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A NORMAL FORM FOR ARITHMETICAL DERIVATIONS
IMPLYING THE $\omega$-CONSISTENCY OF ARITHMETIC

By

Kazuma IKEDA

Abstract. We give a normal form theorem for arithmetical deri-
vations. It is proved by induction up to $\epsilon_{1}$ and implies the $\omega-$

consistency of arithmetic.

1. Introduction

Mints [6] investigated some kinds of normal form theorems for $LK$ (cf.
[10]), which can be considered as extensions of the cut elimination theorem.
In order to explain his result, we shall state some notions. A variable in a
derivation is said to be redundant if it occurs in an upper sequent of an inference
$I$ and does not occur in the lower sequent of $I$ and is not used as the
eigenvariable of $I$. A logical inference $J$ in a derivation is said to be reducible
with respect to $LK$ if one of the auxiliary formula of $J$ is derivable (refutable) in
$LK$ provided that it belongs to the antecedent (succedent) of the sequent in
which it occurs. Then, Mints proved the following theorem:

THEOREM (Mints). Assume that the language of $LK$ contains at least one
constant symbol. Let $\pi$ be a derivation. Then we can transform $\pi$ into a cut free
derivation $\pi$

‘ which satisfies the following conditions:
(1) The end sequent of $\pi^{\prime}$ is that of $\pi$ .
(2) $\pi^{\prime}$ includes no redundant variables.
(3) $\pi^{\prime}$ includes no reducible inferences w.r.t. $LK$.

On the other hand, normal forms for arithmetical derivations are inves-
tigated by Hinata [3], Jervell [4] and others. Hinata’s normal form theorem is
proved by induction up to $\epsilon_{0}$ and implies the l-consistency of arithmetic.
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In this paper, we shall give an extended form of Hinata’s result, which can
be considered as an analogue of Mints’ Theorem. It is proved by induction up
to $\epsilon_{1}$ and implies the $\omega$-consistency of arithmetic.

As for the $\omega$-consistency of arithmetic, it is known that the $\omega$-consistency of
arithmetic is proved by induction up to $\epsilon_{1}$ and can not be proved by induction
up to $\alpha(\alpha<\epsilon_{1})$ (cf. [2], [5], [7] and [9]).

I would like to thank Professor N. Motohashi for his valuable advices and
Professor T. Arai for his suggestions which improved the earlier version of our
theorem.

2. Normal form theorem

In this paper, we shall consider the following system $PA$ . The nonlogical
symbols of $PA$ consist of the following symbols:

(1) Constant symbol: $0$ ;
(2) Function symbols:’ (successor) and $\overline{f}$ for each primitive recursive

function $f$ ;
(3) Predicate symbol: $=$ .

Let $LK^{*}$ be the system obtained from $LK$ by restricting its initial sequents to
initial sequents which consist of atomic formulas and by replacing

$\supset$ : right: $\frac{A,\Gamma\rightarrow\Delta,B}{\Gamma\rightarrow\Delta,A\supset B}$ by $\supset$ : right: $\frac{A,\Gamma\rightarrow\Delta}{\Gamma\rightarrow\Delta,A\supset B}$ and $\frac{\Gamma\rightarrow\Delta,B}{\Gamma\rightarrow\Delta,A\supset B}$

$PA^{-}$ is the system obtained from $LK^{*}$ by adding the usual initial sequents for
arithmetic, which consist of atomic formulas. And $PA$ is the system obtained
from $PA^{-}$ by adding the following inferenoe rule $ind$:

$\frac{\Gamma\rightarrow\Delta,A(0)A(a),\Gamma\rightarrow\Delta,A(a^{\prime})A(t),\Gamma\rightarrow\Delta}{\Gamma\rightarrow\Delta}$

where the free variable $a$ does not occur in $A(t),$ $\Gamma$ and $\Delta$ . This free variable
is called the eigenvariable, and $A(a)$ and $t$ is called the induction formula and
the induction term, respectively. And also $A(O),A(a),$ $A(a^{\prime})$ and $A(t)$ are called
auxiliary formulas. $Ind$ is said to be constant normal if its induction formula
contains at least one occurrence of its eigenvariable and its induction term
contains at least one free variable.

DEFINITION 2.1. Let $\Gamma$ be a sequence $A_{1},$
$\ldots,$

$A_{n}$ of formulas. Let
$\langle i_{1}, i_{2}, \ldots, i_{k}\rangle$ be a sequence of natural numbers such that $1\leq i_{1}<i_{2}<\cdots<$
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$i_{k}\leq n$ . Then, the sequence $A_{i_{I}},$
$\ldots,$

$A_{i_{k}}$ is called a part of F. $\Gamma^{*}$ is used to denote
a part of $\Gamma$ . Let $\Lambda\rightarrow\Pi$ be a sequent. Then $\Lambda^{*}\rightarrow\Pi^{*}$ is called a part of $\Lambda\rightarrow\Pi$ .

DEFINITION 2.2. Let $S$ be a sequent and $S^{*}$ a part of $S$ . And let $\pi$ be a
derivation of $S$ and $C$ a formula in $\pi$ . Then $C$ is said to be $(S^{*})$ -implicit if a
descendant (cf. [10]) of $C$ is in $S^{*}$ or a cut formula or an auxiliary formula.
0therwise $C$ is said to be $(S^{*})$ -explicit. An inference in $\pi$ is called $(S^{*})$ -implicit
or $(S^{*})$ -explicit according as its principal formula is $(S^{*})$-implicit or $(S^{*})$ -explicit.

DEFINITION 2.3. A variable in a derivation is said to be redundant if it
occurs in an upper sequent of an inference $I$ and does not occur in the lower
sequent of $I$ and is not used as the eigenvariable of $I$.

DEFINITION 2.4. Let $T$ be a subtheory of $PA$ . And let $\pi$ be a PA-deri-
vation. Then a logical inference $I$ in $\pi$ is said to be reducible with respect to $T$ if
one of the auxiliary formulas of $I$ is derivable (refutable) in $T$ provided that it
belongs to the antecedent (succedent) of the sequent in which it occurs.

DEFINITION 2.5. Let $S$ be a sequent and $S^{*}$ a part of $S$ . And let $\pi$ be a
derivation of $S$ . We consider the following conditions (1) $\sim(5)$ on $\pi$ .

(1) There are no redundant variables.
(2) There are no cuts except inessential ones (cf. [10]).
(3) There are no inds except constant normal ones.
(4) There are no inferences which are reducible with respect to $PA^{-}$

(5) There are no $(S^{*})$ -explicit inferences which are reducible with respect to
$PA$ .

$\pi$ is said to be irreducible if it satisfies the conditions (1) $\sim(3)$ . And $\pi$ is said to
be $PA^{-}$ -irreducible or $(S^{*})$ -strongly irreducible according as it satisfies the con-
ditions (1) $\sim(4)$ or (1) $\sim(5)$ , respectively. Especially, we say that $\pi$ is strongly
irreducible if it is $(\rightarrow)$ -strongly irreducible.

DEFINITION 2.6. Let $T$ be a theory which contains arithmetic. Then $T$ is
said to be $\omega$-consistent if it satisfies the following condition: For any formula
$A(a)$ which does not have free variables except $a$ , if $\exists xA(x)$ is derivable in $T$,
then there exists a numeral $n$ such that $\neg A(n)$ is not derivable in $T$. Let $k\geq 1$ .
Then the restriction of the $\omega$-consistency of $T$ to formulas $A\in\Sigma_{k-1}$ is called the
k-consistency of $T$.
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As for the k-consistency of a theory which contains arithmetic, the fol-
lowing fact is known.

FACT (Smory\’{n}ski [8]). Let $T$ be a theory which contains arithmetic. Then,
for $k=1,2,$ $T$ is k-consistent iff for any $\Sigma_{k}$ -sentence $A,$ $lf$ $A$ is derivable in $T$,
then $A$ is true.

The following theorem is proved by induction up to $\epsilon_{0}$ in [3].

THEOREM 1 (Hinata). We can transform any derivation into an irreducible
one with the same end sequent.

The following corollaries are direct consequences of Theorem 1.

COROLLARY 1. Let $\exists xR(x)$ be an existential sentence. Assume that $\exists xR(x)$ is
derivable in $PA$ . Then $\exists xR(x)$ is derivable in $PA^{-}$

COROLLARY 2. $PA$ is l-consistent.

In this paper, we shall show the following theorem by induction up to $\epsilon_{1}$ .

THEOREM 2. We can transform any derivation into a strongly irreducible
derivation with the same end sequent.

COROLLARY 3. $PA$ is $\omega$-consistent.

PROOF. Let $A(a)$ be an arbitrary formula such that it has no free variables
except $a$ and $A(n)$ is derivable in $PA$ for any numeral $n$ . Then, it suffices to
show that $\forall xA(x)\rightarrow is$ not derivable in $PA$ . Assume that $\forall xA(x)\rightarrow is$ derivable
in $PA$ . Then, there exists a strongly irreducible derivation of $\forall xA(x)\rightarrow$ by
Theorem 2. Let $\pi$ be a strongly irreducible derivation of $\forall xA(x)\rightarrow$ . Assume
that $\pi$ includes at least one boundary inference (cf. Definition 3.4). Note that
the end-place (cf. Definition 3.4) of $\pi$ contains no free variable. So, no inds
belong to the boundary of $\pi$ (cf. Definition 3.4). Thus each inference which
belongs to the boundary of $\pi$ must be of the form:

$\frac{A(t),\Gamma\rightarrow\Delta}{\forall xA(x),\Gamma\rightarrow\Delta}$
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where $\Gamma$ consists of $\forall xA(x)$ or atomic formulas and $\Delta$ consists of atomic for-
mulas. Because, if $\Gamma(\Delta)$ contains a formula $B$ which includes at least one logical
symbol, then $B$ occurs in the antecedent (succedent) of the end sequent of $\pi$ . Since
$\pi$ contains no redundant variables, $t$ contains no free variables. Since there is a
numeral $n$ such that $t=n$ is derivable in $PA,$ $\rightarrow A(t)$ is derivable in $PA$ . But it
contradicts our assumption. So, $\pi$ includes no boundary inferences. Thus we can
transform $\pi$ into a derivation $\pi^{\prime}$ whose end sequent is a part of the end sequent
of $\pi$ and which includes no free variables, no weakenings, no essential cuts, no
inds and no logical inferences. Since any formula in $\pi$

‘ doesn’t include logical
symbols, the end sequent of $\pi^{\prime}is\rightarrow$ . But, it is clear that there is not such a
derivation. $\blacksquare$

3. Preliminaries

In this section, we shall define some necessary notions and state some
propositions, which will be used in the next section.

DEFINITION 3.1. For any formula $A$ , the degree $d(A)$ of $A$ is defined
inductively as follows:

(1) $d(A)=1$ , if $A$ is atomic;
(2) $d(B_{1}\wedge B_{2})=d(B_{1}\vee B_{2})=d(B_{1}\supset B_{2})=\max\{d(B_{1})+1, d(B_{2})+1\}$ ;
(3) $d(\urcorner B)=d(\forall xB)=d(\exists xB)=d(B)+1$ .

DEFINITION 3.2. Let $I$ be an inference. Then the degree $d(I)$ of $I$ is defined
as follows:

$d(I)=1^{thedegreeofacutformu1aofI}0,\max\{d(A)|Aisanauxi1iaryformulaofI\}$

,

$i^{fIisacut}i_{fIisan}ifIisa1ogica1otherwise^{ind}$

’

inference,

DEFINITION 3.3. Let $\pi$ be a derivation and $S$ a sequent in $\pi$ . For any
natural number $\rho$ , the height $h_{p}(S;\pi)$ based on $p$ of $S$ in $\pi$ is defined as follows:

(1) $ h_{\rho}(S;\pi)=\rho$ , if $S$ is the end sequent of $\pi$ .
(2) Let $S$ be one of the upper sequents of an inference $I$ in $\pi$ and $S$ ‘ the

lower sequent of $I$ . Assume that $h_{p}(S$ ‘; $\pi)$ is defined. Then,

$h_{p}(S;\pi)=\max\{h_{\rho}(S^{\prime};\pi),d(I)\}$ .
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DEFINITION 3.4. Let $\pi$ be a derivation. We say that a sequent $S$ in $\pi$

belongs to the end-place of $\pi$ if neither a logical inference nor an ind occurs
below $S$ in $\pi$ . And we say that an inference $I$ in $\pi$ belongs to the boundary of $\pi$

or is a boundary inference of $\pi$ if the lower sequent of $I$ belongs to the end-place
of $\pi$ and the upper sequents of $I$ do not belong to the end-place of $\pi$ .

NOTATION. Let $\alpha$ and $\beta$ be ordinals. Then $\alpha\#\beta$ is used to denote the natural
sum of $\alpha$ and $\beta$ . And $\alpha\times\beta$ is used to denote the natural product of $\alpha$ and $\beta$ . Let
$\beta=\omega^{\beta_{1}}+\cdots+\omega^{\beta_{m}}$ be in Cantor normal form and $n$ a finite ordinal. Then, we
have the following equations:

$n$ times

(1) $\alpha\times n=\alpha\#\cdots\#\alpha;\wedge$ (2) $\beta\times\omega=\omega^{\beta_{1}+1}+\cdots+\omega^{\beta_{m}+1}$ .

DEFINITION 3.5. Let $\check{S}$ be a sequent and $\check{S}^{*}$ a part of $\check{S}$ . And let $\pi$ be a
derivation of $\check{S}$ and $\rho$ a natural number. To each sequent $S$ in $\pi$ and each
inference $I$ in $\pi$ , we assign ordinals $O_{\rho}(S;\pi;\check{S}^{*}),$ $O_{\rho}(I;\pi;\check{S}^{*})$ , respectively, as
follows:

(1) If $S$ is an initial sequent,

$0_{\rho}(S;\pi;\check{S}^{*})=1$ .

(2) Let $S_{i}(1\leq i\leq n)$ be the upper sequents of $I$. Assume that $O_{\rho}(S_{i};\pi;\check{S}^{*})$

are defined for each $1\leq i\leq n$ .
(2.1) If $I$ is a weak inference,

$O_{\rho}(I;\pi;\check{S}^{*})=O_{\rho}(S_{1} ; \pi;\check{S}^{*})$ .

(2.2) If $I$ is $(\check{S}^{*})$ -explicit,

$O_{\rho}(I;\pi;\check{S}^{*})=\left\{\begin{array}{l}0_{\rho}(S_{l}\cdot.\pi\cdot.\check{S}^{*})\#\epsilon_{0},\\O_{\rho}(S_{1}\cdot.\pi\cdot,\check{S}^{*})\# O_{\rho}(S_{2}\cdot.\pi\cdot.\check{S}^{*})\#\epsilon_{0},\end{array}\right.$ $ifIhasoneuppersequentifIhastwouppersequents$

.

(2.3) If $I$ is $(\check{S}^{*})$ -implicit,

$O_{p}(I;\pi;\check{S}^{*})=\left\{\begin{array}{l}O_{p}(S_{1}\cdot.\pi\cdot.\check{S}^{*})\#\omega^{d(I)},\\O_{\rho}(S_{1}\cdot,\pi\cdot,\check{S}^{*})\# O_{\rho}(S_{2}\cdot.\pi\cdot.\check{S}^{*})\#\omega^{d(I)},\end{array}\right.$ $ifIhastwouppersequentsifIhasoneuppersequent,$

.

(2.4) lf $I$ is a cut,

$O_{p}(I;\pi;\check{S}^{*})=O_{p}(S_{1} ; \pi;\check{S}^{*})\# O\rho(S_{2};\pi;\check{S}^{*})$ .
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(2.5) If $I$ is an ind,

$O_{p}(I;\pi;\check{S}^{*})=O_{p}(S_{1} ; \pi;\check{S}^{*})\#(O_{p}(S_{2};\pi;\check{S}^{*})\times\omega)\# O_{p}(S_{3};\pi;\check{S}^{*})\#\omega^{d(I)}$ .

(3) Let $S$ be the lower sequent of $I$. And let $\sigma$ be the height based on $\rho$ of
an upper sequent of $I$ and $\tau$ the height based on $\rho$ of $S$ . Then,

$O_{\rho}(S;\pi;\check{S}^{*})=\omega_{\sigma-\tau}(O_{\rho}(I;\pi;\check{S}^{*}))$ .

We define $O_{p}(\pi;\check{S}^{*})$ by $O_{p}(S;\pi;\check{S}^{*})$ , where $S$ is the end sequent of $\pi$ .

The following propositions are proved easily.

PROPOSITION 1. Assume that $\pi$ is a derivation. Let $S$ be a sequent in $\pi$ . Let $\rho$

and $\sigma$ be natural numbers such that $\rho\leq\sigma$ . Then, $h_{p}(S;\pi)\leq h_{\sigma}(S;\pi)$ .

PROPOSITION 2. Suppose that $\pi$ is a derivation of \v{S}. Assume that $\check{S}^{*}$ is a
part of \v{S}. Let $p$ and $\sigma$ be natural numbers such that $ p\leq\sigma$ . Let $S$ be a sequent in
$\pi$ . Then, $\omega_{h_{\rho}(S;\pi)}(O_{p}(S;\pi;\check{S}^{*}))\leq\omega_{h_{\sigma}(S;\pi)}(O_{\sigma}(S;\pi;\check{S}^{*}))$ .

We can prove the next corollary by the same way as in Lemma 12.7 in [10],
using the property that the ordinal operations $\#,$ $\times and$ exponential are strictly
increasing.

PROPOSITION 3. Suppose that $\pi$ is of the form:

$\pi_{1}$ :
$\Lambda\rightarrow\Pi$

:
:

$\Gamma\rightarrow\Delta$ .

Let $\pi_{1}^{\prime}$ be a derivation of $\Lambda,$ $\Gamma^{\prime}\rightarrow\Delta^{\prime},$ $\Pi$ . Then we define $\pi$
‘ as follows:

$\pi_{1}^{\prime}$ :
$\Lambda,$ $\Gamma^{\prime}\rightarrow\Delta^{\prime},$ $\Pi$

:
:

$\Gamma,$ $\Gamma^{\prime}\rightarrow\Delta^{\prime},$ $\Delta$ .

Let $\Gamma^{*}\rightarrow\Delta^{*}$ be a part of $\Gamma\rightarrow\Delta$ . And let $\Gamma^{\prime}$’ be a part of $\Gamma^{\prime}$ and $\Delta^{l_{*}}$ a part of $\Delta^{\prime}$ .
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Assume that

$O_{0}(\Lambda, \Gamma^{\prime}\rightarrow\Delta^{\prime}, \Pi;\pi^{\prime};\Gamma^{*,r^{\prime}*}\rightarrow\Delta^{\prime}*, \Delta^{*})<0_{0}(\Lambda\rightarrow\Pi;\pi;\Gamma^{*}\rightarrow\Delta^{*})$ .
Then $O_{0}(\pi^{\prime};\Gamma^{*}, \Gamma^{\prime}‘‘ \rightarrow\Delta^{\prime}*, \Delta^{*})<O_{0}(\pi;\Gamma^{*}\rightarrow\Delta^{*})$ .

4. Proof of Theorem 2

We shall prove the following Theorem 3 which clearly implies Theorem 2.

THEOREM 3. Assume that $\check{\pi}$ is a derivation of \v{S}. Let $\check{S}^{*}$ be a part of \v{S}. Then
we can transform $\check{\pi}$ into a derivation whose end sequent is $\check{S}$ and which is $(\check{S}^{*})-$

strongly irreducible.

PROOF. We shall prove this statement by induction on $O_{0}(\check{\pi};\check{S}^{*})$ . Assume
that $\check{S}$ is of the form $\Gamma\rightarrow\Delta$ and $\check{S}^{*}$ is of the form $\Gamma^{*}\rightarrow\Delta^{*}$ .

As usual, we transform $\check{\pi}$ into a derivation $\pi$ which satisfies the following
conditions:

1) $\pi$ includes no redundant variables.
2) The end sequent of $\pi$ is $\check{S}$ .
3) If $I$ is a weakening in the end place of $\pi$ , then every inference below $I$ is

an exchange or a weakening.
4) $O_{0}(\pi;\check{S}^{*})\leq O_{0}(\check{\pi};\check{S}^{*})$ .

We shall classify $\pi$ into some cases. When we are concemed with a case in
the following, we suppose that $\pi$ satisfies none of the conditions of the preceding
cases.

From now on, the letter $S$
’ in $\Lambda\rightarrow\Pi s,$

, is used to denote the sequent
$\Lambda\rightarrow\Pi$ .

(1) The case where $\pi$ includes at least one $(\check{S}^{*})$ -explicit inference which is
reducible w.r. $t$ . $PA$ .

We shall transform $\pi$ into a derivation $\pi^{\prime}$ by the same way as in [1]. Let $I$

be one of $(\check{S}^{*})$ -explicit inferences which are reducible w.r. $t$ . $PA$ . We shall
consider the case that $I$ is a $\supset:$ left. The other cases are treated similarly.

Assume that $\pi$ is of the form:

$\pi_{1}$

.
$\pi_{2}$

.

$\frac{\Lambda_{11}^{s_{1}s_{2}}\rightarrow\Pi,AB,\Lambda_{2}\rightarrow\Pi_{2}}{A\supset B,\Lambda_{1},\Lambda_{:^{2^{\rightarrow}}}^{S}\Pi_{1},\Pi_{2}}I$
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Assume that $ h_{0}(S_{1};\pi)=\rho$ and $ h_{0}(S;\pi)=\sigma$ . And also assume that $\Lambda_{1}^{*}\rightarrow\Pi_{1}^{*}$ is
the sequent obtained from $S_{1}$ by deleting the $(\check{S}^{*})$ -explicit formulas in $\pi$ . By our
assumption, $A\rightarrow or\rightarrow B$ is derivable in $PA$ . We treat only the case that $A\rightarrow is$

derivable in $PA$ , since the other case is similar. Let $\hat{\pi}$ be a derivation of $ A\rightarrow$ .
Then we reduce $\pi$ into the derivation $\pi^{\prime}$ :

$\pi_{1}$

.
$\hat{\pi}$

.

$\frac{\Lambda_{1^{\rightarrow\Pi_{1},AA\rightarrow}}^{s_{1}\hat{s}}}{\Lambda_{1}\rightarrow\Pi_{1}}$

$A\supset B,\Lambda_{1},$
$\Lambda_{2}\rightarrow s\Pi_{1},$

$\Pi_{2}$

:.

Then we shall prove $O_{0}(\pi^{\prime};\check{S}^{*})<O_{0}(\pi;\check{S}^{*})$ . $\Lambda_{1}^{*}\rightarrow\Pi_{1}^{*},$ $A$ is the sequent obtained
from $S_{1}$ by deleting the $(\check{S}^{*})$ -explicit formulas in $\pi^{\prime}$ and $ h_{0}(S;\pi^{\prime})=\sigma$ . Assume
that $h_{0}(S_{1};\pi^{\prime})=\tau(\leq\rho)$ . Then,

$O_{0}(S_{1} ; \pi^{\prime};\check{S}^{*})=O_{\tau}(S_{1} ; \pi_{1} ; \Lambda_{1}^{*}\rightarrow\Pi_{1}^{*}, A)$

$\leq O_{\tau}(S_{1} ; \pi_{1} ; \Lambda_{1}^{*}\rightarrow\Pi_{1}^{*})$

$\leq\omega_{p-\tau}(O_{p}(S_{1} ; \pi_{1} ; \Lambda_{1}^{*}\rightarrow\Pi_{1}^{*}))$

$=\omega_{p-\tau}(O_{0}(S_{1} ; \pi;\check{S}^{*}))$ .

On the other hand, we have $O_{0}(\hat{S};\pi^{\prime};\check{S}^{*})<\epsilon_{0}$ , because every inference in $\hat{\pi}$ is
$(S^{*})$ -implicit in $\pi$ ‘. Thus,

$O_{0}(S;\pi^{\prime};\check{S}^{*})=\omega_{\tau-\sigma}(O_{0}(S_{1} ; \pi‘; \check{S}^{*})\# O_{0}(\hat{S};\pi‘; \check{S}^{*}))$

$<\omega_{\tau-\sigma}(\omega_{\rho-\tau}(O_{0}(S_{1} ; \pi;\check{S}^{*}))\#\epsilon_{0})$

$\leq\omega_{\tau-\sigma}(\omega_{\rho-\tau}(O_{0}(S_{1} ; \pi;\check{S}^{*})\#\epsilon_{0}))$

$<\omega_{p-\sigma}(O_{0}(S_{1} ; \pi;\check{S}^{*})\# O_{0}(S_{2};\pi;\check{S}^{*})\#\epsilon_{0})$

$=O_{0}(S;\pi;\check{S}^{*})$ .

So, $O_{0}(\pi^{\prime};\check{S}^{*})<O_{0}(\pi;\check{S}^{*})$ by Proposition 3. Thus we can transform $\pi^{\prime}$ into a
derivation whose end sequent is $\check{S}$ and which is $(\check{S}^{*})$ -strongly irreducible, by
induction hypothesis.

(2) The case where $\pi$ includes at least one inference which is reducible w.r. $t$ .
$PA^{-}$
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We shall transform $\pi$ into a derivation $\pi^{\prime}$ by the same way as in [1]. Let $I$

be one of inferences which are reducible w.r. $t$ . $PA^{-}$ Then $I$ is $(\check{S}^{*})$ -implicit,
because $\pi$ includes no $(\check{S}^{*})$ -explicit inferences which are reducible w.r. $t$ . $PA$ . We
shall consider the case that $I$ is a $\supset$ : right. The other cases are treated similarly.

Assume that $\pi$ is of the form:

$\pi_{1}$ :

$\frac{A,\Lambda\rightarrow^{l}\Pi s}{\Lambda\rightarrow\Pi,A\supset Bs}I$

:
:

Assume that $ h_{0}(S_{1} ; \pi)=\rho$ and $ h_{0}(S;\pi)=\sigma$ . And also assume that $A,$ $\Lambda^{*}\rightarrow\Pi^{*}$ is
the sequent obtained from $S_{1}$ by deleting the $(\check{S}^{*})$ -explicit formulas in $\pi$ . By our
assumption, $\rightarrow A$ is derivable in $PA^{-}$ Let $\hat{\pi}$ be a $PA^{-}$ -derivation whose end
sequent $is\rightarrow A$ and includes no cuts except inessential ones. Then we reduce $\pi$

into the derivation $\pi$ ‘:
$\hat{\pi}$ : $\pi_{1}$ :
$\frac{\rightarrow AA,\Lambda\rightarrow^{l}\Pi\hat{s}s}{\Lambda\rightarrow\Pi}$

$\Lambda\rightarrow s\Pi,$ $A\supset B$

:
:

Then we shall prove $O_{0}(\pi^{\prime};\check{S}^{*})<O_{0}(\pi;\check{S}^{*})$ . $ h_{0}(S_{1} ; \pi^{\prime})=\rho$ and $ h_{0}(S;\pi^{\prime})=\sigma$ . And
$A,$ $\Lambda^{*}\rightarrow\Pi^{*}$ is the sequent obtained from $S_{1}$ by deleting the $(\check{S}^{*})$ -explicit for-
mulas in $\pi^{\prime}$ . Then $O_{0}(S_{1} ; \pi^{\prime};\check{S}^{*})=O_{p}(S_{1} ; \pi_{1} ; A, \Lambda^{*}\rightarrow\Pi^{*})=O_{0}(S_{1} ; \pi;\check{S}^{*})$ . On the
other hand, we have $O_{0}(\hat{S};\pi^{\prime};\check{S}^{*})<\omega^{d(I)}$ , because every inference in $\hat{\pi}$ is $(S^{*})-$

implicit in $\pi^{\prime}$ and every formula in $\hat{\pi}$ is an atomic formula or a subformula of $A$ .
Thus,

$O_{0}(S;\pi^{\prime};\check{S}^{*})=\omega_{p-\sigma}(O_{0}(\hat{S};\pi^{\prime};\check{S}^{*})\# O_{0}(S_{1} ; \pi^{\prime};\check{S}^{*}))$

$<\omega_{\rho-\sigma}(\omega^{d(I)}\# O_{0}(S_{1} ; \pi;\check{S}^{*}))$

$=0_{0}(S;\pi;\check{S}^{*})$ .
So, $O_{0}(\pi^{\prime};\check{S}^{*})<O_{0}(\pi;\check{S}^{*})$ by Proposition 3. Thus we can transform $\pi$

‘ into a
derivation whose end sequent is $\check{S}$ and which is $(\check{S}^{*})$ -strongly irreducible, by
induction hypothesis.

(3) The case where $\pi$ includes no boundary inferences.
$\pi$ consists of initial sequents, weak inferences and cuts. Note that the cut

formulas in $\pi$ are only inessential, since weakings do not occur above cuts in $\pi$

by our assumption. Thus $\pi$ is a required derivation.
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(4) The case where $\pi$ includes at least one ind which belongs to the
boundary of $\pi$ .

Assume that $\pi$ is of the form:

$\pi_{1}$ : $\pi_{2}(a)$ : $\pi_{3}$ :

$\frac{\Lambda\rightarrow\Pi,A(0)A(a),\Lambda\rightarrow\Pi,A(a^{\prime})A(t),\Lambda\rightarrow\Pi s_{1}s_{2}s_{3}}{\Lambda\rightarrow\Pi s}I$

:
:

$\Gamma\rightarrow\Delta$

where $I$ belongs to the boundary of $\pi$ . Assume that $ h_{0}(S_{1} ; \pi)=\rho$ and $h_{0}(S;\pi)=$

$\sigma$ . Assume that $\Lambda^{*}\rightarrow\Pi^{*},$ $A(O)$ is the sequent obtained from $S_{1}$ by deleting the
$(\check{S}^{*})$ -explicit formulas in $\pi$ . Then $A(a),$ $\Lambda^{*}\rightarrow\Pi^{*},A(a^{\prime})$ is the sequent obtained
from $S_{2}$ by deleting the $(\check{S}^{*})$ -explicit formulas in $\pi$ and $A(t),$ $\Lambda^{*}\rightarrow\Pi^{*}$ is the
sequent obtained from $S_{3}$ by deleting the $(\check{S}^{*})$ -explicit formulas in $\pi$ .

(4.1) The case where $I$ is not constant normal.
We assume that the induction formula $A(a)$ of $I$ includes at least one

occurrence of $a$ , since we can treat the other case similarly. Then the induction
term $t$ of $I$ is closed. So, there exists a numeral $n$ such that $t=n$ is derivable in
$PA$ , and there exists a derivation $\hat{\pi}$ of $A(n)\rightarrow A(t)$ such that $\hat{\pi}$ does not include
essential cuts and inds (cf. [10]). We shall reduce $\pi$ into the following derivation
$\pi^{\prime}$ :

$\pi_{1}$ : $\pi_{2}(0)$ :

$\frac{\Lambda\rightarrow\Pi,A(0)A(0),\Lambda\rightarrow\Pi,A(1)s_{1}s_{2}^{0}}{\Lambda,\Lambda\rightarrow\Pi,\Pi,A(1)}$

$\pi_{2}(1)$ :

$\frac{\Lambda\rightarrow\Pi,A(1)A(1),\Lambda\rightarrow\Pi,A(2)s_{2^{1}}}{\Lambda,\Lambda\rightarrow\Pi,\Pi,A(2),\overline{\overline{\Lambda\rightarrow\Pi,A(2)}}}$

. $\hat{\pi}$ :
$\Lambda\rightarrow\Pi,$ $A(n)$

$A(n)\rightarrow\hat{s}A(t)$

$\Lambda,$ $\Lambda\rightarrow\Pi,$ $\Pi,A(t)$
$\pi_{3}$ :

$\frac{\Lambda\rightarrow\Pi,A(t)A(t),\Lambda\rightarrow\Pi s_{3}}{\underline{\underline{\Lambda,\Lambda\rightarrow\Pi,\Pi}}}\Lambda\rightarrow\Pi s:$

.
$\Gamma\rightarrow\Delta$
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Then we shall prove $O_{0}(\pi^{\prime};\check{S}^{*})<O_{0}(\pi;\check{S}^{*})$ . We shall note that $O_{0}(S_{i};\pi^{\prime};\check{S}^{*})=$

$O_{0}(S_{i};\pi;\check{S}^{*})$ for $i=1,3$ and $O_{0}(S_{2}^{j};\pi^{\prime};\check{S}^{*})=O_{0}(S_{2};\pi;\check{S}^{*})$ for $j=0,$ $\ldots,n-1$ .
On the other hand, we have $0_{0}(\hat{S};\pi^{\prime};\check{S}^{*})<\omega^{d(I)}$ , because every inference in $\hat{\pi}$

is $(S^{*})$ -implicit in $\pi^{\prime}$ and every formula in $\hat{\pi}$ is an atomic formula or a
subformula of $A(n)$ or $A(t)$ . Since $ O_{0}(S_{2};\pi;\check{S}^{*})\times n<O_{0}(S_{2}, \pi;\check{S}^{*})\times\omega$ and
$O_{0}(\hat{S};\pi^{\prime};\check{S}^{*})<\omega^{d(I)}$ , we have

$O_{0}(S;\pi^{\prime};\check{S}^{*})=\omega_{p-\sigma}(O_{0}(S_{1};\pi;\check{S}^{*})\#(O_{0}(S_{2};\pi;\check{S}^{*})\times n)\# O_{0}(S_{3};\pi;\check{S}^{*})\# O_{0}(\hat{S};\pi^{\prime};\check{S}^{*}))$

$<\omega_{p-\sigma}(0_{0}(S_{1} ; \pi;\check{S}^{*})\#(O_{0}(S_{2};\pi;\check{S}^{*})\times\omega)\# O_{0}(S_{3};\pi;\check{S}^{*})\#\omega^{d(I)})$

$=O_{0}(S;\pi;\check{S}^{*})$ .

So, $O_{0}(\pi^{\prime};\check{S}^{*})<O_{0}(\pi;\check{S}^{*})$ by Proposition 3. Thus we can transform $\pi$
‘ into a

derivation whose end sequent is $\check{S}$ and which is $(\check{S}^{*})$ -strongly irreducible, by
induction hypothesis.

(4.2) The case where $I$ is constant normal.
Let $b$ be a variable which does not occur in $\pi$ . We shall constmct the

following derivations $\hat{\pi}_{1},\hat{\pi}_{2},\hat{\pi}_{3}$ from $\pi$ .

$\hat{\pi}_{1}$ $\hat{\pi}_{2}$ $\hat{\pi}_{3}$

$\pi_{1}$ : $\pi_{2\zeta_{2}^{b)}}$
: $\pi_{3}$ :

$\frac{\Lambda\rightarrow^{l}\Pi,A(0)s}{\Lambda\rightarrow A(0),\Pi s^{1},:}$

$A(b),$
$\Lambda_{\overline{\overline{2}}}\rightarrow\Pi,A(b^{\prime})s$

$\frac{A(t),\Lambda\rightarrow\Pi s_{3}}{\Lambda,A(\iota_{:})\rightarrow\Pi s^{3}}$

$\Lambda A(b)\rightarrow A(\overline{\mathscr{S}}(b^{\prime})),$

$\Pi:.\cdot$
: :

$\Gamma\rightarrow A(0),$ $\Delta$ $\Gamma,A(b)\rightarrow A(b^{\prime}),$ $\Delta$ $\Gamma,A(t)\rightarrow\Delta$

$\Gamma\rightarrow\Delta,A(0)$ $A(b),$ $\Gamma\rightarrow\Delta,$ $A(b^{\prime})$ $A(t),$ $\Gamma\rightarrow\Delta$

Then we shall prove $O_{0}(\hat{\pi}_{2};A(b), \Gamma^{*}\rightarrow\Delta^{*},A(b^{\prime}))<0_{0}(\pi;\check{S}^{*})$ . $ h_{0}(S_{2},\hat{\pi}_{2})=\sigma$

and $A(b),$ $\Lambda^{*}\rightarrow\Pi^{*},$ $A(b^{\prime})$ is the sequent obtained from $S_{2}$ by deleting the
($A(b),$ $\Gamma^{*}\rightarrow\Delta^{*}$ , A(b’))-explicit formulas in $\hat{\pi}_{2}$ . So,

$O_{0}(S_{2};\hat{\pi}_{2};A(b), \Gamma^{*}\rightarrow\Delta^{*},A(b^{\prime}))=0_{\sigma}(S_{2};\pi_{2};A(b), \Lambda^{*}\rightarrow\Pi^{*}, A(b^{\prime}))$

$\leq\omega_{p-\sigma}(O_{p}(S_{2};\pi_{2};A(b),\Lambda^{*}\rightarrow\Pi^{*},A(b^{\prime})))$

$=\omega_{p-\sigma}(O_{p}(S_{2};\pi;\check{S}^{*}))$ .
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Thus,

$O_{0}(S^{2};\hat{\pi}_{2};A(b), \Gamma^{*}\rightarrow\Delta^{*}, A(b^{\prime}))$

$=O_{0}(S_{2};\hat{\pi}_{2};A(b), \Gamma^{*}\rightarrow\Delta^{*},A(b^{\prime}))$

$\leq\omega_{p-\sigma}(O_{0}(S_{2};\pi;\check{S}^{*}))$

$<\omega_{p-\sigma}(O_{0}(S_{2};\pi;\check{S}^{*})\times\omega)$

$<\omega_{p-\sigma}(O_{0}(S_{1} ; \pi;\check{S}^{*})\#(O_{0}(S_{2};\pi;\check{S}^{*})\times\omega)\# O_{0}(S_{3}; \pi;\check{S}^{*})\#\omega^{d(I)})$

$=0_{0}(S;\pi;\check{S}^{*})$ .

So, $O_{0}(\hat{\pi}_{2};A(b), \Gamma^{*}\rightarrow\Delta^{*},A(b^{\prime}))<O_{0}(\pi;\check{S}^{*})$ by Proposition 3. Similarly, we
can prove $O_{0}(\hat{\pi}_{1} ; \Gamma^{*}\rightarrow\Delta^{*},A(0))<O_{0}(\pi;\check{S}^{*})$ and $O_{0}(\hat{\pi}_{3}; A(t), \Gamma^{*}\rightarrow\Delta^{*})<$

$O_{0}(\pi;\check{S}^{*})$ .
Thus, by induction hypothesis, we can transform $\hat{\pi}_{1}$ into a derivation $\pi_{1}^{\prime}$

whose end sequent is $\Gamma\rightarrow\Delta,$ $A(O)$ and which is $(\Gamma^{*}\rightarrow\Delta^{*}, A(O))$ -strongly
irreducible, and $\hat{\pi}_{2}$ into a derivation $\pi_{2}^{\prime}$ whose end sequent is $A(b),$ $\Gamma\rightarrow\Delta,$ $A(b^{\prime})$

and which is $(A(b), \Gamma^{*}\rightarrow\Delta^{*},A(b^{\prime}))$ -strongly irreducible, and $\hat{\pi}_{3}$ into a deriva-
tion $\pi_{3}^{\prime}$ whose end sequent is $A(t),$ $\Gamma\rightarrow\Delta$ and which is $(A(t), \Gamma^{*}\rightarrow\Delta^{*})$ -strongly
irreducible. We shall define $\pi$

‘ as follows:

$\pi_{1}^{\prime}$ : $\pi_{2}^{\prime}$ : $\pi_{3}^{\prime}$ :
$\Gamma\rightarrow\Delta$ , A(0) A $(b),$ $\Gamma\rightarrow\Delta$ , A $(b^{\prime})$ A $(t),$ $\Gamma\rightarrow\Delta$

$\Gamma\rightarrow\Delta$

Note that $\pi$ includes no redundant variables, and $I$ is constant normal and
belongs to the boundary of $\pi$ . So, the free variables which occur in $t$ occur in
$\Gamma\rightarrow\Delta$ . Thus $\pi^{\prime}$ is a derivation whose end sequent is $\check{S}$ and which is $(\check{S}^{*})$ -strongly
irreducible.

(5) The case where $\pi$ includes at least one $(\rightarrow)$ -explicit inference which
belongs to the boundary of $\pi$ .

Let $I$ be one of $(\rightarrow)$ -explicit inferences which belong to the boundary of $\pi$ .

(5.1) The case where $I$ is $(\check{S}^{*})$ -explicit.
We shall consider the case that $I$ is a $\forall$ : left. The other cases are treated

similarly.
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Assume that $\pi$ is of the form:

$\pi_{1}$ :

$\frac{A(t),\Lambda\rightarrow\Pi s_{1}}{\forall xA(x),\Lambda\rightarrow\Pi s}I$

:
:

$\Gamma\rightarrow\Delta$

Assume that $ h_{0}(S_{1} ; \pi)=\rho$ and $ h_{0}(S;\pi)=\sigma$ . Assume that $\Lambda^{*}\rightarrow\Pi^{*}$ is the sequent
obtained from $S_{1}$ by deleting the $(\check{S}^{*})$ -explicit formulas in $\pi$ . Then we reduce $\pi$

into the derivation $\pi^{\prime}$ :

$\pi_{1}$ :
$A(t),\Lambda\rightarrow\Pi s_{1}$

$\frac{\Lambda,A(t)\rightarrow\Pi}{s}$

$\forall xA(x),\Lambda,A(t)\rightarrow\Pi$

:
$\Gamma,$ $ A(t)\rightarrow\Delta$

Then we shall prove $O_{0}(\pi^{\prime};\Gamma^{*}\rightarrow\Delta^{*})<O_{0}(\pi;\check{S}^{*})$ . $\Lambda^{*}\rightarrow\Pi^{*}$ is the sequent
obtained from $S_{1}$ by deleting the $(\Gamma^{*}\rightarrow\Delta^{*})$ -explicit formulas in $\pi^{\prime}$ . And
$ h_{0}(S_{1} ; \pi^{\prime})=h_{0}(S;\pi^{\prime})=\sigma$ . So,

$O_{0}(S_{1} ; \pi^{\prime};\Gamma^{*}\rightarrow\Delta^{*})=O_{\sigma}(S_{1} ; \pi_{1} ; \Lambda^{*}\rightarrow\Pi^{*})$

$\leq\omega_{\rho-\sigma}(O_{p}(S_{1} ; \pi_{1} ; \Lambda^{*}\rightarrow\Pi^{*}))$

$=\omega_{p-\sigma}(O_{0}(S_{1} ; \pi;\check{S}^{*}))$ .

Thus,

$0_{0}(S;\pi^{\prime};\Gamma^{*}\rightarrow\Delta^{*})=O_{0}(S_{1} ; \pi_{1}^{\prime} ; \Gamma^{*}\rightarrow\Delta^{*})$

$\leq\omega_{\rho-\sigma}(O_{0}(S_{1} ; \pi;\check{S}^{*}))$

$<\omega_{p-\sigma}(O_{0}(S_{1} ; \pi;\check{S}^{*})\#\epsilon_{0})$

$=O_{0}(S;\pi;\check{S}^{*})$ .

Hence $0_{0}(\pi^{\prime};\Gamma^{*}\rightarrow\Delta^{*})<O_{0}(\pi;\check{S}^{*})$ by Proposition 3. Thus we can transform $\pi$
‘

into a derivation $\hat{\pi}$ whose end sequent is $\Gamma,$ $ A(t)\rightarrow\Delta$ and which is $(\Gamma^{*}\rightarrow\Delta^{*})-$
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strongly irreducible, by induction hypothesis. So, we shall define $\tilde{\pi}$ as follows:

$\frac\frac{\overline{\overline{A(t),\Gamma\rightarrow\Delta}}\hat{\pi}}{\forall xA_{\Gamma\rightarrow\Delta}(x),\Gamma\rightarrow\Delta}J$

Note that $\pi$ includes no redundant variables and $I$ belongs to the boundary of $\pi$ .
So, the free variables which occur in $t$ occur in $\Gamma\rightarrow\Delta$ . Note that $J$ is $(\check{S}^{*})-$

explicit inference in $\tilde{\pi}$ . $And\rightarrow A(t)$ is not derivable in $PA$ , since $\pi$ includes no
$(\check{S}^{*})$ -explicit inferences which are reducible w.r. $t$ . $PA$ . Thus $\tilde{\pi}$ is $(\check{S}^{*})$ -strongly
irreducible.

(5.2) The case where $I$ is $(\check{S}^{*})$ -implicit.
We shall consider the case that $I$ is a $\forall$ : right. The other cases are treated

similarly.
Assume that $\pi$ is of the form:

$\frac{\Lambda\rightarrow^{1}\Pi,A(a)s\pi_{1}(a):}{\Lambda\rightarrow\Pi,\forall xA(x)s}I$

:
:

$\Gamma\rightarrow\Delta$

Assume that $ h_{0}(S_{1} ; \pi)=\rho$ and $ h_{0}(S;\pi)=\sigma$ . And assume that $\Lambda^{*}\rightarrow\Pi^{*},$ $A(a)$ is
the sequent obtained from $S_{1}$ by deleting the $(\check{S}^{*})$ -explicit formulas in $\pi$ . Let $b$ be
a variable which does not occur in $\pi$ . Then we reduce $\pi$ into the derivation $\pi^{\prime}$ :

A
$\rightarrow\Pi^{\pi_{1}},$$A(b)s_{I}(b)$

:

$\Lambda\rightarrow A(b),$ $\Pi$

$\Lambda\rightarrow sA(b),$
$\Pi,$ $\forall xA(x)$

:
:

$\Gamma\rightarrow A(b),$ $\Delta$

Then we shall prove $O_{0}(\pi^{\prime};\Gamma^{*}\rightarrow A(b), \Delta^{*})<O_{0}(\pi;\check{S}^{*})$ . $h_{0}(S_{1} ; \pi^{\prime})=h_{0}(S;\pi^{\prime})=$

$\sigma$ . And $\Lambda^{*}\rightarrow\Pi^{*},$ $A(b)$ is the sequent obtained from $S_{1}$ by deleting the
$(\Gamma^{*}\rightarrow A(b), \Delta^{*})$ -explicit formulas in $\pi^{\prime}$ . So,

$O_{0}(S_{1} ; \pi^{\prime};\Gamma^{*}\rightarrow A(b), \Delta^{*})=O_{\sigma}(S_{1} ; \pi_{1} ; \Lambda^{*}\rightarrow\Pi^{*},A(b))$

$\leq\omega_{p-\sigma}(O_{p}(S_{1} ; \pi_{1} ; \Lambda^{*}\rightarrow\Pi^{*},A(b)))$

$=\omega_{p-\sigma}(O_{0}(S_{1} ; \pi;\check{S}^{*}))$ .
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Thus,

$O_{0}(S;\pi^{\prime};\Gamma^{*}\rightarrow A(b), \Delta^{*})=O_{0}(S_{1} ; \pi^{\prime};\Gamma^{*}\rightarrow A(b), \Delta^{*})$

$\leq\omega_{\rho-\sigma}(O_{0}(S_{1} ; \pi;\check{S}^{*}))$

$<\omega_{p-\sigma}(O_{0}(S_{1} ; \pi;\check{S}^{*})\#\omega^{d(I)})$

$=0_{0}(S;\pi;\check{S}^{*})$ .

Hence $O_{0}(\pi^{\prime};\Gamma^{*}\rightarrow A(b), \Delta^{*})<0_{0}(\pi;\check{S}^{*})$ by Proposition 3. So, we can transform
$\pi^{\prime}$ into a derivation $\hat{\pi}$ whose end sequent is $\Gamma\rightarrow A(b),$ $\Delta$ and which is
$(\Gamma^{*}\rightarrow A(b), \Delta^{*})$ -strongly irreducible, by induction hypothesis. We shall define $\tilde{\pi}$

as follows:
$\hat{\pi}$

$\frac{}{\Gamma\rightarrow\Delta}\frac{\overline{\overline{\Gamma\rightarrow\Delta,A(b)}}}{\Gamma\rightarrow\Delta,\forall xA(x)}J$

Note that $J$ is $(\check{S}^{*})$ -implicit in $\tilde{\pi}$ . And the sequent $A(b)\rightarrow is$ not derivable in
$PA^{-}$ , since $\pi$ includes no inferences which are reducible w.r. $t$ . $PA^{-}$ . So, $\tilde{\pi}$ is $(\check{S}^{*})-$

strongly irreducible.
(6) The case where all the inferences which belong to the boundary of $\pi$ are

$(\rightarrow)$ -implicit inferences.
At first, we shall show that there exists a suitable cut (cf. [10]). We shall

consider the following property $(*)$ for a sequent $S$ in the end-place of $\pi$ .

$(*)$ $S$ includes a descendant of the principal formula of a boundary inference.

The lower sequent of a boundary inference satisfies the property $(*)$ and the end
sequent doesn’t satisfy the property $(*)$ . So, there exists an inference whose
upper sequent(s) satisfies the property $(*)$ and whose lower sequent doesn’t satisfy
the property $(*)$ . We take one of the uppermost ones and denote it by $I$. It is
clear that $I$ is a cut. Let $S_{1}(S_{2})$ be the left (right) upper sequent of $I$. Then, we
can suppose that $S_{1}$ satisfies the property $(*)$ . Then the cut formula which occurs
in $S_{1}$ must be a descendant of the principal formula of a boundary inference and
include logical symbols. If no boundary inferences occur above $S_{2},$ $S_{2}$ doesn’t
include a formula which contains logical symbols. Because $\pi$ includes no
weakenings above $S_{2}$ by our assumption. However, $S_{2}$ includes as formula which
contains logical symbols. So, $\pi$ must include at least one boundary inference
above $S_{2}$ . If $S_{2}$ doesn’t satisfy the property $(*)$ , there exists an inference above $I$

whose upper sequent(s) satisfies the property $(*)$ and whose lower sequent doesn’t
satisfy the property $(*)$ . But it contradicts our choice of $I$. Thus $S_{2}$ satisfies the
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property $(*)$ . Since the lower sequent of $I$ doesn’t satisfy the property $(*)$ , the cut
formula of $I$ which occurs in $S_{2}$ must be a descendant of the principal formula of
a boundary inference. So, $I$ is a suitable cut. We shall consider the case that the
cut formulas of $I$ have $\forall$ as their outermost logical symbols. The other cases are
treated similarly.

Assume that $\pi$ is of the form:

$\pi_{1}(a)$ : :

$\frac{\Lambda_{1^{\rightarrow}}^{S_{1}^{u}}\Pi_{1},A(a)}{s_{1}^{l}}I_{1}$ $\frac{A(t),\Lambda_{2^{\rightarrow}}^{S_{2^{u}}}\Pi_{2}}{s_{2}^{l}}I_{2}$

$\Lambda_{1}\rightarrow\Pi_{1},$ $\forall xA(x)$ $\forall xA(x),\Lambda_{2}\rightarrow\Pi_{2}$

: :
: :

$\frac{\Lambda_{3^{\rightarrow}}^{S_{3}}\Pi_{3},\forall xA(x)\forall xA(x),\Lambda_{4^{\rightarrow}}^{S_{4}}\Pi_{4}}{\Lambda_{3},\Lambda_{4}\rightarrow\Pi_{3},\Pi_{4}}I$

$r_{1^{\rightarrow\Delta_{1^{I_{3}}}}}^{\overline{s^{:}}}$

:
$\Gamma\rightarrow\Delta$

Here $I_{1}$ and $I_{2}$ belong to the boundary of $\pi$ . And $\Gamma_{1}\rightarrow\Delta_{1}$ denotes the uppermost
sequent below $I$ whose height based on $0$ is less than that of the upper sequents of
I. Assume that $h_{0}(S_{1}^{u};\pi)=p_{1u},$ $h_{0}(S_{1}^{l};\pi)=\rho_{1l},$ $ h_{0}(S_{3};\pi)=\rho$ and $ h_{0}(S;\pi)=\sigma$ .
And also assume that $\Lambda_{1}^{*}\rightarrow\Pi_{1}^{*},$ $A(a)$ is the sequent obtained from $S_{1}^{u}$ by deleting
the $(\check{S}^{*})$ -explicit formulas in $\pi$ . Then we reduce $\pi$ into the derivation $\pi^{\prime}$ :

$\pi_{1}(t)$ : :

$\overline{\overline{\Lambda_{1}\rightarrow A(t)_{:}.\prime\Pi_{1}^{1},\forall xA(x)s_{1^{l}}^{\Lambda_{1^{\rightarrow^{l}\Pi,A(t)}}^{S^{u}}}}}$

:. :

$\forall xA(x),\Lambda_{2_{:}},.A(t)\rightarrow\Pi_{2}A(t),\Lambda_{2^{\rightarrow\prod_{\overline{\overline{S_{2^{l}}}}}}}^{S_{2^{u}}}2$

$\frac{\Lambda_{3^{\rightarrow A(t),\Pi,\forall xA(x)\forall xA(x),\Lambda_{4}\rightarrow\Pi_{4}}}^{S_{3^{1}}S_{4}^{1}}3}{\Lambda_{3},\Lambda_{4}\rightarrow A(t),\Pi_{3},\Pi_{4}}\frac{\Lambda_{3^{\rightarrow\Pi_{3},\forall xA(x)\forall xA(x),\wedge,A(t)\rightarrow\Pi_{4}}}^{S_{3}^{2}S_{4}^{2}}4}{\Lambda_{3},\Lambda_{4},A(t)\rightarrow\Pi\Pi}$

$\overline{s^{1}}:I_{3}^{\prime}$ $:\overline{S^{2}}I_{3}^{\prime\prime}$

$\Gamma_{1}\rightarrow A(t),\Delta_{1}$ $\Gamma_{1},A(t)\rightarrow\Delta_{1}$

$\frac{\Gamma_{1}\rightarrow\Delta_{1},A(t).A(t),\Gamma_{1}\rightarrow\Delta_{1}}{\frac{\Gamma_{1},\Gamma_{1}\rightarrow\Delta_{1},\Delta_{1}}{\overline{r_{1^{\rightarrow\Delta_{1}}}^{s_{:}}}}}$

$\Gamma\rightarrow\Delta$
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Then we shall prove $O_{0}(\pi^{\prime};\check{S}^{*})<0_{0}(\pi;\check{S}^{*})$ . $\Lambda_{1}^{*}\rightarrow\Pi_{1}^{*},A(t)$ is the sequent
obtained from $S_{1}^{u}$ by deleting the $(\check{S}^{*})$ -explicit formulas in $\pi^{\prime}$ . And $h_{0}(S_{1}^{u};\pi^{\prime})=$

$h_{0}(S_{1}^{l};\pi^{\prime})=\rho_{1l}$ , $ h_{0}(S_{3}^{1};\pi^{\prime})=\rho$ and $ h_{0}(S;\pi^{\prime})=\sigma$ . Assume that $h_{0}(S^{1};\pi^{\prime})=$

$ h_{0}(S^{2};\pi^{\prime})=\tau$ . Then $\sigma\leq\tau<\rho$ . Since we have

$O_{0}(S_{1}^{u};\pi^{\prime};\check{S}^{*})=0_{\rho_{1l}}(S_{1}^{u};\pi_{1} ; \Lambda_{1}^{*}\rightarrow\Pi_{1}^{*}, A(t))$

$\leq\omega_{p_{1u}-p_{1l}}(O_{\rho_{1u}}(S_{1}^{u};\pi_{1} ; \Lambda_{1}^{*}\rightarrow\Pi_{1}^{*},A(t)))$

$=\omega_{\rho_{1u}-p_{1l}}(O_{0}(S_{1}^{u};\pi;\check{S}^{*}))$ ,

we have

$O_{0}(S_{1}^{l}; \pi^{\prime};\check{S}^{*})=O_{0}(S_{1}^{u};\pi^{\prime};\check{S}^{*})$

$\leq\omega_{p_{1u}-p_{1l}}(O_{0}(S_{1}^{u};\pi;\check{S}^{*}))$

$<\omega_{\rho_{1u}-\rho_{1l}}(O_{0}(S_{1}^{u};\pi;\check{S}^{*})\#\omega^{d(I_{1})})$

$=O_{0}(S_{1}^{l}; \pi;\check{S}^{*})$ .

Thus $O_{0}(I_{3}^{\prime};\pi^{\prime};\check{S}^{*})<O_{0}(I_{3}; \pi;\check{S}^{*})$ . Similarly, we have $O_{0}(I_{3}^{\prime\prime};\pi^{\prime};\check{S}^{*})<$

$O_{0}(I_{3}; \pi;\check{S}^{*})$ . Then

$O_{0}(S^{1} ; \pi^{\prime};\check{S}^{*})=\omega_{p-\tau}(0_{0}(I_{3}^{\prime};\pi^{\prime};\check{S}^{*}))<\omega_{\rho-\tau}(0_{0}(I_{3}; \pi;\check{S}^{*}))$ ,

$O_{0}(S^{2};\pi^{\prime};\check{S}^{*})=\omega_{p-\tau}(O_{0}(I_{3}^{\prime\prime};\pi^{\prime};\check{S}^{*}))<\omega_{\rho-\tau}(O_{0}(I_{3}; \pi;\check{S}^{*}))$ .

Thus, $O_{0}(S^{1} ; \pi^{\prime};\check{S}^{*})\# O_{0}(S^{2};\pi^{\prime};\check{S}^{*})<\omega_{p-\tau}(0_{0}(I_{3}; \pi;\check{S}^{*}))$ , because $\rho-\tau>0$ .
Hence,

$0_{0}(S;\pi^{\prime};\check{S}^{*})=\omega_{\tau-\sigma}(O_{0}(S^{1} ; \pi^{\prime};\check{S}^{*})\# O_{0}(S^{2};\pi^{\prime};\check{S}^{*}))$

$<\omega_{\tau-\sigma}(\omega_{p-\tau}(O_{0}(I_{3}; \pi;\check{S}^{*})))$

$=\omega_{p-\sigma}(O_{0}(I_{3}; \pi;\check{S}^{*}))$

$=0_{0}(S;\pi;\check{S}^{*})$ .

So, $O_{0}(\pi^{\prime};\check{S}^{*})<O_{0}(\pi;\check{S}^{*})$ by Proposition 3. Thus we can transform $\pi$
‘ into a

derivation whose end sequent is $\check{S}$ and which is $(\check{S}^{*})$ -strongly irreducible, by
induction hypothesis. $\blacksquare$

5. Appendix

We can prove the following theorem by induction up to $\epsilon_{0}$ .
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THEOREM 4. Assume that $\pi$ is a derivation of S. Then we can transform $\pi$

into a $PA^{-}$ -irreducible derivation with the same end sequent.

PROOF. We can prove this statement by a method similar to that in
Theorem 3. Note that then we use induction on $O_{0}(\pi;S)$ . $\blacksquare$

COROLLARY 4. $PA$ is 2-consistent.

PROOF. Let $\exists xA(x)$ be a $\Sigma_{2}$ -sentence. Then we can assume that $A(a)$ is a
$\Pi_{1}$ -formula. Suppose that $\exists xA(x)$ is derivable in $PA$ . Then we shall show that
$\exists xA(x)$ is true. Assume that $\exists xA(x)$ is not true. Let $t$ be a closed term. Then,
$\urcorner A(t)$ is true. Since $\neg A(t)$ is a $\Sigma_{1}$ -sentence, $\rightarrow\neg A(t)$ is derivable in $PA^{-}$ by $\Sigma_{1^{-}}$

completeness. So, we have the statement $(*)$ that $A(t)\rightarrow is$ derivable in $PA^{-}$ for
any closed term $t$ .

On the other hand, there is a $PA^{-}$ -irreducible derivation $\pi$ of $\exists xA(x)$ by our
assumption and Theorem 4. Assume that $\pi$ includes at least one boundary
inference. Since the end-place of $\pi$ includes no free variable, no inds belong
to the boundary of $\pi$ . Thus, every boundary inference must be of the form:

$\frac{\Gamma\rightarrow\Delta,A(t^{\prime})}{\Gamma\rightarrow\Delta,\exists xA(x)}$

where $\Gamma$ consists of atomic formulas and $\Delta$ consists of atomic formulas or
$\exists xA(x)$ . Since $\pi$ includes no redundant variables, $t^{\prime}$ is closed. Since $\pi$ is a $PA^{-}-$

irreducible derivation, $A(t^{\prime})\rightarrow is$ not derivable in $PA^{-}$ . But, this contradicts $(*)$ .
Thus, $\pi$ includes no boundary inferences. Then we can transform $\pi$ into a
derivation $of\rightarrow which$ includes no free variables, no essential cuts, no inds and
no logical inferences. But there is not such a derivation. Thus $\exists xA(x)$ is tme.

$\blacksquare$
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