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Introduction

We denote by $P_{n}(C)$ an n-dimensional complex projective space with the

Fubini-Study metric of constant holomorphic sectional curvature $4c$ and $M$ a real
hypersurface in $P_{n}(C)$ with the induced metric.

The problem with respect to the type number $t$ , that is, the rank of the second
fundamental form of real hypersurfaces in $P_{n}(C)$ has been studied by many
geometers ([1], [2], [3] and [4] etc.). The second named author [4] proved that
there is a point $p$ on $M$ such that $t(p)\geq 2$ and M. Kimura and S. Maeda [2] gave
an example of real hypersurface in $P.(C)$ satisfying $t=2$ , which is non-complete.
Recently, Y. J. Suh [3] showed that there is a point $p$ on a complete real
hypersurface $M$ in $P_{n}(C)(n\geq 3)$ such that $t(p)\geq 3$ .

In this paper we shall prove the following
MAIN THEOREM. Let $M$ be a complete real hypersurface in $P_{n}(C)$ . Then

there exists a point $p$ on $M$ such that $t(p)\geq n$ .

1. Preliminaries.

Hereafter let $M_{n}(c)(n\geq 2)$ be a complex space form with the metric of
constant holomorphic sectional curvature $4c$ and $M$ be a real hypersurface in
$M_{n}(c)$ . Choose a local field of orthonormal frames $\{e_{1},\cdots,e_{2n}\}$ in $M_{n}(c)$ such that
$e_{1},\cdots,e_{2n-1}$ are tangent to $M$ . We use the following convention on the range of
indices unless otherwise stated: $A,B,\cdots=1,\cdots,2n$ and $i,j,\cdots=1,\cdots,2n-1$ . We
denote by $\theta_{A}$ and $\theta_{AB}$ the canonical l-forms and the connection forms
respectively. Then they satisfy

(1.1) $d\theta_{A}+\Sigma\theta_{AB}\wedge\theta_{B}=0,$ $\theta_{AB}+\theta_{BA}=0$ .
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We restrict the forms under consideration to $M$ . Then we have $\theta_{2,\iota}=0$ and by
Cartan’s lemma we may write as

(1.2) $\phi_{j}\equiv\theta_{2n.i}=\Sigma h_{ij}\theta_{j},$ $h_{\ddot{U}}=h_{ji}$ .

The quadratic form $\Sigma h_{ij}\theta_{i}\cdot\theta_{j}$ is called the second fundamental form of $M$ for
$e_{2n}$ . Moreover, the curvature forms $\Theta_{ij}$ of $M$ are defined by

(1.3) $\Theta_{ij}=d\theta_{ij}+\sum\theta_{ik}\wedge\theta_{k_{\dot{j}}}$ .

We denote by $\tilde{J}$ the complex structure of $M_{n}(c)$ . Let $(J_{ij},f_{k})$ be the almost
contact metric structure of $M$ , i.e., $\tilde{J}(e_{j})=\Sigma J_{ji}e_{j}+f_{i}e_{2n}$ . Then $(J_{ij},f_{k})$ satisfies

$\Sigma J_{ik}J_{kj}=f_{i}f_{j}-\delta_{ij},$ $\Sigma f_{j}J_{ji}=0$ ,
(1.4)

$\Sigma f_{i}^{2}=1,$ $J_{ij}+Jfi=0$ .

The parallelism of $\tilde{J}$ implies
$df_{ij}=\Sigma(J_{ik}\theta_{kj}-J_{jk}\theta_{ki})-f_{i}\phi_{j}+f_{j}\phi_{j}$ ,

(1.5)
$df_{i}=\Sigma(f_{j}\theta_{f}-J_{ji}\phi_{j})$ .

The equations of Gauss and Codazzi are given by

(1.6) $\Theta_{ij}=\phi_{i}\wedge\phi_{j}+c\theta_{j}\wedge\theta_{j}+c\Sigma(J_{ik}J_{j/}+J_{jj}J_{k/})\theta_{k}\wedge\theta,$ ,

(1.7) $d\phi_{j}=-\Sigma\phi_{j}\wedge\phi_{ji}+c\Sigma(f_{i}J_{;k}+f_{j}J_{ik})\theta_{j}\wedge\theta_{k}$ ,

respectively.

2. Formulas.

Let $M$ be a real hypersurface in $M_{l}(c),$ $c\neq 0$ . In this section, we assume that
the rank of the second fundamental form is not larger than $m$ on an open set $U$ . In
the sequel, we use the following convention on the range of indices:
$a,b,\cdots=1,\cdots,m$ and $r,s,\cdots=m+1,\cdots,2n-1$ . Then for an arbitrary point $p$ in $U$ we
can take a local field of orthonormal frames $\{e_{1},\cdots,e_{2n-1}\}$ on a neiborhood of $p$

such that the l-forms $\phi_{j}$ can be written as
$\phi_{a}=\Sigma h_{ab}\theta_{b},$ $h_{ab}=h_{bc\iota}$ ,

(2.1)
$\phi_{r}=0$ .

Here, we put

(2.2) $\theta_{ar}=\Sigma A_{arb}\theta_{b}+\Sigma B_{l\Gamma},\theta_{t}$ .
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Taking the exterior derivative of $\phi_{r}=0$ and using (1.7) and (2.1), we have

$\Sigma h_{ab}\theta_{b^{\wedge}}\theta_{\iota lr}-c\Sigma(f_{r}J_{ij}+f_{i}J_{rj})\theta_{j}\wedge\theta_{j}=0$ ,

which, together with (2.2), implies

(2.3) $\Sigma(h_{ac}A_{crb}-h_{bc}A_{cra})-cf_{a}J_{rb}+cf_{b}J_{ra}-2cf_{r}J_{ab}=0$ ,

(2.4) $\Sigma h_{ab}B_{brs}-cf_{a}J_{rs}+cf_{s}J_{ra}-2cf_{r}J_{a},$ $=0$ ,

(2.5) $f_{s}J_{rt}-f_{t}J_{r},$ $+2f_{r}J_{st}=0$ .

The above equation (2.5) is equivalent to

(2.6) $f_{r}J_{\iota t}=0$ .

Similarly, taking the exterior derivative of $\phi_{a}=\Sigma h_{ab}\theta_{b}$ and making use of
(1.1), (1.7), (2.1), (2.2) and (2.4), we get

$\Sigma\{dh_{ab}-\Sigma(h_{ac}\theta_{cb}+h_{bc}\theta_{ca}-\Sigma h_{ac}A_{crb}\theta_{r}-cf_{b}J_{ac}\theta_{c}+cf_{c}J_{ab}\theta_{c}$

$-2cf_{a}J_{b\iota}\theta_{c})+c\Sigma(f_{b}J_{ar}\theta_{r}-f_{r}J_{ab}\theta_{r}+2f_{a}J_{br}\theta_{r})\}\wedge\theta_{b}=0$ ,

which yields
$dh_{ab}-\Sigma(h_{c\kappa}\theta_{cb}+h_{b}\theta_{ca}-\Sigma h_{ac}A_{crb}\theta_{r})$

(2.7)
$+c\Sigma(f_{b}J_{ar}\theta_{r}-f_{r}J_{ab}\theta_{r}+2f_{a}J_{br}\theta_{r})\equiv 0$ (mod $\theta_{a}$ )

Now, we quote two Lemmas.

LEMMA 2.1 ([3]). Assume that $J_{r\backslash }(p)=0$ at a point $p$ on M. Then $t(p)\geq n-1$ .
Furthermore, the equality holds if and only if $f_{cl}=0$ and $J_{ab}=0$ at $p$ .

Here, we denote by $T$ the maximal value of the type number $t$ .

LEMMA 2.2 ([3]). If $J_{r\backslash }=0$ on $U$ , then $T\geq n$ on $U$ .

PROOF. If $T<n$ , then owing to Lemma 2.1, we see that $T=n-1,$ $f_{a}=0$ and
$J_{ab}=0$ on $U$ . For a suitable choice of a field $\{e_{r}\}$ of orthonormal frames, we
can set $f_{2n-1}=1$ and $f_{r}=0$ for $r=n,\cdots,2n-2$ . Then, by means of (1.5), we get

$0=df_{a}=\theta_{2n-1,\ell l}$
,

where we have used (2.1). Thus, taking account of (2.2), we find $B_{c\iota,2n-1,\backslash }=0$ .
On the other hand, if we put $r=2n-1$ and $s\neq 2n-1$ in (2.4), then we have
$J_{a},$ $=0$ for $s\neq 2n-1$ , which contradicts the fact that rank $J=2n-2$ . $\square $

REMARK. Lemma 2.2 was proved in [3] but the proof is incomplete.
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In the remainder of this section, we shall obtain further formulas. First of
all, we define the open set $V_{T}$ by

$V_{T}=\{p\in M|t(p)=T\}$ .

Next, in order to prove our theorem we shall lead a contradiction by assuming
the following:

(2.8) $\forall p\in V_{T},$ $\forall U(p),$ $\exists q\in U(p)$ such that $J_{rs}(q)\neq 0$ ,

where $U(p)$ denotes a neighborhood of a point $p$ .
Moreover, we consider the open set $V_{T}^{\prime}$ defined by

$V_{T}^{\prime}=\{p\in V_{T}|J_{rv}(p)\neq 0\}$ .

Since $V_{T}^{\prime}$ is dense subset of $V_{T}$ by the assumption (2.8), any equality obtained on
$V_{T}^{\prime}$ holds also on $V_{T}$ . Hence, we may assume $V_{T}^{\prime}=V_{T}$ whenever we treat
equalities. Therefore, from (2.6) it follows that $f_{r}=0$ on $V_{T}$ . Consequently, we
may set $f_{1}=1$ and $f_{a}=0$ for $a=2,\cdots,T$ . This and (1.4) show

(2.9) $J_{1a}=0,$ $J_{1r}=0$ .

Furthermore, the fact that $df_{a}=0$ and $df_{r}=0$ tells us
(2.10) $\theta_{1a}=-\Sigma J_{ab}\phi_{b}$ ,

(2.11) $A_{1m}=\Sigma h_{ab}J_{br}$ ,

(2.12) $B_{1r\backslash }=0$ ,

where we have used (1.5), (2.1) and (2.2).

From (2.4), we have

(2.13) $\Sigma h_{ab}B_{b_{\Gamma t}}=cf_{l}J_{\Gamma t}$ .

On the other hand, if we take the exterior derivative of (2.10) and make use
of $(1.3)\sim(1.7),$ $(2.1),$ $(2.2),$ $(2.7)$ and $(2.9)\sim(2.13)$ , then we find

$c\theta_{1}\wedge\theta_{a}=\Sigma J_{ar}h_{be}A_{brd}\theta_{d}\wedge\theta_{e}+2c\Sigma J_{ab}J_{bd}\theta_{d}\wedge\theta_{1}$ .

Pick out the coefficients of $\theta_{\epsilon}\wedge\theta_{1}$ in the above equation. Then from (1.4) and
(2.3) we can get

$\Sigma J_{ab}J_{bc}=0$

and so

(2.14) $J_{ab}=0$ .
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This and (2.10) give

(2.15) $\theta_{1\iota}=0$ .

Moreover, from (2.12) and (2.13) it follows that (cf.[3])

(2.16) $\det(h_{ab})=0(a,b=2,\cdots,T)$ .

Thus, for a suitable choice of a field $\{e_{a}\}$ of orthonormal frames, we may set

(2.17) $h_{ab}=\lambda_{a}\delta_{ab}(a,b=2,\cdots,T)$ .

Combining (2.17) with (2.16), we can set $\lambda_{2}=0$ . Since $\det(h_{ab})=-h_{12}^{2}\lambda_{3}\cdots\lambda_{T}$ , it
follows that

(2.18) $h_{12}\neq 0$ and $h_{aa}=\lambda_{a}\neq 0(a=3,\cdots,T)$

because $\det(h_{ab})$ does not vanish on $V_{T}$ .
On the other hand, the equation (2.11), together with (2.9) and (2.17), yields

(2.19) $A_{1r2}=0$ .

Now, put $a=2$ and $b\geq 3$ in (2.3). Then, using (2.11), (2.17) and (2.18), we
find

(2.20) $A_{br2}=h_{12}J_{br}(b\geq 3)$ .

Similarly, put $a=1$ and $b=2$ in (2.3) and use (2.8). Then we obtain

$\Sigma(h_{1a}A_{ar2}-h_{2a}A_{ar1})+cJ_{2r}=0$ .

It follows from (2.11), (2.17), (2.19) and (2.20) that the above equation can be
reformed as

(2.21) $h_{12}A_{2r2}=h_{12}\Sigma h_{1a}J_{ar}-h_{12}\sum_{a\geq 3}h_{1a}J_{ar}-cJ_{2r}$ .

We put $a=2$ and $b\geq 3$ in (2.7) and take account of (2.14), (2.15) and (2.17).

Then we have

$h_{bb}\theta_{b2}-h_{12}\Sigma A_{1rb}\theta_{r}\equiv 0$ (mod $\theta_{l}$ ) ,

which, together with (2.9), (2.11) and (2.18), leads to

(2.22) $\theta_{b2}\equiv h_{12}\Sigma J_{br}\theta_{r}$ (mod $\theta_{a}$ ) for $b\geq 3$ .

Last, put $a=1$ and $b=2$ in (2.7). Then from (2.14) and (2.15) it follows that

$dh_{12}-\Sigma(h_{1b}\theta_{b2}-\Sigma h_{1b}A_{br2}\theta_{r})+2c\Sigma J_{2r}\theta_{r}\equiv 0$ (mod $\theta_{a}$ ).

Combining this equation with (2.9), (2.15) and $(2.19)\sim(2.22)$ , we get a key
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equation

(2.23) $dh_{12}+(h_{12}^{2}+c)\Sigma J_{2r}\theta_{r}\equiv 0$ (mod $\theta,$ ).

3. Lemmas.

In this section, we use the same notion as one in section 2 unless otherwise
stated. From now on, we suppose that $M$ is complete. For simplicity, we put
$F=h_{12}$ . Then the equation (2.23) is equivalent to

(3.1) $dF+(F^{2}+c)\Sigma J_{2r}\theta_{r}\equiv 0$ (mod $\theta_{a}$ ).

Here, we note that $J_{2r}\neq 0$ everywhere on $V_{T}$ because of (2.9), (2.14) and the
fact that rank $J=2n-2$ .

Let $p$ be any point of $V_{T}$ and let $\alpha:I\rightarrow V_{T}$ be a maximal integral curve of the
unit vector field $\Sigma J_{2r}e_{r}$ on $V_{T}$ through $p$ . Assume that $I$ has an infimum or a
superemum, say $t_{0}$ . Then we have

LEMMA 3.1.

$\lim_{t\rightarrow l_{\{\}}}h_{aa}(\alpha(t))\neq 0(a=3,\cdots,T)$

PROOF. Put $a=b(\geq 3)$ in (2.7). Then from (2.14), we get

$dh_{aa}-2\Sigma h_{a\mathfrak{c}}\theta_{(a}+\Sigma h_{a\subset}A_{ra}\theta_{r}\equiv 0$ (mod $\theta_{a}$ ).

From (2.9), (2.11), (2.15) and (2.17), it follows that

(3.2) $dh_{aa}+h_{aa}\Sigma(h_{a}J_{ar}|+A_{am})\theta_{r}\equiv 0$ (mod $\theta_{a}$ ).

We restrict the forms under consideration to $\alpha$ . Then (3.2) becomes

$\frac{dh_{aa}}{dt}+h_{aa}\Sigma(h_{a}J_{ar}|+A_{ara})J_{2r}=0,$ $t\in I$ .

On the other hand, since $M$ is complete, there exists a limit point $\lim_{\rightarrow t_{()}}\alpha(t)$

on $M$ . Suppose that $\lim_{\rightarrow l_{(\}}}h_{aa}(\alpha(t))=0$ . Then from the above differential

equation, we have $h_{aa}=0$ on $V_{T}$ . This contradicts the fact (2.18). $\square $

LEMMA 3.2.

$\lim_{1\rightarrow t_{()}}F(\alpha(t))=0$ .

PROOF. Assume that $\lim_{\rightarrow l_{()}}F(\alpha(t))\neq 0$ . Owing to Lemma 3.1 and the
definition of the open set $V_{T}$ , we see that $\alpha(t_{0})\in V_{T}$ , which contradicts the
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maximality of the integral curve $\alpha$ . $\square $

4. The proof of Main Theorem.

In this section, we keep the notion in sections 2 and 3. Put $t_{1}=\inf I(\geq-\infty)$

and $t_{0}=\sup I(\leq\infty)$ . Then there are four possibilities of an open interval $(t_{1},t_{0})$ .
Namely, the interval $I$ is one of the following:

(1) $-\infty<t_{1},t_{0}<\infty$ ,

(2) $-\infty=t_{1},t_{0}<\infty$ ,

(3) $-\infty<t_{1},t_{0}=\infty$ ,

(4) $-\infty=t_{1},t_{0}=\infty$ .

On the other hand, by virtue of (3.1) the function $F$ defined on an open interval
$(t_{1},t_{0})$ satisfies

(3.3) $\frac{dF}{F^{2}+c}+dt=0$ .

Here, we consider the case where $c>0$ . Then solving this differential equation
(3.3), we have

(3.4) $F(\alpha(t))=-\sqrt{c}\tan\sqrt{c}(t-t_{2})$ ,

where $t_{2}=t_{1}$ or $t_{0}$ in the cases (1) $\sim(3)$ and $t_{2}$ is some constant in the case (4).

In order to prove our theorem, it suffices to show that we lead a contradiction
at any case because of Lemma 2.2 and the assumption (2.8).

Combining Lemma 3.2 with the fact that $J_{2r}\neq 0$ everywhere on $V_{T}$ , we see
that the case (1) can not occur. In fact, owing to Lemma 3.2 it is seen that there
exists a real number $t^{\prime}$ such that $t_{1}<r^{\prime}<l_{0}$ , $dF=0$ at $\alpha(r^{\prime})$ Then the differential
equation (3.3) gives $J_{2r}=0$ . This contradicts.

Moreover, in the cases (2) $\sim(4)$ we note that the function $tan$ of the solution
(3.4) can not be defined for all $t\in R$ but $F(\alpha(t))$ is defined on $(t_{1},t_{0})$ , where $t_{1}$ or
$t_{0}$ is $\infty$ . Thus, from Lemma 3.2 it follows that the cases (2) $\sim(4)$ can not occur
too.

It completes the proof of Main Theorem.

REMARK. In the case where $c<0$ , solving the differential equation (3.1) we
have

(1) $F(\alpha(t))\equiv k$ ,

(2) $F(\alpha(t))=k\tanh(k(t+d))$ ,
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(3) $F(\alpha(t))=k\coth(k(t+d))$ ,

where $k=\sqrt{-c}$ and $d$ is real number. Therefore we can not apply the above
arguments to this case.

Open Question.
Does there exist a complete real hypersurface $M$ in $P_{n}(C)$ such that $t(p)=n$

for a point $p$ on $M$?
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