LC-DECOMPOSABILITY AND THE AR-PROPERTY IN LINEAR METRIC SPACES

By

Nguyen To NHU, Tran Van An and Pham Quang TRINH

Abstract. We investigate the AR-property for convex sets in non-locally convex linear metric spaces. We introduce the notion of LC-decomposability for convex sets and prove that any LC-decomposable convex set is an AR.

1. Introduction

Detecting the AR-property for convex sets in linear metric spaces is of great importance since Dobrowolski and Torunczyk [4] proved the following theorem:

THEOREM A. (i) A complete separable linear metric space X is homeomorphic to Hilbert space if and only if X is an AR.

(ii) A compact convex set X in a linear metric space is homeomorphic to Hilbert cube if and only if X is an AR.

For about fifteen years many efforts were made to find out whether the assumption of AR-property in Dobrowolski-Torunczyk's theorem is essential. This question has been answered partly by Cauty [3], who recently proved the following theorem:

Theorem B. There exists a σ -compact linear metric space which is not an AR.

By a theorem of Torunczyk [12], the completion of any non-AR-linear metric space is still a non-AR-space. Therefore Theorem B shows that the AR-property assumption in Theorem A (i) is essential. However, it is unknown

¹⁹⁹¹ Mathematics Subject Classification. Primary 46A16; Secondary 54G15.

This paper was financially supported by the National Basic Research Program in Natural Sciences. Received January 19, 1995.

Revised January 13, 1997.

whether the AR-property assumption can be removed from Theorem A (ii). This is still one of the most interesting (and difficult!) questions in the theory of non-locally convex linear metric spaces.

By Theorem B, convex sets in linear metric spaces may be not AR-spaces. So it is essential to establish conditions for convex sets to be AR's. And the results in [7] and [8] become valuable because of Cauty's theorem.

In [7] it was shown that if a convex set X in a linear metric space can be pushed into its locally convex subsets by arbitrarily small maps, then X is an AR. In this paper, we genelize the result of [7] by demonstrating that if a convex set X can be broken into finite convex sets, each of them can be pushed into its locally convex subsets by arbitrarily small maps, then X is an AR.

Following [7], a subset X in a linear metric space is an LC-set if for every $\varepsilon > 0$ there exists a $\delta = \delta(\varepsilon, X)$ such that for any finite set $A \subset X$ with diam $A < \delta$ we have diam(conv A) $< \varepsilon$.

Observe that any set in a locally convex linear metric space is an LC-set. We say that a subset X in a linear metric space E is a strongly LC-set if [X] is an LC-set, where $[X] = {\lambda x : \lambda \in [0, 1] \text{ and } x \in X} \subset E$.

Let X be a subset in a linear metric space and $\varepsilon > 0$. We say that X is an ε LC-set if there exists a strongly LC-subset Y of X such that

$$||x - [Y]|| < 3^{-1}\delta(\varepsilon, [Y])$$
 for every $x \in X$. (1)

We say that a finite family $\{A_1, \ldots, A_n\}$ of subsets in a linear metric space X is *linearly independent* if for every $x_i \in \text{span } A_i, i = 1, \ldots, n$, the set $\{x_1, \ldots, x_n\} \setminus \{\theta\}$, where θ denotes the zero element of X, is a linearly independent subset of X.

Let X and Y be subsets in a linear metric space. We say that X and Y are topologically summable if whenever U is an open subset of X and Y is an open subset of Y, the set U + V is open in X + Y.

DEFINITION. We say that a convex set X in a linear metric space is LC-decomposable if $\theta \in X$, and for every $\varepsilon > 0$ there exists positive numbers ε_i , $i = 1, \ldots, n$, with $\sum_{i=1}^n \varepsilon_i \le \varepsilon$, and linearly independent, topologically summable, ε_i -LC-subsets X_i of X such that $X = conv(X_1 \cup \cdots \cup X_n)$.

Our result in this paper is the following:

THEOREM 1. Any LC-decomposable convex set is an AR.

NOTATION AND CONVENTIONS. In this paper, all maps are assumed to be continuous. By a linear metric space we mean a topological vector space X which is metrizable. The zero element of X is denoted by θ . We equip X with an F-norm $\|\cdot\|$ such that, see [11]

$$\|\lambda x\| \le \|x\|$$
 for every $x \in X$ and $\lambda \in \mathbf{R}$ with $|\lambda| \le 1$.

Let A be a subset of a linear metric space X. By span A we denote the linear subspace of X spanned by A and by conv A we denote the convex hull of A in X. We also use the following notation:

$$[A] = [0, 1]A = {\lambda x : \lambda \in [0, 1], x \in A} = \text{conv}\{A \cup {\theta}\};$$
$$\|x - A\| = \inf\{\|x - y\| : y \in A\} \quad \text{for } x \in X;$$
$$\text{diam } A = \sup\{\|x - y\| : x, y \in A\}.$$

For undefined notation, see [1], [2] and [11].

2. The key for the proof

In our proof of Theorem 1, we use some ideas from [7] [8] and [10]. The following characterization of ANR-spaces, established in [6], is the key for our proof of the main result in this paper.

Let X be a metric space. For a given open cover \mathscr{U} of X, let $\mathscr{N}(\mathscr{U})$ denote the *nerve* of \mathscr{U} . The nerve $\mathscr{N}(\mathscr{U})$ of \mathscr{U} is the simplicial complex

$$\{\sigma: \sigma = \langle U_1, \ldots, U_n \rangle, \ U_i \in \mathscr{U}, \ n \in N\}$$

made up of all $\sigma = \langle U_1, \dots, U_n \rangle$ for which $\bigcap_{i=1}^N U_i \neq \emptyset$. The simplicial complex $\mathcal{N}(\mathcal{U})$ will be endowed with the Whitehead topology (see [1] or [5] for a discussion). Denote

mesh
$$\mathscr{U} = \sup \{ \text{diam } U : U \in \mathscr{U} \}.$$

Let $\{\mathcal{U}_n\}$ be a sequence of open covers of a metric space X. We say that $\{\mathcal{U}_n\}$ is a zero sequence if mesh $\mathcal{U}_n \to 0$ as $n \to \infty$.

Finally, define

$$\mathscr{U} = \bigcup_{n=1}^{\infty} \mathscr{U}_n$$
 and $\mathscr{K}(\mathscr{U}) = \bigcup_{n=1}^{\infty} \mathscr{N}(\mathscr{U}_n \cup \mathscr{U}_{n+1}),$

and for any $\sigma \in \mathcal{K}(\mathcal{U})$, let

$$n(\sigma) = \sup\{n \in \mathbb{N} : \sigma \in \mathcal{N}(\mathcal{U}_n \cup \mathcal{U}_{n+1})\}.$$

120

Observe that

$$\mathcal{N}(\mathcal{U}_n \cup \mathcal{U}_{n+1}) \cap \mathcal{N}(\mathcal{U}_{n+1} \cup \mathcal{U}_{n+2}) = \mathcal{N}(\mathcal{U}_{n+1})$$
 for every $n \in \mathbb{N}$.

We say that a map $f: \mathcal{U} \to X$ is a selection if $f(U) \in U$ for every $U \in \mathcal{U}$. The proof of Theorem 1 is based on the following:

THEOREM 2 [6] (See also [9]). A metric space X with no isolated points is an ANR if and only if there is a zero sequence $\{\mathcal{U}_n\}$ of open covers of X such that for any selection $g: \mathcal{U} \to X$, there exists a map $f: \mathcal{K}(\mathcal{U}) \to X$ so that $diam(f(\sigma_k) \cup g(\sigma_k^0)) \to 0$ if $n(\sigma_k) \to \infty$ for any sequence of simplices $\{\sigma_k\}$ in $\mathcal{K}(\mathcal{U})$, where σ^0 denote the set of all vertices of σ .

Now, assume that X is an LC-decomposable convex set. To show that X is an AR, we aim to verify the conditions of Theorem 2. Our first step is to describe a sequence $\{\mathcal{U}_n\}$ of open covers of X as stated in Theorem 2.

Let $\{\varepsilon_n\} = \{2^{-n}\}$. By the LC-decomposability of X, for every $n \in \mathbb{N}$ there exist positive numbers ε_i^n , i = 1, ..., m(n), with

$$\sum_{i=1}^{m(n)} \varepsilon_i^n \le 2^{-n} \tag{2}$$

and linearly independent, topologically summable, ε_i^n -LC-subsets G_i^n of X,

 $i=1,\ldots,m(n)$, such that $X=\operatorname{conv}\left(\bigcup_{i=1}^{m(n)}G_i^n\right)$. By definition for each $i=1,\ldots,m(n)$ there exists a strongly LC-subset $F_i^n \subset G_i^n$ such that

$$||x - [F_i^n]|| < 3^{-1}\delta_i^n$$
 for every $x \in G_i^n$,

where

$$\delta_i^n = \delta(\varepsilon_i^n, [F_i^n])$$
 for $i = 1, \ldots, m(n)$.

Denote

$$X_i^n = [G_i^n] \text{ and } Y_i^n = [F_i^n] \text{ for } i = 1, \dots, m(n).$$
 (3)

Then $X = \operatorname{conv}\left(\bigcup_{i=1}^{m(n)} X_i^n\right)$ and Y_i^n is an LC-set for every $i = 1, \ldots, m(n)$. We claim that

CLAIM 1. $||x - Y_i^n|| < 3^{-1}\delta_i^n$ for every $x \in X_i^n$.

PROOF. For every $x \in X_i^n$, we have $x = \lambda g$ for some $g \in G_i^n$ and $\lambda \in [0, 1]$. Take $f \in Y_i^n$ such that

$$||g - Y_i^n|| < 3^{-1}\delta_i^n$$
.

Then $\lambda f \in Y_i^n$ and

$$||x - \lambda f|| = ||\lambda g - \lambda f|| \le ||g - f|| \le ||g - Y_i|| < 3^{-1}\delta_i^n$$

The claim is proved.

Observe that for any finite set $A \subset Y_i^n$, i = 1, ..., m(n), with

diam
$$A < \delta_i^n$$
 we have diam(conv A) $< \varepsilon_i^n$. (4)

For every i = 1, ..., m(n), let W_i^n be an open cover of X_i^n such that

diam
$$W < 6^{-1}\delta_i^n$$
 for every $W \in \mathcal{W}_i^n$. (5)

Denote

$$V(W_1^n, \dots, W_{m(n)}^n) = W_1^n + \dots + W_{m(n)}^n$$
, where $W_i^n \in \mathcal{W}_i^n, i = 1, \dots, m(n)$. (6)

Let

$$\mathscr{U}_n = \left\{ U = V(W_1^n, \dots, W_{m(n)}^n) \cap X : W_i^n \in \mathscr{W}_i^n, i = 1, \dots, m(n) \right\}. \tag{7}$$

Since $X_1^n, \ldots, X_{m(n)}^n$ are topologically summable, $V = V(W_1^n, \ldots, W_{m(n)}^n)$, see (6), is open in $X_1^n + \cdots + X_{m(n)}^n$. Since $\theta \in X_i^n, i = 1, \ldots, m(n)$, see (3), we get

$$X = \operatorname{conv}\left(\bigcup_{i=1}^{m(n)} X_i^n\right) \subset X_1^n + \cdots + X_{m(n)}^n.$$

Therefore $U = V \cap X$ is open in X for every $U \in \mathcal{U}_n$.

Our aim is to prove that the sequence $\{\mathcal{U}_n\}$ of open covers of X, defined by (7), satisfies the conditions of Theorem 2. We first show:

LEMMA 1. $\{\mathcal{U}_n\}$ is a zero sequence of open covers of X.

PROOF. As we have seen, U is open in X for every $U \in \mathcal{U}_n$. Let us prove that \mathcal{U}_n covers X for every $n \in N$. For a given point $x \in X$, take $x_i \in X_i^n$, $\lambda_i \geq 0$, $i = 1, \ldots, m(n)$, with $\sum_{i=1}^{m(n)} \lambda_i = 1$, such that $x = \sum_{i=1}^{m(n)} \lambda_i x_i$. Note that $\lambda_i x_i \in X_i^n$ for $i = 1, \ldots, m(n)$. Take $W_i^n \in \mathcal{W}_i^n$ so that $\lambda_i x_i \in W_i^n$ for $i = 1, \ldots, m(n)$. Let $V = V(W_1^n, \ldots, W_{m(n)}^n)$, see (6). Then $U = V \cap X \in \mathcal{U}_n$ and $x \in U$, see (7). Consequently, \mathcal{U}_n covers X.

Now, we shall show that $\{\mathcal{U}_u\}$ is a zero sequence. In fact, we are going to prove

diam
$$U < 2^{-n}$$
 for every $U \in \mathcal{U}_n$. (8)

In fact, given $U \in \mathcal{U}_n$ we have $U = V \cap X$, where

$$V = V(W_1^n, \dots, W_{m(n)}^n) = W_1^n + \dots + W_{m(n)}^n, \text{ see } (6).$$

Therefore, for every $x, y \in V$, $x = \sum_{i=1}^{m(n)} x_i$, $y = \sum_{i=1}^{m(n)} y_i$, where $x_i, y_i \in W_i^n$, for $i = 1, \ldots, m(n)$. Observe that $\delta_i^n \leq \varepsilon_i^n$, for $i = 1, \ldots, m(n)$. Therefore from (2) and (5) we get

$$||x - y|| \le \sum_{i=1}^{m(n)} ||x_i - y_i|| \le \sum_{i=1}^{m(n)} \text{diam } W_i^n$$

 $< \sum_{i=1}^{m(n)} 6^{-1} \delta_i^n < \sum_{i=1}^{m(n)} \varepsilon_i^n \le 2^{-n}.$

Consequently diam $V < 2^{-n}$. Since

$$\operatorname{diam} U = \operatorname{diam}(V \cap X) \leq \operatorname{diam} V < 2^{-n}$$

the inequality (8) is established. The lemma is proved.

Let $U_j \in \mathcal{U}_n$, j = 1, ..., k, where

$$U_{j} = V(W_{1}^{n}(j), \dots, W_{m(n)}^{n}(j)) \cap X = (W_{1}^{n}(j) + \dots + W_{m(n)}^{n}(j)) \cap X.$$
 (9)

Then we have

LEMMA 2. If
$$\bigcap_{j=1}^k U_j \neq \emptyset$$
, then $\bigcap_{j=1}^k W_i^n(j) \neq \emptyset$ for every $i = 1, \ldots, m(n)$.

PROOF. For every $x \in \bigcap_{j=1}^k U_j$, we have $x = \sum_{i=1}^{m(n)} x_i(j)$, where $x_i(j) \in W_i^n(j)$ for j = 1, ..., k and i = 1, ..., m(n), see (9). Then for every j = 1, ..., k we have

$$\sum_{i=1}^{m(n)} (x_i(j) - x_i(1)) = \theta.$$

Observe that $x_i(j) - x_i(1) \in \text{span } X_i^n$ for every i = 1, ..., m(n). By the linear independence of $\{X_i^n, i = 1, ..., m(n)\}$ we conclude that

$$x_i(j) = x_i(1)$$
 for every $j = 1, \dots, k$ and $i = 1, \dots, m(n)$.

Consequently, letting

$$y_i = x_i(j) = x_i(1)$$
 for $i = 1, ..., m(n)$,

we get

$$y_i \in \bigcap_{j=1}^k W_i^n(j)$$
 for every $i = 1, ..., m(n)$.

The lemma is proved.

3. Proof of the main result

In this section, we prove Theorem 1. Since X is contractible, it suffices to show that X is an ANR, see [2]. We are going to verify the conditions of Theorem 2 for the sequence $\{\mathcal{U}_n\}$, defined in Section 2, see (7).

By Lemma 1, $\{\mathscr{U}_n\}$ is a zero sequence of open covers of X. Let $\mathscr{U} = \bigcup_{n=1}^{\infty} \mathscr{U}_n$ and let $g : \mathscr{U} \to X$ be a selection. For every $U \in \mathscr{U}$ we have $U \in \mathscr{U}_n$ for some $n \in N$. Hence $U = V \cap X$, where

$$V = V(W_1^n, \dots, W_{m(n)}^n) = W_1^n + \dots + W_{m(n)}^n.$$
 (10)

Since $g(U) \in X = \operatorname{conv}\left(\bigcup_{i=1}^{m(n)} X_i^n\right)$, we have

$$g(U) = \sum_{i=1}^{m(n)} \lambda_i x_i, \quad \text{where } x_i \in X_i^n, \lambda_i \ge 0 \quad \text{and} \quad \sum_{i=1}^{m(n)} \lambda_i = 1.$$
 (11)

We claim that

$$\lambda_i x_i \in W_i^n$$
 for every $i = 1, \dots, m(n)$. (12)

In fact, since $g(U) \in V = W_1^n + \cdots + W_{m(n)}^n$, we have $g(U) = \sum_{i=1}^{m(n)} z_i$, where $z_i \in W_i^n$ for $i = 1, \dots, m(n)$. Therefore

$$\sum_{i=1}^{m(n)} (z_i - \lambda_i x_i) = \theta.$$

Observe that $z_i - \lambda_i x_i \in \text{span } X_i^n$ for every i = 1, ..., m(n). By the linear independence of $\{X_i^n, i = 1, ..., m(n)\}$ we have $\lambda_i x_i = z_i \in W_i^n$ for every i = 1, ..., m(n). The claim is established.

Since $x_i \in X_i^n$, i = 1, ..., m(n), by Claim 1 there exist $y_i \in Y_i^n$, i = 1, ..., m(n) such that

$$||x_i - y_i|| < 3^{-1} \delta_i^n$$
 for every $i = 1, \dots, m(n)$. (13)

We define

$$f(U) = \sum_{i=1}^{m(n)} \lambda_i y_i. \tag{14}$$

(Observe that $f: \mathcal{U} \to X$ may not be a selection: Theorem 2 requires $g: \mathcal{U} \to X$ be a selection, but it does not require $f: \mathcal{U} \to X$ to be so.)

From (2) (4) (11) (13) and (14) we get

$$||f(U) - g(U)|| \le \sum_{i=1}^{m(n)} ||\lambda_i x_i - \lambda_i y_i||$$

$$\le \sum_{i=1}^{m(n)} ||x_i - y_i|| < \sum_{i=1}^{m(n)} 3^{-1} \delta_i^n$$

$$\le \sum_{i=1}^{m(n)} 3^{-1} \varepsilon_i^n < 2^{-n}$$
(15)

for every $U \in \mathcal{U}_n$.

Now, using the convexity of X we extend $f: \mathcal{U} \to X$ affinely to a map, which is still denoted by $f, f: \mathcal{K}(\mathcal{U}) \to X$. We claim that f satisfies the required conditions.

Let
$$\sigma = \langle U_1, \dots, U_k \rangle \in \mathscr{K}(\mathscr{U}) = \bigcup_{n=1}^{\infty} \mathscr{N}(\mathscr{U}_n \cup \mathscr{U}_{n+1})$$
. Take $p \in N$ so that $U_1, \dots, U_p \in \mathscr{U}_{n(\sigma)}$ and $U_{p+1}, \dots, U_k \in \mathscr{U}_{n(\sigma)+1}$.

Let $\sigma = \langle \sigma_0, \sigma_1 \rangle$, where

$$\sigma_0 = \langle U_1, \dots, U_p \rangle$$
 and $\sigma_1 = \langle U_{p+1}, \dots, U_k \rangle$. (16)

Our next step is to compute diam $f(\sigma_i)$ for i = 0, 1. Let

$$g(U_j) = \sum_{i=1}^{m(n(\sigma))} \lambda_i(j) x_i(j) \text{ and } f(U_j) = \sum_{i=1}^{m(n(\sigma))} \lambda_i(j) y_i(j)$$
 (17)

where

$$\lambda_i(j)x_i(j) \in W_i^{n(\sigma)}(j), y_i(j) \in Y_i^{n(\sigma)}, \lambda_i(j) \ge 0, \quad i = 1, \dots, m(n), j = 1, \dots, p$$

and

$$\sum_{i=1}^{m(n(\sigma))} \lambda_i(j) = 1 \quad \text{for every } j = 1, \dots, p.$$

Observe that $U_j = V_j \cap X$, j = 1, ..., p, where

$$V_{j} = V(W_{1}^{n(\sigma)}(j), \dots, W_{m(n(\sigma))}^{n(\sigma)}(j)) = W_{1}^{n(\sigma)}(j) + \dots + W_{m(n(\sigma))}^{n(\sigma)}(j).$$
 (18)

Since $\bigcap_{j=1}^p U_j \neq \emptyset$, from Lemma 2 we obtain

$$\bigcap_{i=1}^{p} W_{i}^{n(\sigma)}(j) \neq \emptyset \quad \text{for every } i = 1, \dots, m(n(\sigma)).$$

Therefore from (5) we get

diam
$$\bigcup_{j=1}^{p} W_i^{n(\sigma)}(j) < 2(6^{-1}\delta_i^{n(\sigma)}) = 3^{-1}\delta_i^{n(\sigma)},$$
 (19)

for every $i = 1, ..., m(n(\sigma))$. Denote

$$A_i = {\lambda_i(j)y_i(j) : j = 1, ..., p}$$
 for $i = 1, ..., m(n(\sigma))$. (20)

Since $\theta \in Y_i^{n(\sigma)}$, see (3), it follows that

$$A_i \subset Y_i^{n(\sigma)} \quad \text{for } i = 1, \dots, m(n(\sigma)).$$
 (21)

We claim that

CLAIM 2. diam $A_i < \delta_i^{n(\sigma)}$ for every $i = 1, ..., m(n(\sigma))$.

PROOF. From (5) (12) (13) and (19) we obtain

$$\begin{split} \|\lambda_{i}(j)y_{i}(j) - \lambda_{i}(j')y_{i}(j')\| &\leq \|\lambda_{i}(j)y_{i}(j) - \lambda_{i}(j)x_{i}(j)\| \\ &+ \|\lambda_{i}(j)x_{i}(j) - \lambda_{i}(j')x_{i}(j')\| \\ &+ \|\lambda_{i}(j')x_{i}(j') - \lambda_{i}(j')y_{i}(j')\| \\ &\leq \|y_{i}(j) - x_{i}(j)\| + \operatorname{diam} \bigcup_{j=1}^{p} W_{i}^{n(\sigma)}(j) \\ &+ \|y_{i}(j') - x_{i}(j')\| \\ &< 3^{-1}\delta_{i}^{n(\sigma)} + 3^{-1}\delta_{i}^{n(\sigma)} + 3^{-1}\delta_{i}^{n(\sigma)} = \delta_{i}^{n(\sigma)}, \end{split}$$

which proves the claim.

From (4) and from Claim 2 it follows that

diam(conv
$$A_i$$
) $< \varepsilon_i^{n(\sigma)}$ for every $i = 1, ..., m(n(\sigma))$. (22)

For every $x \in \sigma_0$, we have $x = \sum_{j=1}^p \alpha_j U_j$ where $\alpha_j \ge 0$ and $\sum_{j=1}^p \alpha_j = 1$. Then from (17) and (22) we obtain

$$||f(x) - f(U_{1})|| = \left\| \sum_{j=1}^{p} \alpha_{j} (f(U_{j}) - f(U_{1})) \right\|$$

$$= \left\| \sum_{j=1}^{p} \alpha_{j} \sum_{i=1}^{m(n(\sigma))} (\lambda_{i}(j)y_{i}(j) - \lambda_{i}(1)y_{i}(1)) \right\|$$

$$= \left\| \sum_{i=1}^{m(n(\sigma))} \sum_{j=1}^{p} \alpha_{j} (\lambda_{i}(j)y_{i}(j) - \lambda_{i}(1)y_{i}(1)) \right\|$$

$$\leq \sum_{i=1}^{m(n(\sigma))} \left\| \sum_{j=1}^{p} \alpha_{j} (\lambda_{i}(j)y_{i}(j) - \lambda_{i}(1)y_{i}(1)) \right\|$$

$$\leq \sum_{i=1}^{(m(n(\sigma)))} \operatorname{diam}(\operatorname{conv} A_{i}) < \sum_{i=1}^{m(n(\sigma))} \varepsilon_{i}^{n(\sigma)} < 2^{-n(\sigma)}.$$

Similarly for every $x \in f(\sigma_1)$ we have

$$||x-f(U_{p+1})|| < 2^{-n(\sigma)-1}.$$

(Observe that $U_i \in \mathcal{U}_{n(\sigma)+1}$ for $i = p + 1, \dots, k$.)

Now for every $x \in \sigma$ we have $x = \alpha x_0 + (1 - \alpha)x_1$, where $x_i \in \sigma_i$ for i = 0, 1 and $\alpha \in [0, 1]$. Let $y = \alpha U_1 + (1 - \alpha)U_{p+1}$. Then we get

$$||f(x) - f(y)|| = ||\alpha(f(x_0) - f(U_1)) + (1 - \alpha)(f(x_1) - f(U_{p+1}))||$$

$$\leq ||f(x_0) - f(U_1)|| + ||f(x_1) - f(U_{p+1})||$$

$$< 2^{-n(\sigma)} + 2^{-n(\sigma)-1} < 2^{-n(\sigma)+1}.$$
(23)

Since g is a selection, from (8) and (15) we get

$$||f(y) - f(U_{1})|| = ||\alpha f(U_{1}) + (1 - \alpha)f(U_{p+1}) - f(U_{1})||$$

$$= ||(1 - \alpha)(f(U_{1}) - f(U_{p+1}))|| \le ||f(U_{1}) - f(U_{p+1})||$$

$$\le ||f(U_{1}) - g(U_{1})|| + ||g(U_{1}) - g(U_{p+1})|| + ||g(U_{p+1}) - f(U_{p+1})||$$

$$< 2^{-n(\sigma)} + 2^{-n(\sigma)+1} + 2^{-n(\sigma)} = 2^{-n(\sigma)+2}.$$
(24)

Therefore from (23) and (24) we obtain

$$||f(x) - f(U_1)|| \le ||f(x) - f(y)|| + ||f(y) - f(U_1)||$$

$$< 2^{-n(\sigma)+1} + 2^{-n(\sigma)+2} < 2^{-n(\sigma)+3}$$

for every $x \in \sigma$. Consequently

$$\operatorname{diam} f(\sigma) < 2^{-n(\sigma)+4}. \tag{25}$$

Since g is a selection, from (8) we get

$$\operatorname{diam} g(\sigma^0) < 2^{-n(\sigma)+1}. \tag{26}$$

(Note that σ^0 denotes the set of all vertices of σ , meanwhile σ_0 is the simplex defined by (16).) Hence from (15) (25) and (26) we obtain

$$\operatorname{diam}(f(\sigma)) \cup g(\sigma^{0})) \leq \operatorname{diam}(f(\sigma)) + ||f(U_{1}) - g(U_{1})|| + \operatorname{diam}(g(\sigma^{0}))$$
$$< 2^{-n(\sigma)+4} + 2^{-n(\sigma)} + 2^{-n(\sigma)+1} < 2^{-n(\sigma)+5}.$$

Therefore

$$\operatorname{diam} (f(\sigma) \cup g(\sigma^0)) \to 0 \quad \text{as } n(\sigma) \to \infty.$$

Consequently, X is an ANR by Theorem 2 and the proof of Theorem 1 is finished.

Acknowledgement

The authors are grateful to the referee for his (her) comments.

References

- [1] C. Bessaga and A. Pelczynski, Selected Topics in Infinite-Dimensional Topology, PWN—Polish Scientific Publishers, Warsaw, 1975.
- [2] K. Borsuk, Theory of Retracts, PWN—Polish Scientific Publishers, Warsaw, 1967.
- [3] R. Cauty, Un Espace Metrique Lineaire qui N'est Pas un Retracte Absolu, Fund. Math. 144 (1994), 11-22.
- [4] T. Dobrowolski and H. Torunczyk, On Metric Linear Spaces Homeomorphic to ℓ_2 and Compact Convex Sets homeomorphic to Q, Bull. Acad. Sci. Ser. Sci. Math. 27 (1979), 883-887.
- [5] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.
- [6] Nguyen To Nhu, Investigating the ANR-Property of Metric Spaces, Fund. Math. 124 (1984), 243–254; Corrections, 141 (1992), 297.
- [7] Nguyen To Nhu, Admissibility, the Locally Convex Approximation Property and the AR-Property in Linear Metric Spaces, Proc. Amer. Math. Soc. 123 (1995), 3233-3241.
- [8] Nguuyen To Nhu, The Finite Dimensional Approximation Property and the AR-Property in Needle Point Spaces, J. London Math. Soc. (To appear).
- [9] Nguyen To Nhu and K. Sakai, The Compact Neighborhood Extension Property and Local Equiconnectedness, Proc. Amer. Math. Soc. 121 (1994), 259-265.
- [10] Nguyen To Nhu, Jose M. R. Sanjurjo and Tran Van An, The AR-Property for Roberts' Example of a Compact Convex Set with No Extreme Points, Proc. Amer. Math. Soc. (To appear).
- [11] S. Rolewicz, Metric Linear Spaces, PWN-Polish Scientific Publishers, Warsaw, 1984.
- [12] H. Torunczyk, Concerning Locally Homotopy Negligible Sets and Characterization of ℓ_2 -manifolds, Fund. Math. 101 (1978), 93–110.

Nguyen To Nhu
Department of Mathematical Sciences
New Mexico State University
Las Cruces, NM 88003-8001, USA
Email address: nnguyen@nmsu.edu

Tran Van An
Pham Quang Trinh
Department of Mathematics,
University of Vinh, Nghe An, Vietnam