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UNIMODULARITY OF FINITE
DIMENSIONAL HOPF ALGEBRAS
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Introduction.

D. Radford [4] proved that a finite dimensional Hopf algebra A is a
symmetric algebra if and only if

(1) A is unimodular, and

(2) the square of the antipode s? is an inner algebra-automorphism.

It is well-known that the 4-dimensional Hopf algebra of Sweedler shows that
Condition (2) does not necessarily imply Condition (1).

We present in this paper an example which shows that the converse does not
hold either.

The construction.

Let n be a positive integer and m, an integer =2 for I=i=n. Let k be a field
that contains a primitive m;th root of unity 7, and let wek be an element
satisfying @™ =1. We may assume that @ is a primitive mth root of unity for
some positive integer m. We note that m divides m;.

As a general case we shall construct a Hopf algebra B over k, which is
generated as an algebra by g;, x; subject to the relations;

8;8; = 8:8;> g =1 x*=0, X;8; = Wg; X,
X8 = &% X8 =W 8%, XX =oxx;, for 1=k=n, 1=ifj=n.
First, let F=k[G,--,G,,G;",---,G;", X,,---,X,] be the free algebra on 3n
noncommuting indetarminates. We form the so-called free Hopf algebra
F =k[G,,---,G,,G",---,G], X,,--, X, 1/(G,G" —1,G'G, - ).
The coalgebra structure maps F—>F®F and F —>k are the algebra-

homomorphisms determined by

GG ®G, XX ®G+18X,
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and
Gl X, >0

respectively. The antipode is the anti-algebra-homomorphism determined by

GG, X, —-XG

Second, let L be the ideal of F generated by the following six subsets of F:
() {G,G,-GG|I=ix j=n)
(2) (G -11=k=n}
3 {(X*1=k=n)
4 {X,G,-wG,X;,X,G, -0”'G,X1=iX j=n)
5 {X,G,—-nG.X|1=k=n}
6) (XX, — X X[1=i< j=n)}.

Let B indicate F/L. Then denoting cosets by the small case letters, we have
the multiplicative relations stated above.
Finally, we show the following proposition.

PROPOSITION 1. (a) The ideal L is a Hopf ideal of F, so B is the Hopf
algebra.

(b) B has as a basis the set {g[' ---gh -x]' ---xi
dimB =TIm? .
(c¢) The antipode s of B is given by

0=p;,q;=m,—1}. Hence

s(g)=g", s(x)=-xg"=-n7"g'x,.

Hence s*(x;)=mn;'x; and the order of s is (L.C.M. of {m,})x 2.

PROOF. (a) We note that in a Hopf algebra an ideal generated by skew
primitives is a Hopf ideal.

One can see that the elements of the above sets (1), (2) and (5) are all skew
primitives. Thus the ideal /, J and K generated by (1), (2) and (5), respectively,
are Hopf ideals.

Since the elements of the set (4) are skew primitives modulo 7, the ideal I’
generated by these, namely / and (4), is a Hopf ideal; and since the elements of
(6) are skew primitives modulo /’, similarly the ideal /” generated by these is
also a Hopf ideal.

On the other hand, the elements of (3) are skew primitives modulo K (c.f. [2,
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Lem. 2.5.], [6]). Thus the ideal K’ generated by the two sets K and (3) is a Hopf
ideal.
Therefore the sum 7”7+ J+ K’ is a Hopf ideal, and is just L.

(b) For 1=i=n let k[H,], k[Y;] be the polynomial algebras on 1 indeterminate
H, Y, respectively, over k. Set T =k[H]1/(H" —-1),U, =k[Y]/(Y"™), and
M=T®---®T, ®U, ®---®U, . Denoting cosets by the small case letters, we see
that 7, has a basis {#/|0= j=m, -1} and U, has a basis {y/|0= j=m, -1}.
Therefore M has the basis (b ® - @ kP @ y! ®---® y"|0=p,,q,=m, —1}.

We define a left B-module structure on M.

First of all, we define an algebra-homomorphism from the free Hopf algebra
F to End, (M), the algebra of endomorphisms of M, as follows: for M3m=
h'®---@hi» @y!' ®---®y? (0=p,,q,=m, —1),
G-m=h" @ - Qh ®  -Qh’" @yl ®---@ yi,
X, -m=@"t Pl Pt PO g0t g P @ L @ P @ ey ®---®yl,

but p, =g, =0. It is well-defined.

Next, we must show that the algebra-homomorphism annihilates the ideal L.
For that purpose, it suffices to check on the six sets generating L.

On the sets (1), (2) and (3), it is clear.

On the set (4) for 1=iSj=n,

XG - m=X h"® -Qn" @ - -Qn" @y ®-- @y

+otp; o+l =(Pjy1+tp, )0)4|+"'+qj—|

— m" Pj
=0 n’w
hP ®--'®h,.’”+1 ®:---@hPr ® yi ®...®y;’i+l ®---® yin,
— 1P tP i gaPi ey (Pt P ) gyt i
Gin.m_G[.(wp P 77;7(0 P Pr) gyt e
W@ - ®h @y @@y @ ®yi)
— 1D P (PP ) g di g
=’ P N’ w P Pn) g9 q
B ®--@h' ' ®---® kP @yl ®---®y}“+l ®--o® yin.
Thus
(X;G, -G, X;)- M =(0).
Similarly,

XG, m=X,-h" @ - ®h"" @ @K @y @...® y

= w? +etpiog nP. w-(l’m +--~+p,,+1)wa +otgiy
i



234 Satoshi SUZUKI

W ®-®@r @ ®hr @y @ ®yi @@y,
_ e I i —(pint+py) e
GJX’ m= Gj (wl’ p nlp w 4 4 a)‘i q

A" ® - @h @y ®- @y ®---®y™)

=Pt tPin np' @ Pist P ) @it i
]

h @@ ® - @h @y @@y @@y
Thus
(X,G,-0™'G,X,)- M = (0).

Therefore the algebra-homomorphism annihilates the set (4).

In a similar fashion, one can check that it takes zero on the sets (5), (6).

Hence the map annihilates the ideal L, so M can be seen as a left B-module.

Define a linear map ¢:M > B by h/' ® - ®h" @y ®--- @yl 1> g/ --- gl
cxfteexd It is easy to see that ¢ is surjective. Define a B-module map
W:B—>M by ar>a-1®---®1. Then yo¢ is the identity map, hence ¢ is
bijective.

Therefore the set of the statement is a basis of B.

(c) It is clear.

This completes the proof of the proposition.

In this way we can form the Hopf algebra B, which is a generalization of [3,
4.4].

Now we shall notice the unimodularity. A Hopf algebra is called unimodular
if the left integral space and the right one are the same (c.f. [3]).

LEMMA 2. (a) Set A=(+g +--+g" " )-(l+g, +---+gm ") xm™ . x™™
Then A is a non-zero left integral.

(b) B is unimodular if and only if n, = @ "*"" for 1=i=n.

Let B be unimodular, then we have

(c) nis even,

(d) m=m, for 1=i=n, i.e.n, is a primitive mth root of unity,

(d’) (n=2i+1,m)=1, i.e.n—2i+1 and m are relatively prime, for 1=i=n,

(d”’) (p, m) =1 for each odd prime p=n-1,

(e) sz(xi) = ni-lxi = "2+ y

1

PROOF. (a) Clear.
(b) It follows that Ag, =™ 'n'A and Ax,=0. Indeed, Ag, =



Unimodularity of Finite Dimensional 235

—n+2i-1

o "'n'o"'A=w n'A. Hence B is unimodular if and only if
n, =w"* for 1=i=n.

(c) Suppose that n is odd. Then by (b) U o’ =1, a contradiction.

(d) Recall that m divides m, for all i. Since 71" =1 holds by (b) and 7, is a
primitive m;th root of unity, m, divides m. Hence m=m,.

(d’) This follows from (b) and (d).

(d”) This follows from (c) and (d’).

(e) By (b) and Proposition 1.(c).

This completes the proof of the lemma.

We note that (d), (d’) and (d”) are equivalent under the conditions
N, =o™™* and (c), and notice that shows us the way of direct
construction of unimodular Hopf algebra B, that is;

PROPOSITION 3. Suppose that integers n and m=2 satisfy the conditions (c),
(d”) in Lemma 2. For a primitive mth root of unity @, set 1, =@ "**~! (Note that
this is a primitive mth root of unity). Then the Hopf algebra B is unimodular.

Let B, , indicate B in case of [Proposition 3.

The relation between the unimodularity and s?

We only consider the unimodular Hopf algebra B,, and show that Condition
(1) does not necessarily imply Condition (2).

LEMMA 4. Suppose in addition that n=4 and m is divided by 4. Let U =%
and .v =—'21—, set z=x)_ +x! e€B,, (Note that neither x,_, nor x! is zero, so z #

0). Then there is an element §, € k such that zg, ={,g,;z for 1=i=n.

PROOF.
It is easy to see that the statement is true for 1=i=v -2 or v+1=i=n.
1) i=v-1:

U — i u
Xy-18v-1 = nv—lgv—lxv—l
-3 . -3
=w g, x!, (since n,_,=07)
~— mH H
=0 gv—lxv—l’

H — mH u
xv gv—l =0 gv-lxv .
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xl/g, = @8, Xy
Thus it follows that zg, , = w*g, ,z,soset {,_, =@".
1) i=v:

x).8, =07'g,x,

X8, =Ty 8%
=w*g,x". (since n,=0™").
Thus it follows that zg, = w™#g,z,soset {, =w™*.
This completes the proof.

THEOREM 5. Let n, m be as in Proposition 3. If n=4 and m is divided by 4,
the square of antipode s* of B, is not inner.

PROOF. Let z, y and v be as in [Lemma 4. It follows that

s*(2)=0*xt, + w'xt.

Now suppose that s?(z) = azb for some a,be B, ,,.
Write

— P .oPn . x9N ... x4
a—zam“-pnqr"qngl PR Xn" s

where Oy para, € k,0=p;,,q,.=m-1,

= Pl gPn . x9 ... x9
ED Y Y A A

where ﬁPl’"'l’,"‘Ii"'q' e k,0=p.,q.=m—1,

n

and divide a into a, +a,, where q, is the part of ¢, =0 and g, is the rest, b into

b, +b,, where b, is the part of g/ =0 and b, is the rest.
Then

azb = (a, +a,)z(b, + b))
= a,zb, +a,zb, + a,zb, + a,zb,
=a,zb, +w, where w=a,zb, +a,zb,+azb,,
=Coz+ W,

gt
where co=37Y, ., 8 &' Yp., €kO=r=m-1,

by [Lemma 4,

=c.xH u
=CoX, FCoXi, +W.
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So 5%(z) = azb implies
3uH — U
wHx,_ +otxl =cpx,_ | +cyxt +w.

Thus w = 0 since w is a sum of terms that contain at least 4 + 1 x’s as
factors, and ¢, =7¥,.,-1since y, , =0 if some r, #0. Set y =7, ,. Then

3 M Al
wtx,  +okxl =y, + ).

Again comparing the coefficients, we have @** =y =w*, so W®*" =@ =
®? =1, a contradiction since w is a primitive mth root of unity.

Therefore for any a,beB,,, s*(z)#azb. This implies that s> cannot be
inner.

This completes the proof.

REMARKS. For another B, , , we have the following:

(1) For any m, the square of antipode s* of B,, ([3, 4.4]) is inner. More
precisely,

s2(N=(glgd)" -7 (gfgl),

where p, q are integefs such that p+q= -1 modulo m.
(2) Suppose that n=4 and either that m is odd or that m is even but is not

divided by 4. Then the square of antipode of B, is inner as follows.
Fix an integer | such that m=21+1(%=2!+1, resp.). Set g=g|-'8, ‘&
2

n
2

g . -g! , ---g! where p and q are integers such that p+q=-1 modulo m. Then
5+ Z*
s2(N=g'27g.

(3) In general if both the dimension of a Hopf algebra and the order of the
square of antipode s* are odd, then s* is inner [1, Prop. 1].

Therefore we have the following;

THEOREM 6. There exists a finite dimensional unimodular Hopf algebra such
that the square of antipode is not inner.
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