NON- c_i -SELF-DUAL QUATERNIONIC YANG-MILLS CONNECTIONS AND L_2 -GAP THEORY

By

Tadashi Taniguchi

1. Introduction

In the context with the 4-dimensional Yang-Mills theory, it would be of interest to study the Yang-Mills theory on several cases which appear naturally. From this point of view, Nitta ([12]), Mamone Capria and Salamon ([8]) developed Yang-Mills theory on quaternion-Kähler manifold and gave the notion of c_1 - and c_2 -self-dual connections which reasonably corresponds to the self-dual or anti-self-dual connections on 4-dimensional manifold ([2]).

In this note, we will give two properties for c_1 - and c_2 -self-dual connections on quaternion-Kähler manifolds; (i) the existence of quaternionic Yang-Mills connections which are neither c_1 - nor c_2 -connections, and (ii) the gap phenomena for quaternionic Yang-Mills connections by L_2 -norm. These results seem natural consequence as higher dimensional analogues to 4-dimensional Yang-Mills theory.

There are remarkable results on the construction c_1 - and c_2 -self-dual connections by Kametani, Nagatomo and Nitta ([6], [9], [10], [11]). As a counter part of this result, we can consider the question whether there exist non- c_1 - and c_2 -self-dual connections on the compact quaternionic Kähler symmetric spaces, so called Wolf spaces. On the other hand, in 4-dimensional Yang-Mills theory, Itoh [3] found the non-self-dual Yang-Mills connections on S^4 and CP^2 . The non-self-duality of the canonical invariant G-connections on S^4 and CP^2 requires the injectivity of the isotropy homomorphisms. Namely, if the isotropy group of base space is embedded into the structure group G, then the canonical connection is not (anti-) self-dual. Employing the ideas in [3] crusiously, we will give the existence of non- c_i -self-dual Yang-Mills connections in higher dimensions. Namely, we show that the canonical invariant connections on a homogeneous G-bundle with some structure group G on a Wolf space give the non- c_i -self-dual Yang-Mills connections. It is also the non- c_i -self-dual quaternionic Yang-Mills connections.

Received July 15, 1996. Revised January 27, 1997.

Secondly, we will discuss on the gap phenomena for quaternionic Yang-Mills fields. This problem has been studied in [14] by using the pointwise norm (cf. [14]). Replacing the pointwise norm to the L_2 -norm, we will show the gap phenomena again for quaternionic Yang-Mills fields. It can be also viewed as a higher-dimensional context to the 4-dimensional gap phenomena via L_2 -norm for Yang-Mills fields (cf. [13]).

2. Preliminaries

A quaternion-Kähler manifold (M,g) is a Riemannian 4n-manifold whose holonomy group is contained in $Sp(n) \cdot Sp(1)$, n > 1. In the case of n = 1, we add the assumption that (M,g) is Einstein and half-conformally flat. It is known that the bundle $\wedge^2 T^*M$ of 2-forms on a quaternion-Kähler manifold (M,g) has the following irreducible decomposition as a representation of $Sp(n) \cdot Sp(1)$ (cf. [8], [12]):

$$(2.1) \qquad \wedge^2 T^* M = S^2 H \oplus S^2 E \oplus (S^2 H \oplus S^2 E)^{\perp},$$

where H and E are the vector bundles associated with the standard representations of Sp(1) and Sp(n), respectively. Let P be a principal bundle with a compact Lie group G as the structure group over a quaternion-Kähler manifold (M,g). Let $Ad(P)=P\times_{Ad}g$ be the vector bundle associated to P via the adjoint representation of G on its Lie algebra g. The curvature form F^{∇} on P descends to a 2-form on M with values in Ad(P). Corresponding to the decomposition (2.1), we write the curvature F^{∇} as $F^{\nabla}=F^1+F^2+F^3$. A connection ∇ is said to be c_i -self-dual (i=1,2 or 3) if $F^j=0$ for all $j\neq i$. Each c_i -self-dual connection is a Yang-Mills connection (cf. [8], [12], [2]). Moreover, if M is a compact, a c_1 - or c_2 -self-dual connection is characterized as a connection minimizing the Yang-Mills functional $YM(\nabla)=1/2\int_M |F^{\nabla}|^2 dv_g$.

DEFINITION 2.1 ([14]). A connection ∇ on a principal G-bundle P over a compact quaternion-Kähler manifold (M,g) is called a quaternionic Yang-Mills connection if Δ^{∇} $(F^{\nabla} \wedge \Omega^{n-1}) = 0$ where Ω is the fundamental 4-form on (M,g) and Δ^{∇} is the Laplacian on Ad(P).

Note that in the case of n = 1, the quaternionic Yang-Mills connections are Yang-Mills connections, and vice versa. Each c_i -self-dual connection is a quaternionic Yang-Mills connection. Moreover, a quaternionic Yang-Mills connection is a Yang-Mills connection (Proposition 1.1 in [14]).

Let M=K/H be a compact oriented Riemannian homogeneous space with a reductive decomposition $\mathfrak{f}=\mathfrak{h}+\mathfrak{m}$ and $P=(P,\pi,M,G)$ be a principal bundle such that elements of K acts on P as automorphisms i.e. $\Phi_k\circ\pi=\pi\circ\overline{\Phi}_k$ for all $k\in K$ and $\overline{\Phi}_k\circ R_g=R_g\circ\overline{\Phi}_k$ for all $k\in K$ and all $g\in G$ where $\overline{\Phi}:K\times P\to P$ is a left action, Φ is the induced action of K on M and K is the action of K by right translations on the fibers of K. Fix K in K in K over K in K induces the isotropy homomorphisms K: K in K in K in K in K induces the isotropy homomorphisms K: K in K in

$$\omega_{u_0}(\tilde{X}) = \Lambda(X), \quad X \in \mathfrak{f}$$

$$F_{u_0}^{\omega}(\tilde{X},\,\tilde{Y}) = [\Lambda_{\mathfrak{m}}(X),\Lambda_{\mathfrak{m}}(\,Y)] - \Lambda_{\mathfrak{m}}([X,\,Y]_{\mathfrak{m}}) - \lambda([X,\,Y]_{\mathfrak{h}}), \quad X,\,Y \in \mathfrak{m}$$

where \tilde{X} , \tilde{Y} are the vector fields in P induced by X, Y. The K-invariant connection in P defined by $\Lambda_{\mathfrak{m}} \equiv 0$ is called the *canonical connection* according to the decomposition $\mathfrak{k} = \mathfrak{h} + \mathfrak{m}$. Its curvature satisfies $F_{u_0}^{\omega}(\tilde{X}, \tilde{Y}) = -1/2\lambda([X, Y]_{\mathfrak{h}})$ for $X, Y \in \mathfrak{m}$ (cf. [5]).

Compact quaternionic Kähler symmetric spaces were classified by Wolf [16], called Wolf spaces. Wolf spaces are quotients M = K/H of a compact simple centerless Lie group K by a closed subgroup H with the splitting $H = L \cdot A$ where A is isomorphic to Sp(1).

THEOREM 2.1 ([15]). Let P be a K-homogeneous principal G-bundle over a Wolf space and λ be the corresponding isotropy homomorphism of H into G. For a canonical K-invariant connection ω on P,

- (1) ω is a c_1 -self-dual if and only if $\lambda | L = 0$,
- (2) ω is a c₂-self-dual if and only if $\lambda | Sp(1) = 0$,
- (3) ω is a c₃-self-dual if and only if $\lambda=0$, in this case, P is trivial and ω is flat.

3. Non-c_i-self-dual quaternionic Yang-Mills connections

THEOREM 3.1. Let G be a classical Lie group Sp(r), SU(r) or SO(r). Let r satisfy in the table below the inequality corresponding to a Wolf space M = K/H.

Then, there exists a	K-homogeneous	G-bundle over	M = K/H	whose canonical
invariant connections	is not c_i -self-due	al, i = 1, 2, 3.		

manifold	Sp(r)	SU(r)	SO(r)
HP^n	$r \ge n+1$	$r \ge 2n + 2$	$r \ge 4n$
$G_2(C^{n+2})$	$r \ge n+1$	$r \ge n+2 \ (n=1,2)$	$r \ge 6 \ (n=2)$
		$r \ge n+4 \ (n \ge 3)$	$r \ge 2n + 3 \ (n \ne 2)$
$G_4(\mathbf{R}^{n+4})$	$r \ge 2 \ (n=1)$	$r \ge 4 \ (n=1,2)$	$r \ge n + 4$
	$r \ge 3 \ (n=2)$	$r \ge n+4 \ (n \ge 3)$	
	$r \ge n+2 \ (n \ge 3)$		
$G_2/(SU(2)\cdot Sp(1))$	$r \ge 2$	$r \ge 4$	$r \ge 4$
$F_4/(Sp(3)\cdot Sp(1))$	$r \ge 4$	$r \ge 8$	r≥15
$(E_6/Z_3)/(SU(6)\cdot Sp(1))$	$r \ge 7$	$r \ge 8$	r≥15
$E_7/(Spin(12)\cdot Sp(1))$	r≥13	r≥14	r≥15
$E_8/(E_7\cdot Sp(1))$	r≥57	r≥59	r≥115

PROOF. In general, the canonical invariant connections on a homogeneous G-bundle on a compact symmetric space has parallel curvature i.e. $\nabla_i F_{jk}^{\nabla} = 0$ for any i, j, k ([3], [5]) and hence it gives a quaternionic Yang-Mills connection i.e. $\nabla_i F_{ij}^{\nabla} = 0$ for any i, j (Proposition 1.1 in [14]). It is also a Yang-Mills connection i.e. $\sum_i \nabla_i F_{ij}^{\nabla} = 0$ for any j. From Theorem 2.1 ([15]), if \mathfrak{h} is embedded into \mathfrak{g} by a homomorphism λ , then the λ induces as the isotropy representation a K-homogeneous G-bundle over M = K/H whose canonical invariant connection is not c_i -self-dual. Hence, with respect to given \mathfrak{h} , we may find such the Lie algebra \mathfrak{g} . Elementary embeddings between Lie algebras are known as the following.

(3.1)
$$\begin{cases} \operatorname{\mathfrak{sp}}(r) \hookrightarrow \operatorname{\mathfrak{su}}(2r) \hookrightarrow \operatorname{\mathfrak{u}}(2r) \hookrightarrow \operatorname{\mathfrak{so}}(4r), \\ \operatorname{\mathfrak{so}}(r) \hookrightarrow \operatorname{\mathfrak{su}}(r) \hookrightarrow \operatorname{\mathfrak{u}}(r) \hookrightarrow \operatorname{\mathfrak{sp}}(r), \\ \operatorname{\mathfrak{sp}}(1) \simeq \operatorname{\mathfrak{su}}(2) \simeq \operatorname{\mathfrak{so}}(3), \quad \operatorname{\mathfrak{sp}}(2) \simeq \operatorname{\mathfrak{so}}(5), \quad \operatorname{\mathfrak{su}}(4) \simeq \operatorname{\mathfrak{so}}(6), \\ \operatorname{\mathfrak{u}}(1) \simeq \operatorname{\mathfrak{so}}(2) \simeq R, \quad \operatorname{spin}(n) \simeq \operatorname{\mathfrak{so}}(n), \quad \operatorname{\mathfrak{so}}(4) = \operatorname{\mathfrak{so}}(3) \oplus \operatorname{\mathfrak{so}}(3). \end{cases}$$

Note that

$$HP^1 = G_4(\mathbf{R}^5) = S^4, \quad G_2(\mathbf{C}^3) = \mathbf{C}P^2, \quad G_2(\mathbf{C}^4) = G_4(\mathbf{R}^6).$$

 $HP^{n} = (Sp(n+1)/\mathbb{Z}_{2})/(Sp(n) \cdot Sp(1))$:

 $\mathfrak{sp}(n) \oplus \mathfrak{sp}(1) \ni (x,y) \mapsto \lambda(x,y) \in \mathfrak{sp}(n+1)$ defined by $\lambda(x,y) := \operatorname{diag}(x,y)$. For N > n+1, we defined by $\lambda(x,y) := \operatorname{diag}(x,y,0)$. Using (3.1), we see that

$$\mathfrak{sp}(n) \oplus \mathfrak{sp}(1) \hookrightarrow \mathfrak{su}(2r) \oplus \mathfrak{su}(2) \hookrightarrow \mathfrak{su}(2n+2).$$

Hence we get $r \ge 2n+2$ for SU(r). Since $\mathfrak{sp}(n) \oplus \mathfrak{sp}(1) \ni (x,y) \mapsto \lambda(x,y) \in \mathfrak{so}(4n)$ defined by $\lambda(x,y)v := xv - vy$, $v \in \mathbb{R}^{4n}$, we have $r \ge 4n$ for SO(r).

$$G_2(\mathbf{C}^{n+2}) = (SU(n+2)/\mathbf{Z}_{n+2})/U(n) \cdot Sp(1)$$
:

Using (3.1), we have $\mathfrak{u}(n) \oplus \mathfrak{sp}(1) \hookrightarrow \mathfrak{sp}(n) \oplus \mathfrak{sp}(1) \hookrightarrow \mathfrak{sp}(n+1)$ for any n. Using (3.1), we also have $\mathfrak{u}(n) \oplus \mathfrak{sp}(1) \hookrightarrow \mathfrak{so}(2n) \oplus \mathfrak{so}(3) \hookrightarrow \mathfrak{so}(2n+3)$ for any $n \neq 2$. In the case of n = 2, $\mathfrak{u}(2) \oplus \mathfrak{sp}(1) \simeq \mathbb{R} \oplus \mathfrak{su}(2) \oplus \mathfrak{sp}(1) \simeq \mathfrak{so}(2) \oplus \mathfrak{su}(2) \oplus \mathfrak{sp}(1) \simeq \mathfrak{so}(2) \oplus \mathfrak{so}(3) \oplus \mathfrak{so}(3) \simeq \mathfrak{so}(2) \oplus \mathfrak{so}(4) \hookrightarrow \mathfrak{so}(6)$. When n = 1, it has shown by Itoh [3]. Using (3.1), we get $\mathfrak{u}(n) \oplus \mathfrak{sp}(1) \simeq \mathbb{R} \oplus \mathfrak{su}(n) \oplus \mathfrak{su}(2) \hookrightarrow \mathfrak{su}(2) \oplus \mathfrak{su}(n) \oplus \mathfrak{su}(2) \hookrightarrow \mathfrak{su}(n+4)$ for any $n \geq 3$. In the case of n = 2, $\mathfrak{u}(2) \oplus \mathfrak{sp}(1) \simeq \mathbb{R} \oplus \mathfrak{su}(2) \oplus \mathfrak{su}(2) \simeq \mathfrak{so}(2) \oplus \mathfrak{so}(4) \hookrightarrow \mathfrak{so}(6) \simeq \mathfrak{su}(4)$. When n = 1, it has shown by Itoh [3].

$$E_8/(E_7 \cdot SP(1))$$
:

For the wolf space $E_8/(E_7 \cdot Sp(1))$ we use the fact that E_7 is closed subgroup of U(56) (cf. [17]) and $\mathfrak{u}(n) \hookrightarrow \mathfrak{su}(n+1)$.

The same argument can be applied to the others.
$$\Box$$

By generalizing the argument in Itoh [3, Theorem 3], we have the following.

LEMMA 3.1. Let P be a Sp(n+1)-homogeneous G-bundle over HP^n induced by an injective isotropy homomorphism λ of H into G. Then the canonical Sp(n+1)-invariant connection ω is not weakly stable.

PROOF. The curvature tensor of HP^n with quaternionic sectional curvature 4 is defined by

(3.2)
$$R(X, Y) = X \wedge Y + \sum_{\alpha=1}^{3} J_{\alpha} X \wedge J_{\alpha} Y - 2 \sum_{\alpha=1}^{3} \langle J_{\alpha} X, Y \rangle J_{\alpha}.$$

We fix a Λ in $\operatorname{Hom}_H(\mathfrak{m},\mathfrak{g})$. Since $\Lambda \circ \operatorname{ad}_h = \operatorname{ad}_{\lambda(h)} \circ \Lambda$ for any $h \in H$, the $\operatorname{Ad}(P)$ -valued 1-form A induced by Λ is parallel, $\delta^{\omega}A = d^{\omega}A = 0$. Then $\omega_t = \omega + tA$ gives a deformation of ω . Since F^{ω_t} is invariant under K, $|F^{\omega_t}|^2$ is constant. Thus, we have the following:

$$\frac{1}{2}\frac{d^2}{dt^2}\int_{HP^n}|F^{\omega_t}|^2\,dv|_{t=0}=\operatorname{vol}(HP^n)\langle F^{\omega},[\Lambda,\Lambda]\rangle$$

for a deformation ω_t with $(d/dt)\omega_t|_{t=0}=A$. Using (3.2) and the same argument in Theorem 3 in [3], we have

$$\langle F^{\omega}, [\Lambda, \Lambda] \rangle = -n \sum_{j} |\Lambda(e_{j})|^{2},$$

where $\{e_j\}_{j=1,2,\dots,4n}$ is the orthonormal basis of m. Thus, if $\Lambda \neq 0$, then $(1/2)(d^2/dt^2)\int_{HP^n}|F^{\omega_t}|^2\,dv|_{t=0}<0$. Therefore ω is not weakly stable.

4. Gap phenomena for quaternionic Yang-Mills fields

Let (M,g) be a compact quaternion-Kähler manifold. The Riemannian curvature operator R acting on $\wedge^2 TM$ has a splitting $R = R_1 + R_2 + R_3$ with respect to the decomposition (2.1). By using the result in [7] we can write the curvature operator R_i as $R_i = \mu_i I_{\wedge^2 TM}$ where μ_i (i = 1 or 2) is a positive constant. Since R_3 is negative semi-definite, we put $\mu_3 = 0$. We set $\lambda_i = s/2n - 2\mu_i$ (i = 1, 2 or 3) where s is the scalar curvature of (M, g).

THEOREM 4.1. Let ∇ be a quaternionic Yang-Mills connection over a compact quaternion-Kähler manifold (M, g). Assume $F^3 = 0$.

(1) There exists a constant

$$\varepsilon_1 = \frac{n+2}{3} \min \left\{ \frac{(2n-1)^2 s^2 V}{8(4n-1)^2}, \frac{1}{2} \left(\frac{s}{2n} - 2\mu_1 \right)^2 V \right\}$$

such that

$$k < 0$$
, $YM(\nabla) \le 4\pi^2 c_2 k + \varepsilon_1 \Rightarrow F^1 \equiv 0$.

(2) There exists a constant

$$\varepsilon_2 = \frac{n+2}{2n+1} \min \left\{ \frac{(2n-1)^2 s^2 V}{8(4n-1)^2}, \frac{1}{2} \left(\frac{s}{2n} - 2\mu_2 \right)^2 V \right\}$$

such that

$$k > 0$$
, $YM(\nabla) \le 4\pi^2 c_1 k + \varepsilon_2 \Rightarrow F^2 \equiv 0$.

Where
$$k = -1/(8\pi^2) \int_M tr(F^{\nabla} \wedge F^{\nabla}) \wedge \Omega^{n-1}$$
, $c_1 = 6n/(2n+1)!$, $c_2 = -1/(2n-1)!$.

PROOF. We will write the Bochner-Weitzenböck formula for any g-valued 2-forms ϕ (cf. [14, [1]).

$$(4.1) \qquad \langle \Delta^{\nabla} \phi, \phi \rangle - \langle \nabla^* \nabla \phi, \phi \rangle = \left\langle \phi \circ \left(\frac{s}{2n} I - 2R \right), \phi \right\rangle - \langle [F^{\nabla}, \phi], \phi \rangle.$$

For convenience we put $A = (c_1 - c_2)/c_1$ and $\phi = AF^1$. Substituting $\phi = AF^1$ into (4.1) and using $F^3 = 0$, $[F^2, F^1] = 0$ (cf. Proposition 3.3 in [14]), we have

$$\langle \Delta^{\nabla} F^1, F^1 \rangle - \langle \nabla^* \nabla F^1, F^1 \rangle = \lambda_1 |F^1|^2 - \langle [F^1, F^1], F^1 \rangle,$$

where $(s/2nI - 2R_1)_{X,Y} = (s/2n)X \wedge Y - 2R_1(X \wedge Y) = (s/2n - 2\mu_1)X \wedge Y$, X, $Y \in T_x M$. Hence we put $\lambda_1 = s/2n - 2\mu_1$. Note that $\Delta^{\nabla}(F^{\nabla} \wedge \Omega^{n+1}) = 0$ and $F^3 = 0$ hold if and only if $\Delta^{\nabla}F^1 = 0$ (see Proposition 3.1 in [14]). Using the Kato's inequality $\int |\nabla F^1| \geq \int |d|F^1|$, $|[F^1, F^1]| \leq \sqrt{2}|F^1| \cdot |F^1|$ (cf. [14], [1], [13]) and integrating over the compact quaternion-Kähler manifold M, we obtain the inequality

(4.3)
$$\int \langle \Delta^{\nabla} F^1, F^1 \rangle \ge \int |d|F^1|^2 + \lambda_1 \int |F^1|^2 - \sqrt{2} \int |F^1| \cdot |F^1|.$$

To get the L_{2n} -estimates we use the following Sobolev inequality due to [4] for the case dim M=4n:

$$\|\varphi\|_{4n/2n-1}^2 \le \frac{2(4n-1)}{(2n-1)sV^{1/2n}} \|d|\varphi|\|_2^2 + V^{-1/(2n)} \|\varphi\|_2^2$$

holding for all functions $\varphi \in C^{\infty}(M)$ where V is the volume of M, s is the scalar curvature and $\|\cdot\|_p$ denotes the L_p -norm. We now apply the Hölder's inequality to the integrand of the last term on the right hand side of (4.3) to get:

$$(4.5) \qquad \int \langle \Delta^{\nabla} F^1, F^1 \rangle \ge \int |d|F^1|^2 + \lambda_1 \int |F^1|^2 - \sqrt{2} ||F^1||_{2n} \cdot ||F^1||_{4n/2n-1}^2.$$

Applying the Sobolev inequality (4.4) to the first term on the right hand side of (4.3), we have

$$(4.6) \qquad \int \langle \Delta^{\nabla} F^{1}, F^{1} \rangle \ge \left(\lambda_{1} - \frac{(2n-1)s}{2(4n-1)} \right) \|F^{1}\|_{2}^{2}$$

$$+ \left(\frac{(2n-1)s}{2(4n-1)} V^{1/(2n)} - \sqrt{2} \|F^{1}\|_{2n} \right) \|F^{1}\|_{4n/2n-1}^{2}.$$

In the case of $\lambda_1 - (2n-1)s/2(4n-1) > 0$, if we take $||F^1||_{2n} < (2n-1)s/(2\sqrt{2}(4n-1))V^{1/(2n)}$ from (4.6), then we conclude that $F^1 \equiv 0$. In the case of $\lambda_1 - (2n-1)s/2(4n-1) \le 0$, we use (4.6) together with the following inequality which is obtained immediately from (4.5):

(4.7)
$$\int \langle \Delta^{\nabla} F^1, F^1 \rangle \ge \lambda_1 \|F^1\|_2^2 - \sqrt{2} \|F^1\|_{2n} \cdot \|F^1\|_{4n/2n-1}^2.$$

In fact, if $||F^1||_{2n} \le 1/(\sqrt{2})\lambda_1 V^{1/(2n)}$, then (4.7) implies

(4.8)
$$\int \langle \Delta^{\nabla} F^1, F^1 \rangle \ge \lambda_1 \|F^1\|_2^2 - \lambda_1 V^{1/(2n)} \|F^1\|_{4n/2n-1}^2$$

which is positive if $||F^1||_2^2 - V^{1/(2n)}||F^1||_{4n/2n-1}^2 \ge 0$. On the other hand, if $||F^1||_{2n} \le 1/(\sqrt{2})\lambda_1 V^{1/(2n)}$, then we get by (4.6)

(4.9)
$$\int \langle \Delta^{\nabla} F^1, F^1 \rangle \ge \left(\lambda_1 - \frac{(2n-1)s}{2(4n-1)} \right) (\|F^1\|_2^2 - V^{1/(2n)} \|F^1\|_{4n/2n-1}^2)$$

which is positive if $||F^1||_2^2 - V^{1/(2n)}||F^1||_{4n/2n-1}^2 \le 0$, since we are in the case where $\lambda_1 - (2n-1)s/2(4n-1) \le 0$. If we take

$$\delta = \min \left\{ \frac{(2n-1)s}{2\sqrt{2}(4n-1)} V^{1/(2n)}, \frac{1}{\sqrt{2}} \lambda_1 V^{1/(2n)} \right\},\,$$

we have $F^1 \equiv 0$. Namely, if $||F^1||_{2n} \le \delta$, then, from (4.8) and (4.9), we conclude that $F^1 \equiv 0$.

Applying the Hölder inequality, we have

$$||F^1||_2 \leq ||F^1||_{2n} \cdot V^{(n-1)/(2n)}$$
.

Therefore, by using $||F^1||_{2n}^2 \le \delta^2$, we get

$$||F^1||_2^2 \le \delta^2 \cdot V^{(n-1)/n}.$$

On the other hand, from [2]

$$2YM(\nabla) = 8\pi^2 c_2 k + \frac{c_1 - c_2}{c_1} ||F^1||_2^2 + \frac{c_3 - c_2}{c_3} ||F^3||_2^2.$$

Using (4.10) and $F^3 \equiv 0$, we obtain

$$YM(\nabla) \le 4\pi^2 c_2 k + \frac{c_1 - c_2}{2c_1} \delta^2 V^{(n-1)/n}$$

Hence, according to take ε_1 as follows:

$$\varepsilon_1 = \frac{n+2}{3} \min \left\{ \frac{(2n-1)^2 s^2}{8(4n-1)^2} V, \frac{1}{2} \left(\frac{s}{2n} - 2\mu_1 \right)^2 V \right\},$$

if it satisfies $YM(\nabla) = 4\pi^2 c_2 k + \varepsilon_1$, then $F^1 \equiv 0$. We complete the proof of (1) of Theorem 4.1. The same argument can be applied to (2) of Theorem 4.1.

References

- [1] J. P. Bourguignon and H. B. Lawson, Stability and isolation phenomena for Yang-Mills fields, Commun. Math. Phys., 79 (1981), 189-230.
- [2] K. Galicki and Y. S. Poon, Duality and Yang-Mills fields on quaternionic Kähler manifold, J. Math. Phys., 32 (1991), 1263-1268.
- [3] M. Itoh, Invariant connections and Yang-Mills solutions, Trans. Amer. Math. Soc., 267 (1981), 229-236.
- [4] O. Kobayashi, Yamabe problems, Seminar on mathematical sciences Keio Univ., no. 16 (1990).
- [5] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. 1, Vol. 2, Interscience, New York, 1963, 1969.
- [6] Y. Kametani and Y. Nagatomo, Construction of c_2 -self-dual bundles on a quaternionic projective space, Osaka J. Math., 32 (1995), 1023–1033.
- [7] S. Kobayashi, Y. Ohnita and M. Takeuchi, On instability of Yang-Mills connections, Math. Z., 193 (1986), 165-198.
- [8] M. Mamone Capria and S. M. Salamon, Yang-Mills fields on quaternionic spaces, Nonlinearity, 1 (1988), 517-530.
- [9] Y. Nagatomo, Rigidity of c_1 -self-dual connections on quaternionic Kähler manifolds, J. Math. Phys., 33 (1992), 4020–4025.
- [10] Y. Nagatomo and T. Nitta, Moduli of 1-instantons on $G_2(\mathbb{C}^{n+2})$, preprint.
- [11] Y. Nagatomo and T. Nitta, k-instantons on $G_2(\mathbb{C}^{n+2})$ and stable bundles, preprint.
- [12] T. Nitta, Vector bundles over quaternionic Kähler manifolds, Tohoku Math. J., 40 (1988), 425–440.
- [13] Min-Oo, An L₂-isolation theorem for Yang-Mills fields, Compositio Math., 47 (1982), 153-163.
- [14] T. Taniguchi, Isolation phenomena for quaternionic Yang-Mills connections, Osaka J. Math., 35 (1998), 147-164.
- [15] H. Urakawa, Self-dual connections of homogeneous principal bundles over quaternionic Kähler symmetric spaces, Tsukuba J. Math., 20 (1996), 387-397.
- [16] J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech., 14 (1965), 1033-1047.
- [17] I. Yokota, Exceptional simple Lie group, Gendai Suugaku Shiya Publication.

Department of Mathematics, Keio University 3-14-1 Hiyoshi Kohoku, Yokohama 223, Japan