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ON UNICOHERENCE AT SUBCONTINUA*

By

Zhou YOUCHENG

Abstract. In this paper an Eilenberg-type characterization of
unicoherence at subcontinua and a mapping property about this
unicoherence are given.

In [5], a localization of the notion of unicoherence, i.e., unicoherence at
subcontinua was introduced. Several mapping properties about unicoherence at
subcontinua are studied in [1]. This property is related to other properties of
unicoherence closely.

The main purpose of this paper is to establish an Eilenberg-type
characterization of unicoherence at continua and to show that local
homeomorphism preserves unicoherence at subcontinua for locally connected
continua. The latter partially answers a question raised by J.J. Charatonik in [1].

1. Preliminary

A continuum is a compact connected metric space. A continuum is
unicoherent if the intersection of every two subcontinua having union $X$ is
connected; a continuum $X$ is hereditarily unicoherent if every subcontinuum of $X$

is unicoherent. Let $Y$ be a subcontinuum of $X;X$ is unicoherent at $Y$ , denoted
$U_{il}(Y)$ , if for each pair of proper subcontinua $A$ and $B$ of $X$ such that $X=A\cup B$

the set $A\cap B\cap Y$ is connected.
Let $S^{1}$ denote the unit circle. The mapping $f\in S^{1}X$ is said to be inessiential

$(f\sim 1)$ if there exists a mapping $\phi\in R^{X}$ such that $f(x)=e^{l\phi(x)}$ for every $x\in X$ .
The mapping $f\in S^{1}X$ is said to be inessential on the subspace $Y$ of $X$

( $f\sim 1$ on Y), if there exists a mapping $\phi\in R^{Y}$ such that $f(x)=e^{i\phi(x)}$ for every
$x\in Y$ .

S. Eilenberg introduced the property (b) for studying unicoherence. A
continuum $X$ is said to have property (b) if for each mapping $f\in S^{|X}$ , there is
–
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$f\sim 1$ ([3] p.63).

We say that a continuum $X$ has property (b) on a subcontinuum $Y$ of $X$ if for
each mapping $f\in S^{|X}$ , there is $f\sim 1$ on Y.

It is clear to have

LEMMA 1. Suppose that a continuum $X$ has property $(b)$ on a subcontinuum
$Y$ of $X$ and $Z$ is a subcontinuum of Y. Then $X$ has property $(b)$ on $Z$ and $Y$ also
has property $(b)$ on Z.

PROPOSITION 2 ([3]). Any continuum which has property $(b)$ is unicoherent.

PROPOSITION 3 ([3]). Let continuum $X$ be locally connected. The following
conditions are equivalent:

(1) $X$ is unicoherent;

(2) $X$ has property $(b)$ .

PROPOSITION 4 ([5] corollary 1.5). Let $Y_{1},$ $Y_{2},\cdots,$ $Y_{n}$ be a finite collection of
subcontinua of a continuum $X$ such that $X$ is $U_{1}(Y_{i})for$ every $i$ , and suppose that
for each $i>1$

$Y_{i}\cap\cup\{Y_{j} : j<i\}\neq\phi$ .

Then $X$ is $U_{n}(\bigcup_{i=1}^{n}Y_{i})$ .

PROPOSITION 5 ([5] Theorem 1.6). Let $Y$ be a subcontinuum of a continuum
X. If $X$ is $U_{n}(Y)$ and $A$ and $B$ are proper subcontinua of $X$ such that $X=A\cup B$ ,

then the sets $A\cap Y$ and $B\cap Y$ are connected.

PROPOSITION 6. If $Y$ is a subcontinuum of a continuum $X$ and $Zls$ a
subcontinuum of Y. Suppose that $X$ is $U_{n}(Y)$ and $Y$ is $U_{n}(Z)$ . Then $X$ is $U_{n}(Z)$ .

PROOF. Assuming that the conclusion is false, then there is a pair of proper
subcontinua $A$ and $B$ of $X$ such that $X=AuB,and$ $A\cap B\cap Z$ is not connected.
Suppose $A\cap B\cap Z=H\cup K$ is a separation. Because $X$ is $U_{l},$ $(Y)$ , by proposition
5, $A\cap Y$ and $B\cap Y$ are all connected. One can assume that both of $A\cap Y$ and
$B\cap Y$ are a nonempty proper subcontinuum of $Y$ (0therwise the case is simple).
Then $[(A\cap Y)\cap(B\cap Y)]\cap Z=(A\cap B\cap Y)\cap Z=(A\cap B\cap Z)\cap Y=(HuK)\cap Y$

$=H\cup K$ . Since $HuK\subset Z\subset Y$ , this contradicts to that $Y$ is $U_{n}(Z)$ .

PROPOSITION 7 (Corollary 7 of [1]). Monotone mappings preserve uni-
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coherence at subcontinua.

2. An Eilenberg-type characterization of unicoherence
at subcontinua

In this section we give a characterization of unicoherence at subcontinua
which is similar with the characterization of unicoherence given by S. Eilenberg.

THEOREM 8. Suppose that $Y$ is a subcontinuum of a continuum $X$ and for
each pair of proper subcontinua $A$ and $B$ of $X$ has property $(b)$ on $A\cap B\cap Y$ .
Then $X$ is unicoherent at $Y$ .

PROOF. Suppose $X$ does not be unicoherent at $Y$ . Then there are
subcontinua $A$ and $B$ of $X$ such that $X=A\cup B$ and $A\cap B\cap Y$ is not connected.
Write $A\cap B\cap Y$ as a disjoint union of nonempty closed subsets $C$ and $D$ . One can
assume that $A\cap Y\neq\phi\neq B\cap Y$ . 0therwise $A\cap B\cap Y$ must be connected. Define

a function $\phi:X\rightarrow R$ by

$\phi(x)=\pi\frac{d(x,C)}{d(x,C)+d(x,D)}$ ,

for each $x\in X$ , and mapping $f:X\rightarrow S^{1}$ by

$f(x)=\left\{\begin{array}{l}e^{i\phi(x)}, ifx\in A,\\e^{- i\phi(x)}, ifx\in B.\end{array}\right.$

Thus the mapping $f$ is well defined and continuous. By hypothesis of property (b)
on $A\cap B\cap Y$ , one have that $f\sim 1$ on $A\cap B\cap Y$ . Then there is a $\xi\in R^{A\cap B\cap Y}$ such
that $f(x)=e^{i\xi(x)}$ for each $x\in A\cap B\cap Y$ . According to Proposition 5 both of
$A\cap Y$ and $B\cap Y$ are connected. There exist integers $m$ and $n$ such that

$\phi(x)=\xi(x)+2m\pi$ , if $x\in A\cap Y$

and
$-\phi(x)=\xi(x)+2n\pi$ , if $x\in B\cap Y$ .

However, if $x\in C\subset A\cap B\cap Y$ , then $\xi(x)=-2m\pi=-2n\pi$ and hence $m=n$ . On
the other hand, if $x\in D\subset A\cap B\cap Y$ , then $\xi(x)=\pi-2m\pi=-\pi-2n\pi$ and get
$\pi=-\pi$ . This contradiction establishes the Theorem.

THEOREM 9. Let $X$ be a locally connected continuum and $Y$ is its

subcontinuum. The following conditions are equivalent;
(1) $X$ is unicoherent at $Y$;
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(2) $X$ has property (b) on Y.

PROOF. Theorem 7 has established (2) $\Rightarrow(1)$ . We prove (1) $\Rightarrow(2)$ . For every
$f:X\rightarrow S^{1}$ one can let $f=f_{2}\circ f_{1}$ by the monotone-light factorization of $f$, where
$f_{1}X\rightarrow X^{\prime}$ is monotone mapping and $f_{2}$ : $X^{\prime}\rightarrow S^{1}$ is light mapping. By Proposition
7, $X$ ‘ is unicoherent at $Y‘=f_{1}(Y)$ . Since $f_{2}$ is light, $X^{\prime}$ must be at most 1-
dimensional. Hence $Y^{\prime}$ must contain no any simple closed curve since $X^{\prime}$ is
$U_{n}(Y)$ . $Y$ ‘ is a locally connected continuum that contains no simple closed curve,
i.e., it is a dendrite. Thus $Y^{\prime}$ is unicoherent and locally connected continuum. By
Eilenberg’s characterization, $Y^{\prime}$ has property (b). It is not difficult to see that $X^{\prime}$

has property (b) on $Y^{\prime}$ . This means that there is a $\psi\in S^{1^{\prime}}$ such that
$f_{2}(x^{\prime})=e^{i\psi(\chi^{\prime})}$ , for each $x^{\prime}\in Y^{\prime}$ . Let $\phi=\psi\circ f_{1}\in S^{|Y}$ Then $f(x)=f_{2}f_{1}(x)=e^{i\phi(X)}$ ,

for each $x\in Y$ . This is $f\sim 1$ on Y.

3. Unicoherence at continua under local homeomorphism

It is known that a surjective mapping on a continuum is a local
homeomorphism if and only if it is open and $n$ -to-l for some fixed $n\geq 1$ . It is
proved that open finite-to-one mapping do not preserve unicoherence at
subcontinua, even if the domain space is a linear graph in [1]. In the paper J.J.
Charatonik raised a question: Do local homeomorphism perserve unicoherence at
continua?

THEOREM 10. Suppose $X$ be a locally connected continuum, $Y$ is a
subcontinuum of $X$ and $X$ is $U_{n}(Y),$ $f:X\rightarrow X^{\prime}$ is a local homeomorphism. Then

$X^{\prime}$ is $U_{n}(Y^{\prime})$ , here $Y^{\prime}=f(Y)$ .

PROOF. Whole proof consists of three steps.

CLAIM 1. $Y$ can be covered by finite subcontinua $Y_{1},$ $Y_{2},\cdots,$ $Y_{m}$ such that $X$ is
U. $(Y_{i})$ and $f|_{Y}$, is a homeomorphis, for $i=1,\cdots,m$ .

Since $X$ is locally connected, for any $x\in Y$ there is a connected open
neighborhood $V_{X}$ of $x$ in Y. Moreover one can assume that $f|_{\overline{V}_{\chi}}$ a
homeomorphism because $f$ is a local homeomorphism.

The local connectedness of $X$ and its unicoherence at Yimply property (b) on
$Y$ by Theorem 9, i.e., for each $f:X\rightarrow S^{1}f|_{Y}\sim 1$ . Thus, by Proposition 1, $f|_{\overline{V}_{\chi}}\sim 1$

and this means that $X$ is $U_{l1}(\overline{V}_{\chi})$ . By compactness of $Y$ , finite subcontinua
$Y_{1},\cdots,$ $Y_{m}$ as required above can be found. Denote $Y_{i}^{\prime}=f(Y_{i})$ .
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CLAIM 2. $X^{\prime}$ is $U_{l}(Y_{i}^{\prime})$ .

For any pair of proper subcontinua $A^{\prime}$ and $B^{\prime}$ of $X^{\prime}$ such that $A^{\prime}\cup B^{\prime}=X^{\prime}$

$we\prime 11$ show that $A^{\prime}\cap B^{\prime}\cap Y_{i}^{\prime}$ is connected. Local homeomorphism between

continua is exactly a n-to-one open continuous mapping ([1]) and it is a confluent
mapping ([4]). Thus one can get disjoint unions of subcontinua of $X$

$f^{-1}(A^{\prime})=A_{1}\cup\cdots\cup A_{k}$ and $f^{-1}(B^{\prime})=B_{1}\cup\cdots\cup B_{\iota}$ ,

here $k,s\leq n$ and each of $A_{j}$ and $B_{j}$ is mapped onto $A^{\prime}$ and $B^{\prime}$ by $f$ respectively.
Since $f|Y_{j}$ is a homeomorphism, it is not difficult to see that only one of $A_{j}$ and
$B_{j}$ intersects $Y_{i}$ respectively. Assume that $A_{1}$ and $B_{1}$ are they. One can consider
two subcontinua

$A_{1}\cup\cup\{B_{j}:B_{j}\cap A_{1}\neq\phi\}$ and $B_{1}\cup\cup\{A_{j}:A_{j}\cap B_{1}\neq\phi\}$ .

Similarly, consider the rest of $A_{j}$ and $B_{j}$ which meet $A_{1}\cup\cup\{B_{j} : B_{j}\cap A_{1}\neq\phi\}$ or
$B_{1}\cup\cup\{A_{j} : A_{j}\cap B_{1}\neq\phi\}$ and continue to form unions. Because numbers of $A_{j}$ and
$B_{j}$ are finite, so finally get two continua

$A=A_{1}\cup\cup\{B_{j} : j\in J^{\prime}\subset\{2,\cdots,s\}\}\cup\cup\{A_{j} : j\in J\subset\{2,\cdots,k\}\}$

and

$B=B_{1}\cup\cup\{A_{j} : j\in\{2,\cdots,k\}\backslash J\}\cup\cup\{B_{j} : j\in\{2,\cdots,s\}\backslash J^{\prime}\}$ .

Then $A$ $uB=X$ and $A_{1}\cap B_{1}\cap Y_{i}=A\cap B\cap Y_{i}$ is connected by unicoherence at Y.
Therefore $A^{\prime}\cap B^{\prime}\cap Y_{i}^{\prime}=f(A_{1}\cap B_{1}\cap Y_{i})$ is also connected.

CLAIM 3. It is from Claim 2 that $X^{\prime}$ is $U_{n}(Y^{\prime})$ .
$Y^{\prime}=f(Y)=\bigcup_{i=1}^{m_{Y_{i}^{\prime}}}$ . The finite collection $\{Y_{1},\cdots, Y_{m}\}$ can be selected such that

for each $i>1,$ $ Y_{i}^{\prime}\cap\cup\{Y_{j^{\prime}};j<i\}\neq\phi$ . By Corollary 1.5 of [5], the final conclusion

yields.
A unicoherent continuum $X$ is strong unicoherent if for every pair of proper

subcontinua $A$ and $B$ such that $X=A\cup B$ both $A$ and $B$ are unicoherent. By
Theorem 10 and Theorem 2.1 of [5] we have.

COROLLARY 11. An image of a locally connected strongly unicoherent
continuum under a local homeomorphism is locally connected strongly
unicoherent.
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