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LC-DECOMPOSABILITY AND THE AR-PROPERTY IN
LINEAR METRIC SPACES

By
Nguyen To NHuU, Tran Van AN and Pham Quang TRINH

Abstract. We investigate the AR-property for convex sets in non-
locally convex linear metric spaces. We introduce the notion of
LC-decomposability for convex sets and prove that any LC-
decomposable convex set is an AR.

1. Introduction

Detecting the AR-property for convex sets in linear metric spaces is of great
importance since Dobrowolski and Torunczyk [4] proved the following theorem:

THEOREM A. (i) A complete separable linear metric space X is homeo-
morphic to Hilbert space if and only if X is an AR.

(i) A compact convex set X in a linear metric space is homeomorphic to
Hilbert cube if and only if X is an AR.

For about fifteen years many efforts were made to find out whether the
assumption of AR-property in Dobrowolski-Torunczyk’s theorem is essential.
This question has been answered partly by Cauty [3], who recently proved the
following theorem:

THEOREM B. There exists a o-compact linear metric space which is not
an AR.

By a theorem of Torunczyk [12], the completion of any non-AR-linear
metric space is still a non-AR-space. Therefore Theorem B shows that the AR-
property assumption in Theorem A (i) is essential. However, it is unknown
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whether the AR-property assumption can be removed from Theorem A (ii).
This is still one of the most interesting (and difficult!) questions in the theory of
non-locally convex linear metric spaces.

By Theorem B, convex sets in linear metric spaces may be not 4R-spaces.
So it is essential to establish conditions for convex sets to be AR’s. And the
results in [7] and [8] become valuable because of Cauty’s theorem.

In [7] it was shown that if a convex set X in a linear metric space can be
pushed into its locally convex subsets by arbitrarily small maps, then X is an
AR. In this paper, we genelize the result of [7] by demonstrating that if a
convex set X can be broken into finite convex sets, each of them can be pushed
into its locally convex subsets by arbitrarily small maps, then X is an AR.

Following a subset X in a linear metric space is an LC-set if for
every & > 0 there exists a d = d(¢, X) such that for any finite set 4 < X with
diam A4 < 6 we have diam(conv 4) < &.

Observe that any set in a locally convex linear metric space is an LC-set.

We say that a subset X in a linear metric space E is a strongly LC-set if [X]
is an LC-set, where [X]={Ax:41€e[0,1]]andxe X} c E.

Let X be a subset in a linear metric space and ¢ > 0. We say that X is an e-
LC-set if there exists a strongly LC-subset Y of X such that

|x — [Y]]| <37'6(¢,[¥]) for every x € X. (1)

We say that a finite family {4;,...,4,} of subsets in a linear metric space

X is linearly independent if for every x;espanA;,i=1,...,n the set
{x1,...,x,}\{0}, where 6 denotes the zero element of X, is a linearly inde-

pendent subset of X.

Let X and Y be subsets in a linear metric space. We say that X and Y are
topologically summable if whenever U is an open subset of X and V is an open
subset of Y, the set U+ V is open in X + Y.

DEFINITION. We say that a convex set X in a linear metric space is LC-
decomposable if @€ X, and for every € >0 there exists positive numbers ¢;,
i=1,...,n, with 3} & <¢, and linearly independent, topologically summable,

&-LC-subsets X; of X such that X = conv(XjU ---UX,).
Our result in this paper is the following:

THEOREM 1. Any LC-decomposable convex set is an AR.
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NOTATION AND CONVENTIONS. In this paper, all maps are assumed to be
continuous. By a linear metric space we mean a topological vector space X
which is metrizable. The zero element of X is denoted by . We equip X with an
F-norm | - || such that, see

lAx]| < ||x|| for every x € X and A € R with |4| < 1.

Let 4 be a subset of a linear metric space X. By span 4 we denote the
linear subspace of X spanned by 4 and by conv 4 we denote the convex hull of
A in X. We also use the following notation:

[4] =[0,1]4 = {Ax: A€ [0,1],x € A} = conv{4 U {6}};
|x — A|| = inf{||x — y|| : y€ A} for x € X;;
diam 4 = sup{|lx — y| : x,y € 4}.
For undefined notation, see [1], [2] and [11].

2. The key for the proof

In our proof of [Theorem 1, we use some ideas from [7] [8] and [10]. The
following characterization of ANR-spaces, established in [6], is the key for our
proof of the main result in this paper.

Let X be a metric space. For a given open cover # of X, let A (%) denote
the nerve of %. The nerve A (%) of % is the simplicial complex

{o:6=(Uh,...,U,), Uie ¥, ne N}

made up of all ¢ = (U),..., U,) for which ﬂilUi # . The simplicial complex
A (%) will be endowed with the Whitehead topology (see [I] or for a dis-
cussion). Denote

mesh % = sup{diam U : U € %}.

Let {%,} be a sequence of open covers of a metric space X. We say that
{%,} is a zero sequence if mesh %, — 0 as n — oo.
Finally, define

[o.¢]

U=\) % and H( W) =) N( UnUUpy1),
=1

n=1 n

and for any o € A (%), let
n(o) =sup{neN:0e N (UUWUnt1)}.



120 Nguyen To NHU, Tran Van AN and Pham Quang TRINH

Observe that
N (Un U Uni1) NN (WUps1 U WUni2) = N (#Unt1) foreveryneN.

We say that a map f : % — X is a selection if f(U) € U for every U e %.
The proof of is based on the following:

THEOREM 2 [6] (See also [9]). A metric space X with no isolated points is
an ANR if and only if there is a zero sequence {%Un} of open covers of X such
that for any selection g: U — X, there exists a map [ : X (%) — X so that
diam(f(ox) Ug(al)) — 0 if n(ox) — oo for any sequence of simplices {o}} in
A (U), where a° denote the set of all vertices of o.

Now, assume that X is an LC-decomposable convex set. To show that X is
an AR, we aim to verify the conditions of [Theorem 2. Our first step is to
describe a sequence {%,} of open covers of X as stated in [Theorem 2.

Let {&,} = {27"}. By the LC-decomposability of X, for every ne N there
exist positive numbers &, i =1,...,m(n), with

m(n)
d <2 (2)
i=1

and linearly independent, topologically summable, &!-LC-subsets G of X,
i=1,...,m(n), such that X =conv(U'."(;')G{').

=

By definition for each i=1,...,m(n) there exists a strongly LC-subset
F!' = G7 such that

llx — [F"]|| < 37167 for every x € G7,
where
8! =6(¢f,[F')) fori=1,...,m(n).
Denote
X!'=[G|and Y] = [F"] fori=1,...,m(n). (3)

Then X = conv(U:';(f)Xi") and Y is an LC-set for every i=1,...,m(n). We

1
claim that

CramM 1. ||x — YP|| < 37167 for every x € X
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Proor. For every x € X/, we have x = Ag for some ge G and 1€ [0,1].
Take f € Y such that

1
lg — Y7l < 37'4].

Then Af € Y and

Ix = 4fll = ll2g = | < llg —f1l < llg = ¥7'll < 37"

The claim is proved.
Observe that for any finite set 4 = Y, i=1,...,m(n), with

1

diam 4 < 4 we have diam(conv 4) < g 4)
For every i=1,...,m(n), let #;" be an open cover of X such that
diam W < 6716 forevery W e ;. (5)

Denote
VWL, oo, W) = Wi+ -+ Wy, where Wre# " i=1,...,m(n). (6)
Let

Uy = {U: VW, W) N X W e W} i = 1,...,m(n)}. (7)

m(n

Since X', ... ,X,:(n) are topologically summable, V = V(W7,..., W,:(n)), see (6), is

open in X{'+---+X,:(n). Since O e X',i=1,...,m(n), see (3), we get

i=1

m(n)
X =conv| | X" | X"+ + X

Therefore U =V NX is open in X for every U € %,.
Our aim is to prove that the sequence {#,} of open covers of X, defined by
(7), satisfies the conditions of [Theorem 2. We first show:

Lemma 1. {%,} is a zero sequence of open covers of X.

PrOOF. As we have seen, U is open in X for every U € %,. Let us prove
that %, covers X for every ne N. For a given point x € X, take x; € X/, 1, > 0,
i=1,...,m(n), with Z:’;(f) Ai =1, such that x = Z:":(;') Aix;. Note that A;x; € X}
for i=1,...,m(n). Take W} e #" so that Ax;e W} for i=1,...,m(n). Let

V= V(W{',...,W,:(n)), see (6). Then U=VNX e, and xe U, see (7).
Consequently, %, covers X.
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Now, we shall show that {#,} is a zero sequence. In fact, we are going to
prove

diam U < 2™ for every U € %,. (8)

In fact, given U € %, we have U = VN X, where

V= V(Wln,.-., ’:(n))= W1n+"°+ W:l(n), S€¢C (6).
Therefore, for every x,ye V, x= E:';(;') X, ¥y = Z:';(;') yi, where x;, y; e W}, for
i=1,...,m(n). Observe that ¢ < ¢/, for i = 1,...,m(n). Therefore from (2) and
(5) we get
- m(n) mm)
Ix =yl < D lxi—yill <) diam W}
i=1 i=1
m(n) m(n)

<) 67lar <> er <2
i=1 i=1

Consequently diam ¥V < 27", Since
diam U =diam(V'NX) < diam V < 27"

the inequality (8) is established. The lemma is proved.
Let Uie%,, j=1,...,k, where

Up=VW0)s ooy WamUNNX = (WTG) + -+ Wap(D)NX. (9)

Then we have

LemMA 2. If ﬂjl;lUj # &, then ﬂj’;l Wr(j) # & for every i=1,...,m(n).

Proor. For every xe ﬂj’;l U, we have x=3""x,(j), where x,(j)e
Wpr(j) for j=1,...,k and i=1,...,m(n), see (9). Then for every j=1,...,k

we have

m(n)

;(x,-(j) —x;(1)) = 6.

Observe that x;(j) — xi(1) e span X for every i=1,...,m(n). By the linear
independence of {X/,i=1,...,m(n)} we conclude that

xi(j) =xi(1) foreveryj=1,...,k and i=1,...,m(n).
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Consequently, letting
yizxi(j)zxi(l) fori:l,"')’”(”)?

we get

k
vie (| Wi(j) foreveryi=1,...,m(n).
j=1

The lemma is proved.

3. Proof of the main result

In this section, we prove Theorem 1. Since X is contractible, it suffices to
show that X is an ANR, see [2]. We are going to verify the conditions of
Theorem 2 for the sequence {%,}, defined in Section 2, see (7).

By Lemma 1, {#%,} is a zero sequence of open covers of X. Let
U =\)? Un and let g : % — X be a selection. For every U € % we have U € %,
for some ne N. Hence U = VN X, where

V= V(Wln,...,W,;(n))= W1n+"+W’:(n) (10)

Since g(U) e X = conv(U:';(;') X,-"), we have

m(n) m(n)
g(U) =Z/1,-x,-, where x; € X", A4; >0 and Zliz 1. (11)

i=1 i=1
We claim that

Aixie W' foreveryi=1,...,m(n). 12
]

m(n)

In fact, since g(U)e V=W'+---+ Wm»> we have g(U) =3 7\ z;, where
zie W for i =1,...,m(n). Therefore

m(n)

Z(Zi - ,lixi) =0.
i=1

Observe that z; — A;x; € span X" for every i =1,...,m(n). By the linear inde-
pendence of {X,i=1,...,m(n)} we have Ax;=z;€ W' for every i=
I,...,m(n). The claim is established.

Since x; € X", i =1,...,m(n), by Claim 1 there exist y; € Y, i=1,...,m(n)
such that

Ixi — yil| < 37167 foreveryi=1,...,m(n). (13)
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We define
m(n)
fU) =" iy (14)
i=1
(Observe that f : % — X may not be a selection: requires g: % — X

be a selection, but it does not require f :  — X to be so.)

From (2) (4) [11) [13) and [14) we get

m(n)
I£(U) = g(U)Il < ) llAixi — Al
i=1
m(n) m(n)
< lxi—yill <) 377 (15)
i=1 i=1
m(n)

< Z 37lgr <27
i=1

for every U € %Up.

Now, using the convexity of X we extend f: % — X affinely to a map,
which is still denoted by f, f : (%) — X. We claim that f satisfies the required
conditions.

Let 6 =<Uy,...,Uky e X (U) = o\ N (UnU%Upt1). Take pe N so that

Ury...,UpeUpne and Upyy,..., Uk € Upg)41-
Let o = {09,01), where
6o =<Uy,...,U,> and o1 = Upt1,..., Ur). (16)
Our next step is to compute diam f(o;) for i =0,1. Let
m(n(o)) m(n(c))
9(Uy) = le 4()x()) and f(U)) = Z, 2(Nyi() (17)

where

L()x(j) € WrOG),0() € YT () 20, i=1,...,m(n),j=1,....p
and

m(n(a))
2i(j)=1 foreveryj=1,...,p.

i=1
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Observe that U; =V;NX, j=1,...,p, where
Vi=VRTOU), . Watroy (D)) = WEOG) 4+ Wi () (18)

Since (V_,U; # &, from we obtain

P
Wl.”(")(j) # & foreveryi=1,...,m(n(0)).
j=1
Therefore from (5) we get
.
diam () W9 (j) < 2(671617)) = 3187, (19)

j=1
for every i =1,...,m(n(s)). Denote

Ai={4yi(j):j=1,...,p} fori=1,...,m(n(o)). (20)
Since 6 e Y9, see (3), it follows that

A;c Y fori=1,...,m(n(0)). (21)

1

We claim that

CLAM 2. diam A; < 5" for every i=1,...,m(n(0)).

Proor. From (5) and we obtain
14:(A)y: (/) = 2y U < N1A()yi(7) = ()% (D)l
+ 14:()x: () — 2%
+ 14:(7")x:(7") = 2(F)y: ()]

P
< i) = %)l + diam U W)
]=

+ lyi (") = x|
< 3—157("') + 3—15;'(0') + 3—15:‘(‘7) — 5;’(0),

which proves the claim.
From (4) and from Claim 2 it follows that

n(o)

diam(conv 4;) < ¢ foreveryi=1,...,m(n(0)). (22)
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For every x € gy, we have x=3""_ o;U; where o; >0 and 37, o; = 1. Then
from [17) and [22) we obtain

If (x) = (U]

Z () -1 (D)

P m(n(o))
=% @ % oo - ammo)|
n(e

- 3 st - sman)|

i=l j=1

m(n(a))
5|3 wtmo) - s
i=1 N 5=

(m(n(a)) m(n(c))

< Z diam(conv 4;) < Z &) < 277,

i=1 i=1

p

IA

Similarly for every x € f(o1) we have
Ix = £ (Ups1)ll < 2771

(Observe that U; € #p5)41 for i=p+1,...,k.)
Now for every x € ¢ we have x = axy + (1 — a)x;, where x; € 6; for i =0,1
and ae[0,1]. Let y =aU; + (1 — a)Up41. Then we get

£ () =fO)I = Nl f (x0) = f(U1)) + (1 = &) (f (x1) = f (Up+1))l
< |If (xo) =S (U + [Lf (1) = f (Ups)| (23)
< 2—-7.1(0') + 2—n(a)—1 < 2—n(a)+1.
Since g is a selection, from (8) and we get
£ ) = £ (U] = llaf (U) + (1 — &)f (Ups1) = (O]
= [|(1 = )(f (1) = F(Ups))|| < £ (U1) = f (Ups1)||
< | £(T1) — g(U)|| + lg(T1) — g(Up+1)|| + 19(Up+1) — f (Up+1)l
< 2—n(a) + 2—n(a)+1 + 2—n(a) — 2—n(a)+2. (24)
Therefore from and we obtain

1 (x) =AU < Lf(x) =S O+ LF ) = F (U]

< 2—n(a)+1 + 2—n(a)+2 < 2—n(a)+3
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for every x € . Consequently

diam f (o) < 279+, (25)

Since g is a selection, from (8) we get

diam g(c°) < 27™@+1, (26)

(Note that ¢° denotes the set of all vertices of o, meanwhile gy is the simplex
defined by [16).) Hence from [15) [25) and [26)] we obtain

diam(f(0)) Ug(c®)) < diam(f(0)) + || f(U1) — g(Un)|| + diam(g(c”))
< 27Ot 4 p7nle) 4 pmnlo) ] < pn(o)+S,

Therefore

diam( f (o) Ug(ao)) — 0 asn(o) — oo.
Consequently, X is an ANR by and the proof of Theorem 1 is
finished.
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