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Introduction.

On a complete oriented Riemannian manifold M, a closed 2-form B is called
a magnetic field. Let € denote the skew symmetric operator Q:TM — TM
defined by (u,Q(v)) = B(u,v) for every u, ve TM . We call a smooth curve ¥y a
trajectory for B if it satisfies the equation V,y=Q(y). Since Q is skew
symmetric, we find that every trajectory has constant speed and is defined for
—co<t<oo, We shall call a trajectory normal if it is parametrized by its arc
length. When 7 is a trajectory for B, the curve O defined by o(z)=7y(At) with
some constant A is a trajectory for AB. We call the norm |B,| of the operator
B, .TMXTM — R the strength of the magnetic field at the point x. For the
trivial magnetic field B = 0, the case without the force of a magnetic field,
trajectories are nothing but geodesics. In term of physics it is a trajectory of a
charged particle under the action of the magnetic field. For a classical treatment

and physical meaning of magnetic fields see [8].
On a Riemann surface M we can write down B= f-Vol,, with a smooth

function f and the volum form Vol,, on M. When f is a constant function, the case
of constant strength, the magnetic field is called uniform. On surfaces of constant

curvature the feature of trajectories are well-known for every uniform magnetic
field k-Vol, . On a Euclidean plane R’ they are circles (in usual sense of

Euclidean geometry) of radius 1/|k|. On a sphere S”(c) they are small circles
with prime period 27 /+vVk® +c. In these cases all trajectories are closed. On a
hyperbolic plane H?(-c) of constant curvature —c, the situation is different. In

his paper [4] Comtet showed that the feature of trajectories changes according to
the strength of a uniform magnetic field k- Vol,,. When the strength |k| is greater

than «/E, normal trajectories are still closed, hence bounded, but if |k| <c they
are unbounded simple curves, in particular, if |k|= Ve they are horocycles. In the
preceeding paper we studied trajectories for K#hler magnetic fields k-B,,
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which are scalar multiples of the Kihler form B,, on a manifold of complex

space form. On a complex projective plane all trajectories for Kidhler magnetic
fields are closed. But on a complex hyperbolic space CH"(—c) of constant

holomorphic sectional curvature —c, normal trajectories for Kihler magnetic
fields have similar properties as of trajectories for uniform magnetic fields on a
hyperbolic plane. Their feature depend on the strength of a Kidhler magnetic field;
trajectories are bounded, horocyclic, or unbounded according to the strength is
greater, equal to, or smaller than c . In this context it is quite natural to pose the

following problem. Consider a Hadamard manifold, which is a simply connected
complete Riemannian manifold of nonpositive curvature -pf*<Riem,, <-a?,

BZa=0. Are they true that all trajectories are unbounded if the strength is

smaller than & and that all trajectories are bounded if the strength is greater than
B? In this note we shall concerned with this problem on a Hadamard surface.’

THEOREM 1. Let B=f-Vol, be a magnetic field with |f|<a on a
Hadamard surface M of curvature Riem, <-a’. Then every normal trajectory
for B is unbounded for both directions.

For Hadamard manifolds we have an important notion of ideal boundary. We
denote by M = MUM() the compactification of a Hadamard surface M with its
ideal boundary M(e). For a two-sides unbounded curve ¥ on M, if lim,__y(t)

and lim,__y(f) exist in M we denote these points by 7¥(c0) and 7y(—co)
respectively, and call that ¥ has points of infinity. If we review the Comtet’s
result from this point of view, it assures the following. On H?*(-c) every
trajectory y for a uniform magnetic field k- Vol , _ with |k| < V¢ has points of

infinity y(e0),Y(—e). When |k|=ix/2 they coincide y(e0) =7y(—e0), and they are
distinct when |k|<«/;. We show that a similar property holds for general

Hadamard surfaces.

THEOREM 2. Let B=f-Vol,, be a magnetic field with |f|<a on a
Hadamard surface M of curvature Riem,, <—a’ <0. Suppose either f<0 or
f 20 except on a compact subset of M. We then have the following.

(1) Every normal trajectory for B has points of infinity.

(2) If |fl<a except on a compact subset of M, every normal trajectory has
two distinct points at infinity.
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§1. A note on Yy-Jacobi fields.

We shall show our theorems by applying the Rauch’s comparison theorem.
Let B= f-Vol,, be a magnetic field on a oriented surface M. We denote by €

the skew symmetric operator associated with the uniform magnetic field Vol,,.
Clearly the skew symmetric operator associated with B is of the form Q= f Q.
For a normal trajectory ¥ for B, we denote by V,(s) the y -Jacobi field along the
geodesic s — o(t,5) =exp,, sQ,(y) with V,(0)=7y(t). This Jacobi field V, is
perpendicular to o(¢,-) and is obtained by the variation {o(t+¢€, )}, of geodesics;
V,(s)=g70'(t,s).

For the sake of reader’s convenience, we recall the explicit formula for

normal trajectories and 7 -Jacobi fields for uniform magnetic fields on surfaces of
constant curvature.

EXAMPLE 1. On a Euclidean plane R?, trajectories for the uniform magnetic
fields of strength k satisfy the following equation:

y@)= (%Cos(kt -0), %sin(kt - 6)) +(&,¢,).
' The variation of geodesics is given by
o(ts)= (% (1 - ks)cos(kt —0), %(1 — ks)sin(kt — 6)) +(,,¢,)

and the ¥ -Jacobi field is
V()= (1—ks)y(1),

hence it vanishes at s, =1/k. The point o(s,1/k)=(§,,&,) is usually called the
center of .

EXAMPLE 2. On a sphere S%(c)={x={(x,x,,x)eRKx,x)=x"+x,"+
x,> =1} of sectional curvature c, the trajectory 7y for the uniform magnetic field
of strength k satisfies the following equation when Y(0)=xe S°(c),y(0)=
ueU, S*(c)={EeR¥x,E)=0, (&, &E =c}:

y(t) = k21+ (k> +c-cosVk* +ct) - x
c

1 . ' k
+m51n k2+ct-u+k2+c(1—cost2+ct)-Qo(u).




228 Toshiaki ADACHI

Since the variation of geodesics is given by

o(t,5) = y(t)cosVes +Q (7(1)) - \/—-sm

hence
V.(s) = 7(t)(cos/es — %sin Jecs).
c
Therefore it vanishes at s, = %tan"«/z/k. The point o(¢,s,) and the trajectory
c

Y can be regard as a pole and a latitude line of this sphere.

EXAMPLE 3. On the hyperbolic plane H?(—c) ={x =(x,, x,, x,) € R*({x, x)) =
—-x," +x,° +x,> =—1,x, 21} of constant sectional curvature —c, the trajectory of
the uniform magnetic field of strength k satisfies the following equation if
Y(0)=x and y(0)=ue U H*(-c) = {§ € R*|(x,£)) = 0,{(&, &) = c}:

_ 1
},(t)"' C—kz

1 .
—k*+c-coshVe—-k?t) - x+ sinhVc—k?t-u
( Ve —k?

-Q,(u), when 0<k<+c,

c—-k?

y(t) = (1+—)x+t +‘/—’ Q,(u), when k=+c,

__1 2 = . T
Y(t)—kz_c( ct) x+msm\/k ct-u
+k2k_ (1-cosVk? —ct)-Q,(u), when k>~c.

The variation of geodesics is given by
o (t,5) = y(t) coshVes + Q, (7(2)) - ?}_——sinh Jes
C
hence

Vi(s)= (1) (coshVcs — Lsinh Jes).
Ve
Therefore if [k|>w/; the y-Jacobi field vanishes at s0=—1—tanh"\/2/k=

Ve
L log k+e CIf k| < Ve it does not vanish. When k = vc , the case that Yy is a
2¥e T k-Ae

horocycle, the point y(e0) =7y(—<) on the ideal boundary can be regard as the
vanishing point of the y -Jacobi field; lim_,_V,(s)=0.
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§2. Proofs.

We are now in the position to prove theorems. Let y be a trajectory for the
magnetic field f-Vol,, with |f|<oa on a Hadamard surface M of curvature
Riem, <-~a’. We compare the norm of the y-Jacobi field V, with the norm of
y -Jacobi fields for uniform magnetic fields on a hyperbolic space. Since we have

0 2. 5(1,5) o= 2 Qo (F(1) = = FHENFO)

V%:;Vt(o)-_-mgi

we get the following estimate by the Rauch’s comparison theorem;

MOIE coshas—é F(¥(t)) sinhos .

This gaurantees that if | f(y(¢))|<o then V, does not vanish anywhere and
liminf,_,_exp(-as) | V.(s)[|2+(1-| f(y@®))|/ @) for every t. Since M is
diffeomorphic to an Euclidean plane, we find that the geodesic o(¢;,") and o(%,,")

do not intersect each other if ¢, #¢,.
Let S (p) denote the geodesic circle {xe M |d(x, p)=r} of radius r centered

at p. If we suppose 7| {0y 1S tangent to a geodesic circle S, (y(0)) at y(z,), then
o(t,,") passes ¥(0), which is a contradiction. We therefore have

PROPOSITION. The trajectory rays Y| ., and Y| .o cross only once to
every geodesic circle S, (y(0)).

This proposition leads us to Theorem 1. In order to see Theorem 2, we denote
by u, for t#0 the unit tangent vector at p=7y(0) such that the geodesic

emanating from p with the initial speed u, joins p and y(z). We set u, =¥(0).
Since 7y is unbounded in both directions, we may treat the case that f is
nonpositive (or nonnegative) on M. We then find the smooth curve (&), ., On
U,M = §' rotates counterclockwisely if f 20 and rotates clockwisely if f<0.If
we suppose u, =1€(u,) for some ¢,, then 6(0,) passes y(f)). Hence we find
that {x,}, cU,M \ {£€Q,(1,)} and the limit u_ =lim _,_ u, exists. Similarly, we find

that the limit u__ =1lim u, exists. We therefore get that y has points at infinity;

Y(2)=p, () and y(-e)=p, (=),

where p, denote the geodesic with p(0) =v. Now we suppose that y has a single
point at infinity: y(e0)=7y(-c0). This means u, =u_,, hence y(e)=0(t,) for
every t. This can not occur when f < a. We get the conclusion of Theorem 2.

In view of our proof, we can conclude the following.
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REMARK. Consider a magnetic field B= f-Vol,,,|f|<a, on a Hadamard

surface M of curvature Riem, <-a’<0.

(1) A trajectory y for B has a single point at infinity y(eo)=7y(-o0) if and
only if all the geodesic &(z,-) converges to that point o(t,00) = y(e0).

(2) If a trajectory y has a single point at infinity, then the magnetic angle at

that point is 7 /2. Here the magnetic angle means the angle between the outer
tangent vector of y and the outer tangent vector of geodesics p with

p(e=) =y(=) (c.f.[2]).

REMARK. Let B=k-Vol,, k|<a be a uniform magnetic field on a
Hadamard surface M of bounded negative curvature —fB* <Riem, <-a?<0. We
have a positive € such that the angle < (7(0), p(0)) between a trajectory y for B
and a geodesic p with y(0) =p(0) and y(e)=p(eo) is always not greater than
m-E.
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