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THE CAUCHY PROBLEM FOR SCHRODINGER TYPE
EQUATION WITH DEGENERACY

By

Hiroshi ANDO

§1. Introduction and Results

In this paper we consider the Cauchy problem for Schrédinger type equation

(6, + l% i D]-(a,-k(x)Dk) + ibj(l, X)Dj + C(t, x)) u(t, x)

1.
. ﬁ =f(t,x) in 2'((0, T) x RY)

L u(0, x) = up(x)

where i = v—1, D; = —id; = —id/dx;, T > 0. We assume

[ ajx € B (R") real valued, aj(x) = axj(x),1 < j,k <n,
by ce C((0, T); B2 (R"), 1 <j <n,

(A1) { and there exists & > 0 such that

1 & n
5 >, Gile 2 0E° forx, e R,
Jj.k=1

Here #°(R") = {f € C*(R");3*f € L™ for all x € N"}.
Put a(x,&) = 3377 k1 (¥)&ik, an(t,x,8) = 350 bi(t, x)¢;.

The purpose of this paper is to give a sufficient condition for the Cauchy
problem (1.1) to be well-posed in the framework of the Sobolev spaces H*. First
we recall the related results. About the necessity, the following theorem has
been shown by Ichinose (resp. Hara [Ha]) in case of L? (resp. H*®) well-
posedness.
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THEOREM ([Ic.2], [Ha]). Suppose (Al) with b;(t,x) =b;j(x),1 < j<n, and
with § > 0. If (1.1) is L? well-posed, then there exists C > 0 such that for any
t>0

sup <C.

yn € R, |n|=1

t n
JO Re S b, (X (z,7,1)(z, y,n) de
j=1

In the H® case, the above condition should be replaced by

sup < Clog(1+1t) +C'

yne R’lv"]‘=1

t n
[ Re > bix(ey S ey do
j=1

SJor any t > 0 with C, C' > 0. Here (X (t,y,n),E(t,y,n)) is the integral curve of the
Hamilton vector field H,, through (y,n) at t =0. (See and for the

precise statements.)

About the sufficiency, [Ta], [Mi], [Ic.1], [Do.l], etc in the case of
ay(x,&) = %|é|2 and [Ka], in the case of ay(x, &) with variable coefficients
are known.

In those results, the case where > 0 (i.e. ax(x,&) is uniformly elliptic) is
treated. So, in the present paper, we shall treat the case where J = 0. In such
case, of course, it is not obvious how condition for the lower order term
ai(t, x,&) is sufficient. So our aim is to give a sufficient condition for the lower
order term a(t,x,¢).

Since it seems not easy to treat a general case for principle part a(x, &),
here we will consider a special case. More precisely, we consider the following
Cauchy problem

(@ + i% (D} + ¥ (x1) i Dj(au(x') D)) + Z bj(t,x)D; + c(t, x)) u(t, x)
k=2 =1

(1.2) < ’ ’
=f(t,x)in 2'((0, T) x R})

L #(0,x) = up(x)

where X' = (x2,...,x,),& = (&,...,&,),n>2. Here we assume (A2) which is
composed of the following conditions (1.3) ~ (1.6):

Y € B (R),¥(0) = 0,sup |n)/'(¢)| < o0, and there exist u,v > 0
(1.3) ,

such that n/(r) > 0 for |¢f| < w and y(¢) > v for |t| > p.
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ajx € B* (R ') real valued, aj (¥') = a;(¥'),2 < j, k <n,
44 {b,-,ceC([o, T], #° (R"),1 <j <n.

There exists C; > 0 such that
(1.5) , , . ) " o n

d,(x, &) = C1|€')* for X', & e R*', where d5(x', &) =jk=2 ajk(x’)fjfk.

( There exist §; € C*(R"!)(2 <j < n) and C;, C, > 0 such that

(16) | 16%6;(x)| < C,(1 4 |¥|) forX e R™2<j<naeN",

L Hy0(x,&) > G|¢) forx,& e R, where 6(x',¢) = Z 0;(x');.

j=2

REMARK. The condition (1.6) was introduced by (see
of [Do.2)). If the following Kajitani type condition

24y(x,&) = x050y(x', &) 2 0|E|* forx',& e R*™' with >0
j=2

are fulfilled, then (1.6) is satisfied with 0;(x') = x;,2<j <n.
Before stating our main results, we prepare notation. For usual notation,
2
(€ = (10+ 1) 2 (e R, L2 = LR, () = () |- 1= - N ze-

H* = H'(R") = {ue S'(R); ()°(€) € L}, llul,, = I1{&)*a(©)1l, (s  R).

n
H*= () H,H * = | ) H',H, =Y _(0¢pdx, — 0:,p0¢)-
SER seR j=1

Ck([0, T); X) = {f; f(¢,-) € C*(]0, T)) in the topology of X},
L2([0, T); X) = {f; f(t,-) e L*([0, T)) in the topology of X},

where X is a Fréchet space, Kk =0,1,2,---,1 <p < 0.

C(0, T, H™*) = | C([0, T}; H), LP([0, T; H*) = () LF([0, T; H*) (1 < p < 0).

seR SER

For S7; and S(m,g), see Chapter 18 in [HO].
Now we state our main results.
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THEOREM 1.1. Assume (A2). In addition, we assume
(A3) Reb; € CI([0, T]; Z°(R")).

(1) If there exists a positive nonincreasing function A(t) e C([0,00))N
L(]0, ©)) satisfying

|Reby(t,x)| < A(]x]) forxeR", 0<t<T,
(1.7) |Re d;b1(t,x)| < A(|X|) for|x1] <2u,x eR*™',0<t<T,2<j<n,
|Reb;(t,x)| < Y(x1)A(|x]) forxeR",0<t<T,2<j<n,

then for any uy € H® and f € L'([0, T); H®) there exists a solution u € C([0, T); H®)
of (1.2), and it is unique in C([0,T}; H=*).
(2) If there exists a positive nonincreasing function A(t) € C([0, 00)) satisfying

t
J A(r)dt < Clog(l + ) + C' for t = 0,with C,C’ > 0 and (1.7),
0

then for any uge H® and f e L'([0,T); H*) there exists a solution uce
C([0,T); H*?) of (1.2), and it is unique in C([0,T); H=*). Here y=y(T) >0 is
independent of s. Especially for any ug € H® and f € L'([0, T|; H®) there exists a
unique solution u e C([0,T); H*®) of (1.2).

To prove we shall use the following theorem, which is a
degenerate version of Theorem 1.4 in [Do.2].

THEOREM 1.2. Assume (Al). In addition, we assume the following conditions
(A4) and (AS):

(A4) There exists e € S|y such that e(x,&) = 6(E) with some 6 > 0 and that
{e,a2} € 5],

(AS) There exists a real valued function q€ C*(R" x R") such that with
Caﬂ, C,C >0

(1.8) |a£agq(x, &) < Capm(x)(&)™™  for x,& e R*,a, f € N*,

(1.9) H,q > Cip(x)|é| — C2  for x,& € R",

where m € C*(R") and p(x) € C(R") satisfy that with C,C',C",Cy >0
V10 < m(x) < C(x),|0*m(x)| < C, forxe R",ae N"|a| > 1,

(110 {OSp(x)_<_C' for xe R",
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and
(1.11) |(Veaz - Vam) (x,&)| < Cp(x))é] for x,é e R".

(1) If there exists a positive nonincreasing function A(t) e C([0,00))N
LY([0, ©)) satisfying

(1.12) |Reb;(t,x)| < p(x)A(|x|]) forxeR",0<t<T,1<j<n,

then for any uy € H® and f € L'([0, T)|; H®) there exists a solution u € C([0, T); H®)
of (1.1), and it is unique in C([0,T]; H- ). Moreover the unique solution u e
C([0, T]; H*) of (1.1) corresponding to uy € H* and f € L*([0, T); H®) belongs to
L%([0, T); X*). Here X* is the Hilbert space with the following norm

[ull: = (P()A(Ix)(DY T 2u, (DY 2u) + ||ul]2.

(2) If there exists a positive nonincreasing function A(t) € C([0, o0)) satisfying
f(;/l(t) dt < Clog(l+1t)+ C’ for t >0, with C,C' >0 and (1.12), then for any
uo € H® and f € L'([0, T); H®) there exists a solution ue C([0, T); H*™?) of (1.1),
and it is unique in C([0,T); H~*). Here y=7y(T) >0 is independent of s.
Especially for any up € H® and f € L'([0, T]; H®) there exists a unique solution
ue C([0,T); H®) of (1.1).

§2. Preliminaries
In this section we consider the following Cauchy problem

@1) { (01 +alt,x, D))u = in F((0,T) x )

u(0, x) = up(x)
Here we assume [BI) and (B2);
(B1) a(t,x, &) =iay(x,&) + a1 (t,x,&) + ao(t, x, &),
where a; € 524, a(x, D)* = ax(x, D), a; € C([0, T]; 8{4),j =0, 1.

(B2) There exists eeS}’0 such that e(x, &) > (&) with some 6 > 0 and that
{e,ar} € S} .

Now we shall recall the results in [Do.1], [Do.2].

LEMMA 2.1 (see Lemma 2.1 and Lemma 2.2 in [Do.2]). Assume (B1), (B2).
If there exist p e S}, of real value and C > 0 satisfying

H,p+ Reaj> —C forx,leR"'\0<t<T.
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Then for any up € H® and f € L'([0, T)]; H®) there exists a solution u € C([0, T); H*)
of (2.1), and it is unique in C([0,T); H=®). Moreover if f € L*([0, T]; H®), then
ue L*([0,T); X*) and satisfies

J @I dr < CL O] + Jl 1/ (D)2 ds) for0 <t < T,with C; > 0.
0 0

Here

(1) 3= = (Ha,p + Rea)(t, x, D)(D)Y'u(t), (D)'u(®)) + Csrllu()3,

with a large constant C;1 > 0.
If there exist p € Sy o(log(¢)) = S(log(&), |dx|* + (£)2|dE) of real value and
C,C’' > 0 satisfying

H,p+ Rea; > — Clog(¢) — C' forx,(eR",0<t<T,
then for any uye H® and f e L'([0,T); H®) there exists a solution ue C
([0, T); H™?) of (2.1), and it is unique in C([0,T|; H ®). Here y=y(T) >0 is

independent of s. Especially for any ug € H® and f € L' ([0, T]; H®) there exists a
unique solution ue C([0,T]; H®) of (2.1).

We need the following degenerate version of Lemma 2.3 in [Do.2]:

LEMMA 2.2. Assume (Al), (A4) and (AS). Let A(t) be a positive non-
increasing function in C([0, 00)).

(1) If Ae L'([0,00)), then there exist p€ S}, of real value and C >0 such
that

H,,p > p(x)A(|x])|(| = C  for x,& € R".

(2) Iffot AMt)dr < Clog(l + 1) + C’ for t > 0, with C,C’' > 0, then there exist
P € S10 (log(&)) of real value and C,,C; > 0 such that

Hg,p = p(x)A(|x])|€] — Cilog(¢é) — Co for x,¢ € R™.
§3. Proofs
PrOOF OF LEMMA 2.2 (cf. Proof of Lemma 2.3 in [Do.2]). Take K,L >1

such that |g(x, &)| < Km(x),m(x) < L(x) for x,¢ € R". Extend A(¢) by A(¢) = 4(0)
for t+<0. By Lemma 3.1 in [Do.2], there exists a nonnegative function
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f € C*([0,©)) such that A(K~'L~'t—10) < f'(¢),t > 0, and that for all me Z

Lf™ (1) < Ca (/1(0) + r A(s) ds) (1+9H™™ fort=0,
0
with C, > 0. Then
f(lal) = 2(K 'L |g| = 10) = 2((x) — 10) = A(|x]) for x,¢ € R".

Let 0 < £ « 1 be a parameter fixed later. Take ¢(f) € C*®(R) such that ¢(z) =0 if
t<1, ¢(t)=1if t=>2 and ¢'(z) =0 on R. Set ¢_(t) = ¢(t/e), _(t) = ¢.(—1)
and ¢p =1 —¢, — ¢_. Define Yo,y , by Yo = dy(q/m(x)), ¥, = ¢ (q/m(x)). By

and (1.10), we have ¥, ¥, €S7,. Noting and [1.11), we have for
small & > 0 that

H,, (l) _Hug 4 Ve Vom0 20N, o supp Yo.
m m m m m
Replacing (x) by m(x) and noting (A4), (A5), we can prove (1), (2) of the lemma

similarly as in the proof of those of Lemma 2.3 in [Do.2].

ProorF oF THEOREM 1.2. In view of [1.12), [Theorem 1.2 is the direct
consequence of [Lemma 2.1 and Lemma 2.2 if we replace p by p/2. Indeed, the
last statement of (1) in [Theorem 1.2 follows from Lemma 2.1 and

H,p+ Rea; = p(x)A(|x])|¢] — C forx,£eR",0<t<T, withC>0,
which is obtained from and
H,,p = 2p(x)A(|x|)|é] — C' for x,£ e R" with C' > 0.
The proof of is completed.

Before proceeding to the proof of Theorem 1.1, we shall prepare a little.
Take xo(2),x:1(f) € C*(R) such that y,(¢) =1 if |t| <pu, xo(r) =0 if || =2pu,
%0()>0 on R and x,()) = 1 = xo(t). Set a(t) = xo(t) + 11 ()/¥(f) and ¥(1) =
a(Y(?). a(t) e B®(R), a(t) =1 if |t| <u, o(t) = 1/y(¢) if |t| = 2u and C! <
o(tf) < C for all ze R with C >0, hence y(¢) e B°(R), (1) = y(1) if |1 < p,
Y(f) =1 if || = 2u and C~'Y(r) < ¥(7) < Cy(¢) for all e R with C > 0.

ProoF OF THEOREM 1.1. Set ¢(¢,x) = exp{(1 — 1}2(x1))f(f‘ Re b (t,s,x') ds}.
Since |xi1| <2u on supp(l —¥?), we get ¢e C'([0,T]); B°(R")) from (A.3).
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Multiplying (1.2) by ¢(z,x), we have

{5t + i%(D:f' + ¥(x1) Zn: Dj(ajk()/)Dk))}(qﬁu)

Jk=2

+ {b1(t,x)¢ — 014} D1u + i{bj(tv x)p —¥(x1) i ajk(x’)6k¢}Dju
= k=2

+ {c(t, X)6 - 0~ 2 (D} + () Y D,-(a,-kwwkw}u — 4.

Jk=2

Since it follows from that 0% = rj4(t,x) x §, where rj,€
C'/([0, T); #*(R")) for j=0,1, a € N", we have from (1.2)

(3.1)

{ o0+ 15 (D} +¥(x1) 3 Dyfax()D)) + 3 b6, 00D, + &, x)}(¢u) — 4,
=

Jk=2

where

b1(t,x) = > (x1)Re by (2, x) + 20 (x1)¥' (x1) J ) Reby(t,s,x)ds + ilmb;(t,x),
0
by(t, x) = by(1, %) — ¥(x1) (1 = §2(x1)) D ap(x)) L Redyby (1,5, %) ds
k=2
for2 <j<n,
bj,¢ €C([0,T); B°(R")) forl<j<n.

Since ¢ and ¢! € C'(|0, T]; #* (R")), it suffices to solve (3.1) instead of (1.2). By
(1.7),

|Re bi(,x)] < §2(x1)A(1x]) + 20 Ce) W' (x1) | 11 |A(1x1),

X

[Re By(t,)] < b)) + Ch(x) 3 ' Redubi(t,5,%) ds
k=2

(1- &%a))j

0

forxeR",0<t<T,2<j<n.

Noting the property of  and that |x| < 2u + |x/| on suppy/, supp(l — ¥?), and
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using (1.7), we obtain |Re b;(t,x)| < C'W¥(x1)A(]x| —2u), 1 <j <n. Hence for
(3.1) we have of with p(x) and A(-) replaced by Y(x;) and
C'A(- —2u). The proof of is reduced to check the assumptions
(A4) and (A5) of Mheorem 12 Put e(x,¢) = y/ax(x,) +a5(x',&) + 10 and
q(x, &) = {Jy" () de- & + MO(X,E)} - e(x,&)”", where M > 1 is a large con-
stant fixed later. (A4) follows from (1.5). (A5) is satisfied with m(x) =
\/( o Y (t)dt)® + |x'|* + 10 and p(x) = ¥(x;). In fact,

T 1 1 o _
Hoa = (&0 + 5 W) o = 30 (), - [ )

By [L3), W' (x1) [y ¥(@)atl = W' (x) [ w(@) di| < W' (x0)xily(x1) < Cryr(ar) i
Ix1] < u, W' (x1) J* w(2)di] < Gl (x1)x1| < C3 < Cay(x1) if |x1| = p. By using
(1.6), we have for large M > 1 that

Heg = (U(x)& + MCsy (1) — Ceo(x1)|€P)e(x, &)~
= C7|//(X1)|é| - C87

which shows [1.9). (1.10) is obvious from the definition. In view of (A4), it is easy

to see and (1.11) by the direct calculation. Hence the proof of
is completed.
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