# A CHARACTERIZATION OF GEODESIC HYPERSPHERES OF QUATERNIONIC PROJECTIVE SPACE 

By<br>Juan de Dios Pérez


#### Abstract

We study a condition that allows us to characterize geodesic hyperspheres among all real hypersurfaces of quaternionic projective space.


## 1. Introduction

Along this paper $M$ will denote a connected real hypersurface of the quaternionic projective space $Q P^{m}, m \geq 3$, endowed with the metric $g$ of constant quaternionic sectional curvature 4 . Let $N$ be a unit local normal vector field on $M$ and $U_{i}=-J_{i} N, i=1,2,3$, where $\left\{J_{i}\right\}_{i=1,2,3}$ is a local basis of the quaternionic structure of $Q P^{m}$, [2]. Let us denote by $\boldsymbol{D}^{\perp}=\operatorname{Span}\left\{U_{1}, U_{2}, U_{3}\right\}$ and by $D$ its orthogonal complement in $T M$.

If A denotes the Weingarten endomorphism of $M$ we have the

Theorem A, [1]. Let $M$ be a real hypersurface of $Q P^{m}, m \geq 2$. Then $g\left(A \boldsymbol{D}, \boldsymbol{D}^{\perp}\right)=\{0\}$ if and only if $M$ is congruent to an open part of one of the following real hypersurfaces of $Q P^{m}$ :
i) a geodesic hypersphere,
ii) a tube of some radius $r, 0<r<\pi / 2$, around the canonically (totally geodesic) embedded quaternionic projective space $Q P^{k}, k \in\{1, \ldots, m-2\}$,
iii) a tube of some radius $r, 0<r<\pi / 4$, around the canonically (totally geodesic) embedded projective space $C P^{m}$.

Let us denote by $R$ the curvature tensor of $M$. In [4] we have proved that there do not exist real hypersurfaces of $Q P^{m}, m \geq 2$, such that $\sigma(R(X, Y) A Z)=0$, for any $X, Y, Z$ tangent to $M$, where $\sigma$ denotes the cyclic sum.

[^0]The purpose of the present paper is to study a weaker condition than the one considered in [4]. Concretely we propose to study real hypersurfaces of $Q P^{m}$ such that

$$
\begin{equation*}
\sigma(R(X, Y) A Z)=0 \tag{1.1}
\end{equation*}
$$

for any $X, Y, Z \in D$. We shall prove the following

Theorem. Let $M$ be a real hypersurface of $Q P^{m}, m \geq 3$. Then $M$ satisfies (1.1) if and only if it is congruent to an open part of a geodesic hypersphere of $Q P^{m}$.

## 2. Preliminaries

Let $X$ be a tangent vector field to $M$. We write $J_{i} X=\phi_{i} X+f_{i}(X) N$, $i=1,2,3$, where $\phi_{i} X$ is the tangent component of $J_{i} X$ and $f_{i}(X)=g\left(X, U_{i}\right)$, $i=1,2,3$. As $J_{i}^{2}=-I d, i=1,2,3$, where $I d$ denotes the identity endomorphism on $T Q P^{m}$, we get

$$
\begin{equation*}
\phi_{i}^{2} X=-X+f_{i}(X) U_{i}, \quad f_{i}\left(\phi_{i} X\right)=0, \quad \phi_{i} U_{i}=0, \quad i=1,2,3 \tag{2.1}
\end{equation*}
$$

for any $X$ tangent to $M$. As $J_{i} J_{j}=-J_{j} J_{i}=J_{k}$, where $(i, j, k)$ is a cyclic permutation of $(1,2,3)$ we obtain

$$
\begin{equation*}
\phi_{i} X=\phi_{j} \phi_{k} X-f_{k}(X) U_{j}=-\phi_{k} \phi_{j} X+f_{j}(X) U_{k} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{i}(X)=f_{j}\left(\phi_{k} X\right)=-f_{k}\left(\phi_{j} X\right) \tag{2.3}
\end{equation*}
$$

for any $X$ tangent to $M$, where $(i, j, k)$ is a cyclic permutation of $(1,2,3)$. It is also easy to see that for any $X, Y$ tangent to $M$ and $i=1,2,3$,

$$
\begin{equation*}
g\left(\phi_{i} X, Y\right)+g\left(X, \phi_{i} Y\right)=0, \quad g\left(\phi_{i} X, \phi_{i} Y\right)=g(X, Y)-f_{i}(X) f_{i}(Y) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{i} U_{j}=-\phi_{j} U_{i}=U_{k} \tag{2.5}
\end{equation*}
$$

$(i, j, k)$ being a cyclic permutation of ( $1,2,3$ ). Finally from the expression of the curvature tensor of $Q P^{m}, m \geq 2$, we have that the curvature tensor of $M$ is given
by

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+\sum_{i=1}^{3}\left\{g\left(\phi_{i} Y, Z\right) \phi_{i} X-g\left(\phi_{i} X, Z\right) \phi_{i} Y\right.  \tag{2.6}\\
& \left.+2 g\left(X, \phi_{i} Y\right) \phi_{i} Z\right\}+g(A Y, Z) A X-g(A X, Z) A Y
\end{align*}
$$

for any $X, Y, Z$ tangent to $M$, see [3].

## 3. Proof of the Theorem

Let $\left\{E_{1}, \ldots, E_{4 m-4}\right\}$ be an orthonormal basis of $D$ at any point of $M$.
If in (1.1) we take $Z=E_{j}, Y=\phi_{1} E_{j}$, from (2.6) and applying the formulas (2.1) to (2.5) we have for any $X \in D$
(3.1) $\left\{g\left(\phi_{1} X, A E_{j}\right)-g\left(A X, \phi_{1} E_{j}\right)\right\} E_{j}+\left\{g\left(A X, E_{j}\right)+g\left(\phi_{1} X, A \phi_{1} E_{j}\right)\right\} \phi_{1} E_{j}$

$$
\begin{aligned}
& +\left\{2 g\left(A X, \phi_{3} E_{j}\right)-g\left(\phi_{3} X, A E_{j}\right)+g\left(\phi_{2} X, A \phi_{1} E_{j}\right)\right\} \phi_{2} E_{j}+\left\{g\left(\phi_{2} X, A E_{j}\right)\right. \\
& \left.+g\left(\phi_{3} X, A \phi_{1} E_{j}\right)-2 g\left(A X, \phi_{2} E_{j}\right)\right\} \phi_{3} E_{j}-2 g\left(X, E_{j}\right) \phi_{1} A E_{j} \\
& -2 g\left(X, \phi_{3} E_{j}\right) \phi_{2} A E_{j}+2 g\left(X, \phi_{2} E_{j}\right) \phi_{3} A E_{j}+2 g\left(\phi_{1} X, E_{j}\right) \phi_{1} A \phi_{1} E_{j} \\
& +2 g\left(\phi_{2} X, E_{j}\right) \phi_{2} A \phi_{1} E_{j}+2 g\left(\phi_{3} X, E_{j}\right) \phi_{3} A \phi_{1} E_{j}-\left\{g\left(E_{j}, A E_{j}\right)\right. \\
& \left.+g\left(\phi_{1} E_{j}, A \phi_{1} E_{j}\right)\right\} \phi_{1} X-\left\{g\left(\phi_{3} E_{j}, A E_{j}\right)+g\left(\phi_{2} E_{j}, A \phi_{1} E_{j}\right)\right\} \phi_{2} X \\
& +\left\{g\left(\phi_{2} E_{j}, A E_{j}\right)-g\left(\phi_{3} E_{j}, A \phi_{1} E_{j}\right)\right\} \phi_{3} X+2 \phi_{1} A X=0
\end{aligned}
$$

If now we take the scalar product of (3.1) and $U_{1}$ and sum on $j$ we obtain

$$
\begin{equation*}
g\left(\phi_{2} X, A U_{2}\right)+g\left(\phi_{3} X, A U_{3}\right)=0 \tag{3.2}
\end{equation*}
$$

for any $X \in \boldsymbol{D}$.
The same reasoning taking in (1.1) $Z=E_{j}, Y=\phi_{2} E_{j}$ and considering the scalar product of the result and $U_{2}$ gives us

$$
\begin{equation*}
g\left(\phi_{1} X, A U_{1}\right)+g\left(\phi_{3} X, A U_{3}\right)=0 \tag{3.3}
\end{equation*}
$$

for any $X \in \boldsymbol{D}$.
If we repeat the above computation for $Z=E_{j}, Y=\phi_{3} E_{j}$ and take the $U_{3^{-}}$ component we get

$$
\begin{equation*}
g\left(\phi_{1} X, A U_{1}\right)+g\left(\phi_{2} X, A U_{2}\right)=0 \tag{3.4}
\end{equation*}
$$

for any $X \in D$. Thus from (3.2), (3.3) and (3.4) we have

$$
\begin{equation*}
g\left(\phi_{i} X, A U_{i}\right)=0, \quad i=1,2,3 \tag{3.5}
\end{equation*}
$$

for any $X \in \boldsymbol{D}$. Thus $g\left(A \boldsymbol{D}, \boldsymbol{D}^{\perp}\right)=\{0\}$ and from Theorem $A, M$ must be congruent to an open part of either i), ii) or iii) appearing in such a Theorem.

Let us consider the case iii) of a tube of radius $r, 0<r<\pi / 4$, over $C P^{m}$. The principal curvatures on $D$ are $\cot (r)$ and $-\tan (r)$ both with multiplicity $2(m-1)$. As $m \geq 3$ we can consider unit $X, W \in D$ such that Span $\left.\left\{X, \phi_{1} X, \phi_{2} X, \phi_{3} X\right)\right\} \perp \operatorname{Span}\left\{W, \phi_{1} W, \phi_{2} W, \phi_{3} W\right\}$ and such that $X$ and $\phi_{1} X$ are principal with principal curvature $\cot (r)$ and $\phi_{2} W$ is principal with principal curvature $-\tan (r)$. Thus if in (1.1) we take $Y=\phi_{1} X$ and $Z=\phi_{2} W$, by the first identity of Bianchi we should have $-(\tan (r)+\cot (r)) R\left(X, \phi_{1} X\right) \phi_{2} W=0$. But applying (2.6) this implies $(\tan (r)+\cot (r)) \phi_{3} W=0$ which is impossible.

In the case ii) of Theorem A we also have two distinct principal curvatures on $\boldsymbol{D}$ and a reasoning similar to the above one proves that this case cannot occur.

On the other hand, geodesic hyperspheres have only one principal curvature on $D$, thus they satisfy (1.1) and this finishes the proof.

## References

[1] J. Berndt, "Real hypersurfaces in quaternionic space forms", J. reine angew. Math., 419 (1991), 9-26.
[2] S. Ishihara, "Quaternion Kählerian manifolds", J. Diff. Geom., 9 (1974), 483-500.
[3] A. Martinez and J. D. Perez, "Real hypersurfaces in quaternionic projective space", Ann. Mat. Pura Appl., 145 (1986), 355-384.
[4] J. D. Perez, "Some conditions on real hypersurfaces of quaternionic projective space", Anal. Stiint. Univ. "Al.I.Cuza", 38 (1992), 103-110.

Departamento de Geometría y Topología
Facultad de Ciencias. Universidad de Granada 18071-Granada, SPAIN.


[^0]:    Received January 19, 1995.

