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Introduction.

On a complete oriented Riemannian manifold $M$ , a closed 2-form $B$ is called
a magnetic field. Let $\Omega$ denote the skew symmetric operator $\Omega:TM\rightarrow TM$

defined by $\langle u,\Omega(v)\rangle=B(u, v)$ for every $u,$ $v\in TM$ . We call a smooth curve $\gamma$ a
trajectory for $B$ if it satisfies the equation $\nabla_{\gamma}\dot{\gamma}=\Omega(\dot{\gamma})$ . Since $\Omega$ is skew
symmetric, we find that every trajectory has constant speed and is defined for
$-\infty<t<\infty$ . We shall call a trajectory normal if it is parametrized by its arc
length. When $\gamma$ is a trajectory for $B$ , the curve $\sigma$ defined by $\sigma(t)=\gamma(\lambda t)$ with
some constant $\lambda$ is a trajectory for $\lambda B$ . We call the norm 1 $ B_{X}\Vert$ of the operator
$B_{X}$ : $T_{X}M\times T_{X}M\rightarrow R$ the strength of the magnetic field at the point $x$ . For the
trivial magnetic field $B=0$ , the case without the force of a magnetic field,

trajectories are nothing but geodesics. In term of physics it is a trajectory of a
charged particle under the action of the magnetic field. For a classical treatment
and physical meaning of magnetic fields see [8].

On a Riemann surface $M$ we can write down $B=f\cdot Vo1_{M}$ with a smooth
function $f$ and the volum form $Vo1_{M}$ on $M$ . When $f$ is a constant function, the case
of constant strength, the magnetic field is called uniform. On surfaces of constant
curvature the feature of trajectories are well-known for every uniform magnetic
field $k\cdot Vo1_{M}$ . On a Euclidean plane $R^{2}$ they are circles (in usual sense of
Euclidean geometry) of radius $1/|k|$ . On a sphere $S^{2}(c)$ they are small circles

with prime period $2\pi/\sqrt{k^{2}+c}$ . In these cases all trajectories are closed. On a
hyperbolic plane $H^{2}(-c)$ of constant curvature $-c$ , the situation is different. In
his paper [4] Comtet showed that the feature of trajectories changes according to
the strength of a uniform magnetic field $k\cdot Vo1_{M}$ . When the strength $|k|$ is greater

than $\sqrt{c}$ , normal trajectories are still closed, hence bounded, but if $|k|\leq\sqrt{c}$ they
are unbounded simple curves, in particular, if $|k|=\sqrt{c}$ they are horocycles. In the
preceeding paper [2] we studied trajectories for K\"ahler magnetic fields $k\cdot B_{J}$ ,
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which are scalar multiples of the K\"ahler form $B,$ , on a manifold of complex
space form. On a complex projective plane all trajectories for Kahler magnetic
fields are closed. But on a complex hyperbolic space $CH^{n}(-c)$ of constant

holomorphic sectional curvature $-c$ , normal trajectories for K\"ahler magnetic
fields have similar properties as of trajectories for uniform magnetic fields on a
hyperbolic plane. Their feature depend on the strength of a Kahler magnetic field;
trajectories are bounded, horocyclic, or unbounded according to the strength is
greater, equal to, or smaller than $\sqrt{c}$ . In this context it is quite natural to pose the
following problem. Consider a Hadamard manifold, which is a simply connected
complete Riemannian manifold of nonpositive curvature $-\beta^{2}\leq Riem_{M}\leq-\alpha^{2}$ ,
$\beta\geqq\alpha\geqq 0$ . Are they true that all trajectories are unbounded if the strength is
smaller than $\alpha$ and that all trajectories are bounded if the strength is greater than
$\beta$ ? In this note we shall concerned with this problem on a Hadamard surface.

THEOREM 1. Let $B=f\cdot Vo1_{M}$ be a magnetic field with $|f|\leq\alpha$ on a
Hadamard surface $M$ of curvature $Riem_{M}\leq-\alpha^{2}$ . Then every normal trajectory
for $B$ is unboundedfor both directions.

For Hadamard manifolds we have an important notion of ideal boundary. We
denote by $\overline{M}=M\cup M(\infty)$ the compactification of a Hadamard surface $M$ with its
ideal boundary $M(\infty)$ . For a two-sides unbounded curve $\gamma$ on $M$ , if $\lim_{t\rightarrow\infty}\gamma(r)$

and $\lim_{t\rightarrow\infty}\gamma(r)$ exist in $\overline{M}$ we denote these points by $\gamma(\infty)$ and $\gamma(-\infty)$

respectively, and call that $\gamma$ has points of infinity. If we review the Comtet’s
result from this point of view, it assures the following. On $H^{2}(-c)$ every
trajectory $\gamma$ for a uniform magnetic field $k\cdot Vo1_{H^{2}(- c)}$ with $|k|\leq\sqrt{c}$ has points of

infinity $\gamma(\infty),\gamma(-\infty)$ . When $|k|=\pm\sqrt{c}$ they coincide $\gamma(\infty)=\gamma(-\infty)$ , and they are
distinct when $|k|<\sqrt{c}$ . We show that a similar property holds for general
Hadamard surfaces.

THEOREM 2. Let $B=f\cdot Vo1_{M}$ be a magnetic field with $|f|\leq\alpha$ on a
Hadamard surface $M$ of curvature Riem $M\leq-\alpha^{2}\leq 0$ . Suppose either $f\leq 0$ or
$f\geq 0$ except on a compact subset of M. We then have the following.

(1) Every normal trajectory for $B$ has points of infinity.
(2) If $|f|<\alpha$ except on a compact subset of $M$ , every normal trajectory $hos$

two distinct points at infinity.
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\S 1. A note on $\gamma$ -Jacobi fields.

We shall show our theorems by applying the Rauch’s comparison theorem.
Let $B=f\cdot Vo1_{M}$ be a magnetic field on a oriented surface $M$ . We denote by $\Omega_{0}$

the skew symmetric operator associated with the uniform magnetic field $Vo1_{M}$ .
Clearly the skew symmetric operator associated with $B$ is of the form $\Omega=f\cdot\Omega_{0}$ .
For a normal trajectory 7 for $B$ , we denote by $V_{t}(s)$ the $\gamma$ -Jacobi field along the
geodesic $s\rightarrow\sigma(t,s)=\exp_{\gamma(f)}s\Omega_{0}(\dot{\gamma})$ with $V_{t}(0)=\dot{\gamma}(t)$ . This Jacobi field $V_{t}$ is
perpendicular to $\sigma(t,\cdot)$ and is obtained by the variation $\{\sigma(t+\epsilon,\cdot)\}_{\epsilon}$ of geodesics;
$V_{t}(s)=\frac{\partial}{h}\sigma(t,s)$ .

For the sake of reader’s convenience, we recall the explicit formula for
normal trajectories and $\gamma$ -Jacobi fields for uniform magnetic fields on surfaces of
constant curvature.

EXAMPLE 1. On a Euclidean plane $R^{2}$ , trajectories for the uniform magnetic
fields of strength $k$ satisfy the following equation:

$\gamma(t)=(\frac{1}{k}\cos(kt-\Theta),$ $\frac{1}{k}\sin(kt-6))+(\xi_{1},\xi_{2})$ .

The variation of geodesics is given by

$\sigma(t, s)=(\frac{1}{k}(1-ks)\cos(kt-\Theta),$ $\frac{1}{k}(1-ks)\sin(kt-\Theta))+(\xi_{1},\xi_{2})$

and the $\gamma$ -Jacobi field is

$V_{t}(s)=(1-ks)\dot{\gamma}(t)$ ,

hence it vanishes at $s_{0}=1/k$ . The point $\sigma(t,1/k)=(\xi_{1},\xi_{2})$ is usually called the
center of $\gamma$ .

EXAMPLE 2. On a sphere $S^{2}(c)=\{x=\{(x_{1},x_{2}, x_{3})\in R^{3}|\langle x, x\rangle=x_{1}^{2}+x_{2}^{2}+$

$x_{3}^{2}=1\}$ of sectional curvature $c$ , the trajectory $\gamma$ for the uniform magnetic field
of strength $k$ satisfies the following equation when $\gamma(0)=x\in S^{2}(c),\dot{\gamma}(0)=$

$u\in U_{X}S^{2}(c)\simeq\{\xi\in R^{3}|\langle x,\xi\rangle=0, \langle\xi,\xi\rangle=c\}$ :

$\gamma(r)=\frac{1}{k^{2}+c}(k^{2}+c\cdot\cos\sqrt{k^{2}+c}t)\cdot x$

$+\frac{1}{\sqrt{k^{2}+c}}\sin\sqrt{k^{2}+c}t\cdot u+\frac{k}{k^{2}+c}(1-\cos\sqrt{k^{2}+c}t)\cdot\Omega_{0}(u)$ .
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Since the variation of geodesics is given by

$\sigma(t, s)=\gamma(t)\cos\sqrt{cs}+fk(\dot{\gamma}(t))\cdot\sin\overline{\sqrt{c}}\sqrt{cs}$

1

hence

$V_{l}(s)=\dot{\gamma}(t)(\cos\sqrt{cs}-\frac{k}{\sqrt{c}}\sin\sqrt{c}s)$ .

Therefore it vanishes at $s_{0}=\frac{1}{\sqrt{c}}\tan^{-1\sqrt{c}/k}$ . The point $\sigma(r, s_{0})$ and the trajectory

$\gamma$ can be regard as a pole and a latitude line of this sphere.

EXAMPLE 3. On the hyperbolic plane $H^{2}(-c)=\{x=(x_{0}, x_{1}, x_{2})\in R^{3}|\langle\langle x, x\rangle\rangle=$

$-x_{0}^{2}+x_{1}^{2}+x_{2}^{2}=-1,$ $x_{0}\geq 1$ } of constant sectional curvature $-c$ , the trajectory of
the uniform magnetic field of strength $k$ satisfies the following equation if
$\gamma(0)=x$ and $7(0)=u\in U_{X}H^{2}(-c)\simeq\{\xi\in R^{3}|\langle\langle x,\xi\rangle\rangle=0,\langle\langle\xi,\xi\rangle\rangle=c\}$ :

$\gamma(t)=\frac{1}{c-k^{2}}(-k^{2}+c\cdot\cosh\sqrt{c-k^{2}}t)\cdot x+\frac{1}{\sqrt{c-k^{2}}}\sinh\sqrt{c-k^{2}}t\cdot u$

$+\frac{k}{c-k^{2}}(-1+\cosh\sqrt{c-k^{2}}t)\cdot\Omega_{0}(u)$ , when $0\leq k<\sqrt{c}$ ,

$\gamma(t)=(1+\frac{ct^{2}}{2})x+tu+\frac{\sqrt{c}t^{2}}{2}\Omega_{0}(u)$ , when $k=\sqrt{c}$ ,

$\gamma(r)=\frac{1}{k^{2}-c}(k^{2}-c\cdot\cos\sqrt{k^{2}-c}t)\cdot x+\frac{1}{\sqrt{k^{2}-c}}\sin\sqrt{k^{2}-c}t\cdot u$

$+\frac{k}{k^{2}-c}(1-\cos\sqrt{k^{2}-c}t)\cdot\Omega_{0}(u)$ , when $k>\sqrt{c}$ .

The variation of geodesics is given by

$\sigma(t, s)=\gamma(t)\cosh\sqrt{c}s+\Omega_{0}(\dot{\gamma}(t))\cdot\frac{1}{\sqrt{c}}\sinh\sqrt{c}s$

hence

$V_{l}(s)=\dot{\gamma}(t)(\cosh\sqrt{c}s-\frac{k}{\sqrt{c}}\sinh\sqrt{c}s)$ .

Therefore if $|k|>\sqrt{c}$ the $\gamma$ -Jacobi field vanishes at $s_{0}=\frac{1}{\sqrt{c}}\tanh^{-1\sqrt{c}}/k=$

$\frac{1}{2\sqrt{c}}\log\frac{k+\sqrt{c}}{k-\sqrt{c}}$ . If $|k|\leq\sqrt{c}$ it does not vanish. When $k=\sqrt{c}$ , the case that $\gamma$ is a

horocycle, the point $\gamma(\infty)=\gamma(-)$ on the ideal boundary can be regard as the
vanishing point of the $\gamma$ -Jacobi field; $\lim_{s\rightarrow\infty}V_{t}(s)=0$ .
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\S 2. Proofs.

We are now in the position to prove theorems. Let 7 be a trajectory for the
magnetic field $f\cdot Vo1_{M}$ with $|f|\leq\alpha$ on a Hadamard surface $M$ of curvature
Riem $M\leq-\alpha^{2}$ . We compare the norm of the $\gamma$ -Jacobi field $V_{t}$ with the norm of
$\gamma$ -Jacobi fields for uniform magnetic fields on a hyperbolic space. Since we have

$\nabla_{\frac{\partial\sigma}{\partial}}V_{t}(0)=\frac{\partial}{\partial s}\frac{\partial}{\partial t}\sigma(t,s)|_{s--0}=\frac{\partial}{\partial t}\Omega_{0}(\dot{\gamma}(t))=-f(\gamma(t))\dot{\gamma}(t)$ ,

we get the following estimate by the Rauch’s comparison theorem;

$\Vert V_{t}(s)\Vert\geq\cosh\alpha s-\frac{1}{\alpha}f(\gamma(t))\sinh\alpha s$ .

This gaurantees that if $|f(\gamma(t))|\leq\alpha$ then $V_{t}$ does not vanish anywhere and
$\lim\inf_{s\rightarrow\pm\infty}\exp(-\alpha s)\cdot\Vert V_{t}(s)\Vert\geq\frac{1}{2}(1-|f(\gamma(t))|/\alpha)$ for every $t$ . Since $M$ is
diffeomorphic to an Euclidean plane, we find that the geodesic $\sigma(t_{l},\cdot)$ and $\sigma(r_{2},\cdot)$

do not intersect each other if $t_{l}\neq t_{2}$ .
Let $S_{r}(p)$ denote the geodesic circle $\{x\in M|d(x, p)=r\}$ of radius $r$ centered

at $p$ . If we suppose $\gamma|_{r0,\infty)}$ is tangent to a geodesic circle $S_{r}(\gamma(0))$ at $\gamma(t_{0})$ , then
$\sigma(t_{0},\cdot)$ passes $\gamma(0)$ , which is a contradiction. We therefore have

PROPOSITION. The trajectory rays $\gamma|_{l0,\infty)}$ and $\gamma|_{t\rightarrow,0l}$ cross only once to

every geodesic circle $S_{r}(\gamma(0))$ .

This proposition leads us to Theorem 1. In order to see Theorem 2, we denote
by $u_{t}$ for $t\neq 0$ the unit tangent vector at $p=\gamma(O)$ such that the geodesic
emanating from $p$ with the initial speed $u_{t}$ joins $p$ and $\gamma(t)$ . We set $u_{0}=\dot{\gamma}(0)$ .
Since $\gamma$ is unbounded in both directions, we may treat the case that $f$ is
nonpositive (or nonnegative) on $M$ . We then find the smooth curve $(u_{t})_{t\in \mathfrak{c}0,\infty)}$ on
$U_{p}M\simeq S^{1}$ rotates counterclockwisely if $f\geq 0$ and rotates clockwisely if $f\leq 0$ . If

we suppose $u_{t_{0}}=\pm\zeta t(u_{0})$ for some $t_{0}$ , then $\sigma(0,\cdot)$ passes $\gamma(t_{0})$ . Hence we find

that $\{u_{t}\}_{t}\subset U_{p}M\backslash \{\pm lk(u_{0})\}$ and the limit $u_{\infty}=\lim_{t\rightarrow\infty}u_{l}$ exists. Similarly, we find

that the limit $u_{\rightarrow}=\lim_{t\rightarrow-}u_{t}$ exists. We therefore get that $\gamma$ has points at infinity;

$\gamma(\infty)=\rho_{u_{\infty}}(\infty)$ and $\gamma(-\infty)=\rho_{u_{\infty}}(\infty)$ ,

where $\rho_{v}$ denote the geodesic with $\dot{\rho}(O)=v$ . Now we suppose that $\gamma$ has a single
point at infinity: $\gamma(\infty)=\gamma(-\infty)$ . This means $u_{\infty}=u_{\rightarrow},$ hence $\gamma(\infty)=\sigma(t,\infty)$ for
every $t$ . This can not occur when $ f<\alpha$ . We get the conclusion of Theorem 2.

In view of our proof, we can conclude the following.
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REMARK. Consider a magnetic field $ B=f\cdot Vo1_{M},|f|\leq\alpha$ , on a Hadamard
surface $M$ of curvature Riem $M\leq-\alpha^{2}<0$ .

(1) A trajectory $\gamma$ for $B$ has a single point at infinity $\gamma(\infty)=\gamma(-\infty)$ if and
only if all the geodesic $\sigma(r,\cdot)$ converges to that point $\sigma(t,\infty)=\gamma(\infty)$ .

(2) If a trajectory $\gamma$ has a single point at infinity, then the magnetic angle at
that point is $\pi/2$ . Here the magnetic angle means the angle between the outer
tangent vector of 7 and the outer tangent vector of geodesics $\rho$ with
$p(\infty)=\gamma(\infty)$ (c.f.[2]).

REMARK. Let $ B=k\cdot Vo1_{M},|k|<\alpha$ be a uniform magnetic field on a
Hadamard surface $M$ of bounded negative curvature $-\beta^{2}\leq Riem_{M}\leq-\alpha^{2}<0$ . We
have a positive $\epsilon$ such that the angle $<(\dot{\gamma}(0),\dot{p}(0))$ between a trajectory $\gamma$ for $B$

and a geodesic $\rho$ with $7(0)=p(O)$ and $\gamma(\infty)=p(\infty)$ is always not greater than
$\pi-\epsilon$ .
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