEOREM 7. Any element o € E¢ can be represented as

o= ajoe, o, € Spini(10),ar € Spiny(10).

Proor. For a given element a € Eg, set aE; = (&1, &), &3 x1,%2,x3) = Xp €
. By Lemma 6.(1), we can take o € Spini(10) such that

uXo = (£1,85,85:0,x5,x5) = X1, & =4,

because the subspaces {(&1,&;,&3;x1,0,0) € SC} and {(0,0,0;0,x;,x3) € SC} are
invariant under the action of the elements of Spin;(10), respectively. From the
condition X; x X; =0, we have &¢; =0. As a result, the argument is divided
into the following three cases:

(I) Case &, =0, & # 0. From X; x X; = 0, we have £3x; = 0, hence x; = 0.
Therefore X7 is of the form

Xl =(é{,0,éé;0,)€£,0), é; 2615
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Thus, for X; € 3¢, we can take a; € Spiny(10) such that
X1 = (£/,0,£3;0,0,0) = X3,

in the same way as in [Lemma 6.(1). Then, from X> x X; = 0, we have &/&; = 0.
Combined with (X7, X>) =1, we have also that

X2 = (£/,0,0;0,0,0), (z&)¢f =1 or X, =(0,0,£5;0,0,0), (v€5)E5 = 1.

Thus we obtain that there exist some elements &;(¢) € Spiny(10) and ay(n/2) €
Spiny(9) such that

()X, =E or () (n/2)X, = E),
where ¢;(¢) € Spiny(10) is defined by
82(t)(éla éZa é3a X1, X2, x3) = (eitil ) 62’ e—ité:;; e_it/le y X2, eit/2x3)a teR

(cf. Lemma 10.(1)).
(II) Case & #0, & =0. From X; x X; =0, we have &x5 =0, hence x}) =
0. Therefore X; is of the form

Xl = (é;,ééaOaO’O,xg)’ fi = él'

Thus, by considering a;(n/2) X1, where a;(n/2) € Spin;(9), this can be reduced to
Case (I).
(III) Case &, = ¢&; = 0. By Lemma 6.(2), we can take o € Spin;(9) such that

! " no_n " " Cc _n

Then, from X, x X =0 we have xé’i{?:O, hence x3 =0. Thus, for X; =
(&/,0,0;0,x%,0) € I, we can take a, € Spiny(10) such that

mX; = (&7,0,7;0,0,0) = x5,

because of the result for Spin;(10) similar to [Lemma 6.(1) for Spin;(10). Hence
this can be reduced to Case (I), because X3 is nothing but X, in Case (I).

We have just completed the proof of Theorem 7.

6. Spin(12)-generators of the group E;

The simply connected compact Lie group E7 is given by

E7 = {a e Isoc(PC) |a(P x Q)a~! = aP x aQ, {aP,aQ> = (P, Q>}.

The group E7; has subgroups



Spinor-generators of Fy, E¢, E7 715

Sping(12) = {o € E7 | ok = Kot oy, = e} (kK =1,2)

where x; and y; are defined by

Kk(X7 Y, é,”) = (_(Eka X)Ek+4Ek X (Ek XX)a (Ekv Y)Ek“‘4Ek X (Ek X Y)’ —6777)’

,uk(X, Ya é) 77)’—‘ (2Ek X Y+’7Ek, 2E‘k X X‘f‘éEk, (Ek7 Y)a (Ek7 X))a

respectively, e.g., when k = 1, for P = ((&y,&;,&35x1, X2, x3), (11,712,735 Y15 Y2y V3)s

&n) e BC,
KIP = ((—51752753;)‘:1’0, 0)7 (’71’ —W3, —N3; _ylaoy O)a _é’”)a

/"IP = ((”a 773a ;3 —y1,0, 0)) (éa 63& ‘fZa —-X1,0,0), ’71’61)-

Then Spink(12) is isomorphic to the usual spinor group Spin(12) (2], [4]).

LEMMA 8.

For an element P = (({1,&5,&3;x1,%2,%3), (11,112,713 Y15 V21 V3),s

& n)e BE satisfying Px P =0, it holds the following

(1)
(2)
(4)
(6)
(8)

(10)

Sim + Eamp + E3mz + 2(x1, yy) + 2(x2, ¥2) + 2(x3, y3) — 3&n = 0,

&8s —mn — x1x1 = 0,
162 — 31 — Xx3%X3 = 0,
$2x2 + Ny, — X3%1 = 0,
nan3 — &&= iy =0,
mny — &3¢ — y373 =0,

(12) myy; +&xo — 3397 =0,

(14) mx1+ &y + %3 =0,
(16) myx3s+&1y3+9%2 =0,

ProOF.

LEMMA 9.

(3)
(5)
(7)
(9)
(11)
(13)
(15)
(17)

&381 — Mo — x2%2 =0,
$1x1+ny, —%xX3 =0,
¢3x3 +1y; — X1x2 = 0,
n3m — &8 — 1,7, =0,
myr+Ex1 — 773 =0,
N3y3 +Ex3 — Yy, =0,
nx2+¢1yy + X3y =0,
mx3 + &y3 + X1y, =0.

These are immediate from the straightforward computation of
P x P =0. (Note that those are not all of the relations followed by P x P =0.)

Spini (12) such that

(1) For any element P e RBE, there exists some element a; €

P = ((515070; OaxZax3)a (’71’”2,773; Oa Y2, y3)’ faﬂ)

In particular, if an element P = ((0,&,,&3;x1,0,0), (7,,0,0;0,0,0),0,7) € BE
satisfies the conditions P x P =0 and {(P,P) = 1, then there exists some element
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ay € Spiny (12) such that

wP=1, wherel =(0,0,0,1)e PC.

(2) For any element P e BC, there exists some element ay € Spiny(12) such
that

(X2P = ((O,éz,O;X],O, X3), (”1,7723’73; ylyoa y3)aé7”)'

In particular, if an element P = ((&4,0,¢5;0,x2,0),(0,7,,0;0,0,0),0,7) € BE
satisfies the conditions P x P =0 and {P,P) = 1, then there exists some element
ay € Spiny(12) such that

P =1.
Proor. (1) The first half is the very Proposition 4.(2). We shall now
prove the latter half. For an element P=((0,&;, &3; x1,0,0), (1,,0,0;0,0,0),0,7) €

P, act oy € Spin;(12) that is given in the first half which is composed of the
elements of Spin;(12) defined in Lemmas 2, 3 and 4, on P. Then we get

« P = ((0,0,0;0,0,0), (1;,0,0;0,0,0),0,7") = Py,

because the subspaces (P, <‘BC>{ and (PE)! of B are invariant under the
action of the elements of Spin;(12) defined in Lemmas 2, 3 and 4, respectively,
where

<‘BC>] = {((61707 0,0, 0,0), (Oa N2, M3; yluoa 0)7 670) € ‘Bc}y
(BT = {((0,£,&3;%1,0,0), (,,0,0;0,0,0),0,7) € B},

<“BC>;I = {((Oa O’ 0» Oa X2,X3), (070’0; 07 Y2, y3)’070) € “BC}

From P x P =0, we have 57’ = 0 by Lemma 8.(2). As a result, the argument is
devided into the following three cases:

(I) Case n; = 0,7’ # 0. Py is of the form P; = ((0,0,0;0,0,0),(0,0,0;0,0,0),
0,7'). Now, for 6 e C satifying (16)0 = 1, define the mapping (8) : B¢ — BC
as follows.

€1(0)((&1, &2, &35 %1, X2, X3), (M1, M2, M35 V15 Y2, V3),E: 1)
= ((072¢1,&2,&3; x1, 07 %2, 071 x3), (0%, M3, 1135 1, 02, 093), 07,07 %n).

Then ¢,(0) € Spin;(12). Therefore, noting that (zn’)y’ = (P}, P1) =1, choose
6 e C such that 6% =7’ and set ¢ (). Then we get ¢ (9)P, =1.
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(II) Case #xy#0, n”=0. By considering 7y,(n/2)P;, where y,(n/2)e
Spin;(12) of Lemma 4.(1), this can be reduced to Case (I).

(III) Case #; =#x’ = 0. This does not occur, because {P;,P;) = I.

(2) It is similarly verified by using Spin,(12) instead of Spin;(12) in the proof
of (1).

THEOREM 10. Any element o € E; can be represented as
o = ajopayoyay, o, oo € Sping(12), 0, o) € Spiny(12).
Proor. For a given element o € E;, it suffices to show that there exist
ar, oy € Spini(12) and a, € Spiny(12) such that ajoerojal =1. In fact, since an
element o € E; belongs to E¢( = E;7) if and only if o fixes an element 1, ie.,

al =1 ([4)), it follows ajaraia € Eg, which implies that « € E; can be represented
as a required form by [Theorem 7. Now, set

dl = ((élaé27é3;x17x27x3)9 (771,”2,’73; Y1, Y2, y3)aéaﬂ) = PO € “BC-

Then, by Lemma 9.(1), we can take a; € Spin;(12) such that
le() - ((6{70’ O;O,xé7x:’«;)7 (”;’”évnéaoa yé7 )’:,;),fl, ’7,) = Pl-

From P, x Py =0, we have n{n’ =0 by Lemma 8.(2). As a result, the argument
is devided into the following three cases:

(I) Case 1 =0, ' #0. By [Lemma 8.(6) and (7), we get y} = y}=0.
Furthermore we get ¢’ =0 by Lemma 8.(1). Therefore P; is of the form

Py = ((¢1,0,0;0,x3,x3),(0,75,75;0,0,0),0,7).

Then, by Lemma 8.(8), we have #jn; = 0. Hence there are three cases to be
considered.

(LA) Case 7, =0, n;3 # 0. By Lemma 8.(15), we get xj = 0, that is, P; is of
the form

Pl = ((éi,0,0;0,0,X;), (07 07”:;;0’050)’07’7,)-
Then, applying Lemma 9.(2) to «;(n/2)P;, where o;(n/2) € Spin;(9), we can
obtain that there exists some element o, € Spiny(12) such that oo (n/2)Py = 1.

(LB) Case 5 # 0, n3 = 0. By [Lemma 8.(16), we get x; =0, that is, P; is of
the form

PI = ((51’07 O7Oa xﬁvo)v (Oanéy070, 07 0))0’77/)-

Thus we can easily obtain the required result by Lemma 9.(2).
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(I.C) Case n5 =n5=0. Py is of the form
Pl = ((é;’o’ 0; 07 xé’x;), (O, 07 O; 0, 07 0)’()’ ”I)'

Here we distinguish the following cases:
(I.C.1) When x, #0, x; #0. By Lemma 6.(2), we can take o) € Spin;(9)
such that

fX{Pl = ((é;I,O,O;O,X:’)_,, xj’;/)a (Oa Oa 0;0,0,0),0, ’7”)7 é;l - é{,”” - ”I € C,
x} e€C,x} €@.

Then, by Lemma 8.(4) we have xx7 = 0, hence xj = 0. Thus we easily obtain
the required result by Lemma 9.(2).

(1.C.2) When x} =0, x; #0. Considering a(n/2)P;, where ai(n/2)e
Spini(9), we can easily obtain the required result by Lemma 9.(2).

(1.C.3) When xj # 0, x; =0. We can easily obtain the required result by
Lemma 9.(2).

(1.C.4) When x, =x} =0. We can easily obtain the required result by
Lemma 9.(2).

(II) Case #u,#0, n'=0. By considering 0;(n/2)P), where Ji(n/2) €
Spini(12) of Lemma 4.(3), this can be reduced to Case (I).

(IIT) Case n; =#n' =0. Py is of the form

Py = ((£1,0,0;0,x5,x3),(0,73,73;0, y3, ¥3),¢',0).

Now, as is similar to Lemma 9.(1), we obtain that, for any element P e PBC, there
exists some element o) € Spin;(12) such that

(X]P = ((517 éZa 53; O, X2, X3), (7711 0’ 0; Oa Y2 y3)a éa 77)

Note that the invariant subspaces (B Dy, (BEY] and (BED] of BE under the
action of the elements of Spin;(12) defined in Lemmas 2, 3 and 4. Then, applying
the result above to the present Case (III), we can take aj € Spin;(12) such that

(X;P] = ((é;lsoa 070’ xg,x;},)s (0507 O’ Oa yé,a yél)a é”ao) - PZ'

Therefore we have &/¢” =0 by Lemma 8.(8). Hence there are three cases to be
considered.

(IILLA) Case &) =0, &” # 0. By Lemma 8.(12) and (13), we get x; = x3 = 0.
Then P, is of the form

P2 = ((OaO»O;OsO,O)’ (OvOaO;O, )’g, Yg),f”,o)-

Thus, by considering y,(n/2)P,, where y,(n/2) € Spin;(12) of Lemma 4.(1), this
can be reduced to Case (I.C).
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(IILB) Case &; # 0, ¢” = 0. By [Lemma 8.(15) and (16), we get y; = y§ = 0.
Therefore this is reduced to Case (I.C).
(III.C) Case &) =¢" =0. P, is of the form

P, = ((0,0,0;0, x5, x3),(0,0,0,0, y5, ¥3),0,0).

Here we distinguish the following cases:
(III.C.1) When xj # 0. By Lemma 9.(2), there exists some element o, €
Spin,(12) such that

3 3 3 3) 3) 3
OC2P2 = ((O,fé),O,xg )707xg ) (775 )a”g)vng 7y§ vO y( )),f( )a”(3)) P3-

Here, by Lemma 8.(3), we have ng )p® = 0. Hence there are three cases to be
considered.

(III.C.1.1) Case 77 =0, 73 #£0. By Lemma 8.5 and (7), we get
y?) = yg3) = 0. Furthermore, we get £ = 0 by Lemma 8.(1). Then P is of the
form

Py = ((0,,0,x2,0,x), #,0,75;0,0,0),0,7).

Here, by [Lemma 8.(9), we have n§3)n§3) = 0. Hence there are three cases to be
considered.

(IIL.C.1.1.1) Case 7Y =0, 45 # 0. By [Lemma 8.(14), we get x{*’ = 0. Then,
considering oy(7m/2)P3, where oy(n/2) € Spiny(9), we can easily obtain the
required result by Lemma 9.(1).

(III.C.1.1.2) Case 77(3) # 0, ;7(3) = 0. By [Lemma 8.(17), we get x(3) = 0. Then
we can easily obtain the requlred result by Lemma 9.(1).

(IIL.C.1.1.3) Case 7{") =4 = 0. P; is of the form

0,¢%,0;x,0,x), (0,0,0;0,0,0),0,73).
2 3

Here we distinguish the following cases:
(IIL.C.1.1.3.(i)) When x{¥ %0, x{) 0. As is similar to Cemma 6.(2), we
obtain that there exists some element aj € Spiny(9) such that

EN =D g =pPec,

s P3=((0,&%,0; x,0,x), (0,0,0,0,0,0),0,y¥) =P,
23 = (( 1 3 ) ( ),0,7'") 4 (4)EG x(4)eQZC.

Then, by [Lemma §&.(2), we have x54) 54) = 0, hence x§4) = 0. Thus, considering
az(m/2) Py, where ay(m/2) € Spiny(9), we can easily obtain the required result by
Lemma 9.(1).

(ITII.C.1.1.3.(ii)) When x§3) =0, x(3) # 0. Considering oa(n/2)P3, where
ax(7/2) € Spiny(9), we can easily obtain the required result by Lemma 9.(1).
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(III.C.1.1.3.(ii1)) When x] ) % 0, x( = 0. We easily obtain the required result
by Lemma 9.(1).

(II1.C.1.1.3.(iv)) When x; ¥ — x(33) = 0. We easily obtain the required result
by Lemma 9.(1).

(ITII.C.1.2) Case nf #0, 73 =0. By considering y,(n/2)P;, where
y2(7/2) € Spiny(12) of Lemma 4.(2), this can be reduced to Case (III.C.1.1).

(IIL.C.1.3) Case 7 =#® =0. This does not occur. In fact, note that
the subspace (‘BC>2 of PBC is invariant under the action of the elements of
Spiny(12) defined in Lemmas 2, 3 and 4, where (P>, = {((£,0,&,,30,x2,0),
(0,7,,0;0,0,0),0,7) € BC}. Then, for P3 = axP,, that is,

((0,&2,0,x,0,x), (1Y, 0,755 ¥V, 0,3, £, 0)

where a; € Spiny(12), the condition 7\ = #®) = 0 contradicts xj # 0.

(III.C.2) When xj =0, xj # 0. By considering a;(n/2)P,, where a;(n/2) €
Spin;(9), this can be reduced to Case (III.C.1).

(IIL.C.3) When xj =xj =0, yj#0. By considering y,(%/2)P>, where
y1(n/2) € Spin;(12), this can be reduced to Case (II.C.1).

(II1.C.4) When xj = x§ = y§ =0, yj # 0. By considering a;(7/2)P,, where
a1 (n/2) € Spini(9), this can be reduced to Case (III.C.3).

(IIL.C.5) When xj =x§ = yj = y7 =0. It is obvious that this does not
occur.

We have just completed the proof of Theorem 10.

Conjecture. We know that the simply connected compact exceptional Lie
group Eg has subgroups Ssi(16) = (Es)” (where oy = expnky), k = 1,2,3 (which
is isomorphic to Spin(16)/Z, not SO(16)). Now the authors do not know if
Ss1(16) and Ss;(16) generate the group Eg?
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