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A CHARACTERIZATION OF GEODESIC HYPERSPHERES
OF QUATERNIONIC PROJECTIVE SPACE

By

Juan de Dios P\’EREZ

Abstract. We study a condition that allows us to characterize
geodesic hyperspheres among all real hypersurfaces of quatemionic
projective space.

1. Introduction

Along this paper $M$ will denote a connected real hypersurface of the
quatemionic projective space $QP^{m},$ $m\geq 3$ , endowed with the metric $g$ of
constant quatemionic sectional curvature 4. Let $N$ be a unit local normal vector
field on $M$ and $U_{i}=-J_{i}N,$ $i=1,2,3$ , where $\{J_{i}\}_{i=1,2,3}$ is a local basis of the
quatemionic stmcture of $QP^{m},$ $[2]$ . Let us denote by $D^{\perp}=Span\{U_{1}, U_{2}, U_{3}\}$

and by $D$ its orthogonal complement in $TM$ .
If A denotes the Weingarten endomorphism of $M$ we have the

THEOREM $A$ , [1]. Let $M$ be a real hypersurface of $QP^{m},$ $m\geq 2$ . Then
$g(AD,D^{\perp})=\{0\}$ if and on $ly$ if $M$ is congruent to an open part of one of the
following real hypersurfaces of $QP^{m}$ :

i) a geodesic hypersphere,
ii) a tube of some radius $r,$ $0<r<\pi/2$ , around the canonically (totally

geodesic) embedded quaternionic projective space $QP^{k},$ $k\in\{1, \ldots, m-2\}$ ,
iii) a tube of some radius $r,$ $0<r<\pi/4$ , around the canonically (totally

geodesic) embedded projective space $CP^{m}$ .

Let us denote by $R$ the curvature tensor of $M$. In [4] we have proved
that there do not exist real hypersurfaces of $QP^{m}$ , $m\geq 2$ , such that
$\sigma(R(X, Y)AZ)=0$ , for any $X,$ $Y,$ $Z$ tangent to $M$, where $\sigma$ denotes the cyclic
sum.
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The purpose of the present paper is to study a weaker condition than the
one considered in [4]. Concretely we propose to study real hypersurfaces of $QP^{m}$

such that

(1.1) $\sigma(R(X, Y)AZ)=0$

for any $X,$ $Y,$ $Z\in D$ . We shall prove the following

THEOREM. Let $M$ be a real hypersurface of $QP^{m},$ $m\geq 3$ . Then $M$ satisfies
(1.1) $lf$ and only if it is congruent to an open part of a geodesic hypersphere
of $QP^{m}$ .

2. Preliminaries

Let $X$ be a tangent vector field to $M$. We write $J_{i}X=\phi_{i}X+f_{i}(X)N$,
$i=1,2,3$ , where $\phi_{i}X$ is the tangent component of $J_{i}X$ and $f_{i}(X)=g(X, U_{i})$ ,
$i=1,2,3$ . As $J_{i}^{2}=-Id,$ $i=1,2,3$ , where $Id$ denotes the identity endomorphism
on $TQP^{m}$ , we get

(2.1) $\phi_{i}^{2}X=-X+f_{f}(X)U_{i}$ , $f_{f}(\phi_{j}X)=0$ , $\phi_{i}U_{l}=0$ , $i=1,2,3$

for any $X$ tangent to $M$. As $J_{i}J_{j}=-J_{j}J_{i}=J_{k}$ , where $(i,j,k)$ is a cyclic per-
mutation of (1,2,3) we obtain

(2.2) $\phi_{i}X=\phi_{j}\phi_{k}X-f_{k}(X)U_{j}=-\phi_{k}\phi_{j}X+f_{j}(X)U_{k}$

and

(2.3) $f_{i}(X)=f_{j}(\phi_{k}X)=-f_{k}(\phi_{j}X)$

for any $X$ tangent to $M$, where $(i,j, k)$ is a cyclic permutation of (1,2, 3). It is
also easy to see that for any $X,$ $Y$ tangent to $M$ and $i=1,2,3$ ,

(2.4) $g(\phi_{j}X, Y)+g(X, \phi_{i}Y)=0$ , $g(\phi_{i}X, \phi_{i}Y)=g(X, Y)-f_{i}(X)f_{i}(Y)$

and

(2.5) $\phi_{i}U_{j}=-\phi_{j}U_{i}=U_{k}$

$(i,j,k)$ being a cyclic permutation of (1, 2, 3). Finally from the expression of the
curvature tensor of $QP^{m},$ $m\geq 2$ , we have that the curvature tensor of $M$ is given
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by

(2.6) $R(X, Y)Z=g(Y, Z)X-g(X,Z)Y+\sum_{i=1}^{3}\{g(\phi_{i}Y, Z)\phi_{i}X-g(\phi_{i}X, Z)\phi_{i}Y$

$+2g(X, \phi_{i}Y)\phi_{i}Z\}+g(AY, Z)AX-g(AX,Z)AY$

for any $X,$ $Y,$ $Z$ tangent to $M$, see [3].

3. Proof of the Theorem

Let $\{E_{1}, \ldots,E_{4m-4}\}$ be an orthonormal basis of $D$ at any point of $M$.
If in (1.1) we take $Z=E_{j},$ $Y=\phi_{1}E_{j}$ , from (2.6) and applying the formulas

(2.1) to (2.5) we have for any $X\in D$

(3.1) $\{g(\phi_{1}X,AE_{j})-g(AX, \phi_{1}E_{j})\}E_{j}+\{g(AX, E_{j})+g(\phi_{1}X,A\phi_{1}E_{j})\}\phi_{1}E_{j}$

$+\{2g(AX, \phi_{3}E_{j})-g(\phi_{3}X,AE_{j})+g(\phi_{2}X,A\phi_{1}E_{j})\}\phi_{2}E_{j}+\{g(\phi_{2}X,AE_{j})$

$+g(\phi_{3}X,A\phi_{1}E_{/}\cdot)-2g(\Lambda X, \phi_{2}E_{j})\}\phi_{3}E_{j}-2g(X,E_{j})\phi_{1}AE_{j}$

$-2g(X, \phi_{3}E_{j})\phi_{2}AE_{j}+2g(X, \phi_{2}E_{j})\phi_{3}AE_{j}+2g(\phi_{1}X,E_{j})\phi_{1}A\phi_{1}E_{j}$

$+2g(\phi_{2}X,E_{j})\phi_{2}A\phi_{1}E_{j}+2g(\phi_{3}X, E_{j})\phi_{3}A\phi_{1}E_{j}-\{g(E_{j},AE_{j})$

$+g(\phi_{1}E_{j},A\phi_{1}E_{j})\}\phi_{1}X-\{g(\phi_{3}E_{j},AE_{j})+g(\phi_{2}E_{j}, A\phi_{1}E_{j})\}\phi_{2}X$

$+\{g(\phi_{2}E_{j},AE_{j})-g(\phi_{3}E_{j},A\phi_{1}E_{j})\}\phi_{3}X+2\phi_{1}AX=0$

If now we take the scalar product of (3.1) and $U_{1}$ and sum on $j$ we obtain

(3.2) $g$ ( $\phi_{2}X,$ A $U_{2}$ ) $+g$ ( $\phi_{3}X,$ A $U_{3}$ ) $=0$

for any $X\in D$ .
The same reasoning taking in (1.1) $Z=E_{j},$ $Y=\phi_{2}E_{j}$ and considering the

scalar product of the result and $U_{2}$ gives us

(3.3) $g$ ( $\phi_{1}X,$ A $U_{1}$ ) $+g$ ( $\phi_{3}X,$ A $U_{3}$ ) $=0$

for any $X\in D$ .
If we repeat the above computation for $Z=E_{j},$ $Y=\phi_{3}E_{j}$ and take the $U_{3^{-}}$

component we get

(3.4) $g$ ( $\phi_{1}X,$ A $U_{1}$ ) $+g$ ( $\phi_{2}X,$ A $U_{2}$ ) $=0$

for any $X\in D$ . Thus from (3.2), (3.3) and (3.4) we have

(3.5) $g$ ( $\phi_{j}X,$ A $U_{i}$) $=0$ , $i=1,2,3$
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for any $X\in D$ . Thus $g(AD, D^{\perp})=\{0\}$ and from Theorem $A,$ $M$ must be
congment to an open part of either i), ii) or iii) appearing in such a Theorem.

Let us consider the case iii) of a tube of radius $r,$ $0<r<\pi/4$ , over $CP^{m}$ .
The principal curvatures on $D$ are $\cot(r)$ and $-\tan(r)$ both with multiplicity
$2(m-1)$ . As $m\geq 3$ we can consider unit $X,$ $W\in D$ such that Span
{X, $\phi_{1}X,$ $\phi_{2}X,$ $\phi_{3}X)$ } $\perp Span\{W, \phi_{1}W, \phi_{2}W, \phi_{3}W\}$ and such that $X$ and $\phi_{1}X$ are
principal with principal curvature $\cot(r)$ and $\phi_{2}W$ is principal with principal
curvature $-\tan(r)$ . Thus if in (1.1) we take $Y=\phi_{1}X$ and $Z=\phi_{2}W$, by the first
identity of Bianchi we should have $-(\tan(r)+\cot(r))R(X, \phi_{1}X)\phi_{2}W=0$ . But
applying (2.6) this implies $(\tan(r)+\cot(r))\phi_{3}W=0$ which is impossible.

In the case ii) of Theorem A we also have two distinct principal curvatures
on $D$ and a reasoning similar to the above one proves that this case cannot
occur.

On the other hand, geodesic hyperspheres have only one principal curvature
on $D$ , thus they satisfy (1.1) and this finishes the proof.
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