
TSUKUBA J MATH
$Vol20$ No. 1 (1996), 107-113

REPRESENTATION OF NEAR-RING MORITA
CONTEXTS AND RECOGNIZING MORITA

NEAR-RINGS

By

Shoji KYUNO and Stefan VELDSMAN

Abstract. Subject to certain faithfulness requirements in a morita
context for near-rings, a canonical representation thereof is
provided. Necessary and sufficient conditions (using an idempotent
element) on a near-ring are given which determine when the near-
ring is a morita near-ring.

1. Introduction and preliminaries

In [2] we defined a morita context $\Gamma=(L, G, H, R)$ for near-rings as well as the
associated morita near-ring $M_{2}(\Gamma)$ . The examples provided in [3] probably best
motivates the reason for defining and investigating these concepts for near-rings
(for the ring case, they stood the test of time, see for example Amitsur [1] or
Rowen [4]). It is a generalization of one of these examples, which also appeared
in [2], in which we are interested here. In fact, in Section 2 we show, subject to
some mild faithfulness requirements, that every morita context for near-rings can
be embedded in a context of this type.

In the next section we give necessary and sufficient conditions on a near-ring
to ensure that it is a morita near-ring. As is usual with matrices or matrix-like
structures, this involves idempotents. Firstly we recall some relevant definitions
and results from [2]:

All near-rings considered will be right distributive and O-symmetric. Let $R$

and $L$ be near-rings and let $G$ be a group. $G$ is a left L-module if there is a
mapping $L\times G\rightarrow G,$ $(x, g)\vdash\div xg$ such that $(x_{1}+x_{2})g=x_{1}g+x_{2}g$ and
$(x_{1}x_{2})g=x_{1}(x_{2})g$ for all $x,$ $x_{1},$ $x_{2}\in L$ and $g\in G$ . $G$ is a right R-module if there is
a mapping $G\times R\rightarrow G,$ $(gr)\vdash\Rightarrow gr$ such that $(g_{1}+g_{2})r=g_{1}r+g_{2}r$ and
$(gr_{1})r_{2}=g(r_{1}r_{2})$ for all $g,g_{1},$ $g_{2}\in G,$ $r,$ $r_{1},$ $r_{2}\in R$ . $G$ is an L-R-bimodule if it is both a
left L-module and a right R-module for which $(xg)r=x(gr)$ for all
$x\in L,g\in G,$ $r\in R$ . Strictly speaking we should talk about, for example, a left
near-ring L-module $G$ , for even if $L$ is a ring, $G$ is not necessarily a left ring L-
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module. A normal subgroup $K$ of $G,$ $G$ an L-R-bimodule, is an ideal of $G$ if
$x(g+k)-xg\in K$ and $kr\in K$ for all $x\in L,g\in G,k\in K$ , and $r\in R$ .

For each $i,j\in N_{2}$ $:=\{1,2\}$ , let $\Gamma_{jj}$ be a group. The quadruple $\Gamma=(\Gamma_{1I},$ $\Gamma_{12}$ ,
$\Gamma_{21},$ $\Gamma_{22}$ ) is a near-ring morita context if for every $i,$ $j,$ $k\in N_{2}$ , there is a function

$\Gamma_{jk}\times\Gamma_{ki}\rightarrow\Gamma_{p},$ $(x,y)\vdash\div xy$ ,

which satisfies $(a+b)c=ac+bc$ and $(db)e=d(be)$ for all $a,b\in\Gamma_{jk},c\in\Gamma_{ki},d\in\Gamma_{ij}$

and $e\in\Gamma_{km}$ where $i,j,k,m\in N_{2}$ .
It is clear that if $\Gamma=(\Gamma_{1l},\Gamma_{12},\Gamma_{21},\Gamma_{22})$ is a morita context, then so is

$(\Gamma_{22},\Gamma_{21},\Gamma_{12},\Gamma_{||})$ ; the one being called the dual of the other. For $\Delta_{ij}\subseteq\Gamma_{ij}$ and
$\Delta_{jk}\subseteq\Gamma_{k}$ , we define

$\Delta_{ij}\Delta_{jk}$ $:=\{xy|x\in\Delta_{ij},y\in\Delta_{jk}\}$

and

$\Delta_{ij}*\Delta_{jk}$ $:=\{x(z+y)-xz|x\in\Delta_{i/},y\in\Delta_{jk},z\in\Gamma_{jk}\}$ .

When necessary, the additive identity of the group $\Gamma_{ij}$ will be denoted by $0_{ij}$ ,
otherwise we just write $0$ . Since the near-rings $\Gamma_{I1}$ and $\Gamma_{22}$ are O-symmetric,
$x0_{jk}=0_{ik}$ for all $x\in\Gamma_{ij}$ , for all $i,j,k\in N_{2}$ .

For each $i,j\in N_{2}$ let $\Delta_{ij}\subseteq\Gamma_{ij}$ . The quadruple $\Delta=(\Delta_{11},\Delta_{12},\Delta_{21},\Delta_{22})$ is an
ideal of the morita context $\Gamma=(\Gamma_{11},\Gamma_{12},\Gamma_{21},\Gamma_{22})$ if each $\Delta_{ij}$ is a normal subgroup
of $\Gamma_{ij},\Delta_{ij}\Gamma_{jk}\subseteq\Delta_{ik}$ and $\Gamma_{ki}*\Delta_{ij}\subseteq\Delta_{jk}$ for all $i,j,k\in N_{2}$ . In this case we get the
quotient morita context

$\Gamma/\Delta=(\Gamma_{11}/\Delta_{11},\Gamma_{12}/\Delta_{12},\Gamma_{21}/\Delta_{21},\Gamma_{22}/\Delta_{22})$

where the relevant maps are defined as is usual in the universal algebra:
$\Gamma_{ij}/\Delta_{ij}\times\Gamma_{jk}/\Delta_{jk}\rightarrow\Gamma_{ik}/\Delta_{ik}$

$(x+\Delta_{ij},y+\Delta_{jk})\vdash\Rightarrow(x+\Delta_{ij})(y+\Delta_{jk}):=xy+\Delta_{ik}$ .

Let $\Gamma$ and $\Gamma$ ‘ be two morita contexts. A morita context homomorphism from $\Gamma$

to $\Gamma^{\prime}$ is a quadruple $\alpha=(\alpha_{||},\alpha_{12},\alpha_{21},\alpha_{22})$ such that each $\alpha_{ij}$ : $\Gamma_{\ddot{y}}\rightarrow\Gamma_{ij}^{\prime}$ is a group
homomorphism for which $\alpha_{kj}(xy)=\alpha_{ki}(x)\alpha_{ij}(y)$ for $x\in\Gamma_{ki},y\in\Gamma_{ij},i,j,k\in N_{2}$ . We
say $\alpha$ is an embedding (or injective) if each $\alpha_{ij}$ is injective and is surjective if
each $\alpha_{ij}$ is surjective. As usual, if $\alpha$ is both injective and surjective, it is called
an isomorphism. The kernel of $\alpha,$ $ker\alpha$ , is defined by $ker\alpha=(ker\alpha_{11},ker\alpha_{12}$ ,
$ker\alpha_{21},ker\alpha_{22})$ . It is clear that $ker\alpha$ is an ideal of the morita context $\Gamma$ .

For a morita context $\Gamma=(\Gamma_{11},\Gamma_{12},\Gamma_{21},\Gamma_{22})$ , the associated morita near-ring
$M_{2}(\Gamma)$ is the subnear-ring of $M_{0}(\Gamma^{+}):=\{f:\Gamma^{+}\rightarrow\Gamma^{+}|f(0)=0\},\Gamma^{+}$ is the matrix

group $\Gamma^{+}=\left\{\begin{array}{l}\Gamma_{l1}\Gamma_{l2}\\\Gamma_{21}\Gamma_{22}\end{array}\right\}$ , generated by the functions
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$s_{ij}^{X}$ : $\Gamma^{+}\rightarrow\Gamma^{+},s_{ij}^{X}\left\{\begin{array}{l}a_{|l}a_{l2}\\a_{2|}a_{22}\end{array}\right\}=\left\{\begin{array}{l}b_{l|}b_{l2}\\b_{2|}b_{22}\end{array}\right\}$

where $b_{i1}=xa_{j1},$ $b_{i2}=xa_{j2},b_{ic1}=0=b_{i_{C}2}$ ( $i_{c}$ denotes the complement of $i$ in $N_{2}$ ), $ x\in$

$\Gamma_{ij}$ . For later reference, we recall some useful facilities for doing calculations in
$M_{2}(\Gamma)$ :

$PR0P0SIT10N1.1[2]$ .

(1) $s_{ij}^{X}+s_{ij}^{y}=s_{ij}^{x+y}$

(2) $s_{ij}^{X}+s_{km}^{y}=s_{km}^{y}+s_{ij}^{X}$ if $i\neq k$

(3) $s_{ij}^{x}s_{km}^{y}=\{_{0^{xy}ifj\neq k}^{s_{im}ifj=k}$

(here, of course, $0=s_{ij}^{0}=s_{km}^{0}$ )

(4) $s_{ij}^{X}(s_{1k_{1}^{1}}^{y}+s_{2k_{2}}^{\mathcal{Y}2})=s_{ik_{/}^{\mathcal{Y}j}}^{X}$.

(5) For any $U\in M_{2}(\Gamma),$ $U\left\{\begin{array}{l}a_{11}a_{12}\\a_{21}a_{22}\end{array}\right\}=U\left\{\begin{array}{l}a_{1l}0\\a_{21}0\end{array}\right\}+U\left\{\begin{array}{l}0a_{12}\\0a_{22}\end{array}\right\}$

(6) For any $U,$ $V\in M_{2}(\Gamma),$ $U\left\{\begin{array}{l}a0\\b0\end{array}\right\}+V\left\{\begin{array}{l}0c\\0d\end{array}\right\}=V\left\{\begin{array}{l}0c\\0d\end{array}\right\}+U\left\{\begin{array}{l}0a\\b0\end{array}\right\}$

(7) For $k\in N_{2}$ , $C_{k}$ $:=\{s_{1k^{1}}^{X}+s_{2k^{2}}^{X}|x_{l}\in\Gamma_{ik}\}is$ a left invariant subgroup of $M_{2}(\Gamma)$

(8) For $U\in M_{2}(\Gamma),$ $U\left\{\begin{array}{l}a_{11}a_{12}\\a_{2l}a_{22}\end{array}\right\}=\left\{\begin{array}{l}b_{ll}b_{l2}\\b_{21}b_{22}\end{array}\right\}if$ and only if $U(s_{1i}^{a_{1i}}+s_{2i}^{a_{2i}})=s_{1i^{1i}}^{b}+s_{2i}^{b_{2i}}$

for $i=1,2$ . $\blacksquare$

For $U\in M_{2}(\Gamma)$ , it is possible that $U$ may be expressed in more than one way
as a combination of a finite number of sums and products of the functions $s_{i/}^{x}$ . The
weight of $U$ , written as $w(U)$ , is the minimum number of $s_{ij}^{x,}s$ which can appear
in a representation of $U$ .

2. Representation of a morita context

For a near-ring morita context $\Gamma=(L, G, H, R)$ , $G$ is a right R-module. Let

$M_{R}(G):=$ { $f$ : $G\rightarrow G|f(gr)=f(g)r$ for all $g\in G,$ $r\in R$ }

and

$M_{R}(G, R):=$ { $f$ : $G\rightarrow R|f(gr)=f(g)r$ for all $g\in G,$ $r\in R$}.

Both these sets of functions are groups with respect to pointwise addition. The
former is in fact a O-symmetric near-ring with identity. As in [2], Example
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1.2(3),

$\Gamma^{\#}:=(M_{R}(G),G, M_{R}(G, R), R)$

is a morita context for near-rings with respect to:

$M_{R}(G)\times G\rightarrow G,(f,g)\vdash\div fg:=f(g)$

$R\times M_{R}(G, R)\rightarrow M_{R}(G, R),(r,f)\vdash\div\prime f:G\rightarrow R,$ $(\prime f)(g):=\prime f(g)$

$M_{R}(G, R)\times M_{R}(G)\rightarrow M_{R}(G, R),(f,f^{\prime})\vdash\div ff^{\prime}:=f\circ f^{\prime}$

$G\times M_{R}(G, R)\rightarrow M_{R}(G),(g,f)\vdash*gf:G\rightarrow G,(gf)(g^{\prime}):=gf(g^{\prime})$ and

$M_{R}(G, R)\times G\rightarrow R,(f,g)\vdash\div fg;=f(g)$ .

There are natural maps $\alpha_{11}$ : $L\rightarrow M_{R}(G)$ and $\alpha_{21}$ : $H\rightarrow M_{R}(G, R)$ given by

$a_{11}(x)=\alpha_{||}^{X}$ : $G\rightarrow G,\alpha_{11}^{X}(g):=xg$ and

$\alpha_{21}(h)=\alpha_{21}^{h}$ : $G\rightarrow R,a_{21}^{h}(g):=hg$

with

$ker\alpha_{11}=(0:G)_{L}$ $:=\{x\in L|xG=0\}$ and

$ker\alpha_{21}=(0:G)_{H}$ $:=\{h\in H|hG=0\}$ .

If we let $a_{12}$ : $G\rightarrow G$ and $\alpha_{22}$ : $R\rightarrow R$ be the identity mappings, then
$\alpha=(a_{11},\alpha_{12},\alpha_{21},\alpha_{22}):\Gamma\rightarrow\Gamma^{\#}$ is a morita context homomorphism. Hence we have

PROPOSITION 2.1. $\alpha:\Gamma\rightarrow\Gamma^{\#}$ is an embedding if and only if $(0;G)_{L}=0$ and
$(0:G)_{H}=0$ . $\blacksquare$

$PROPOSlT10N2.2$ . $\alpha:\Gamma\rightarrow\Gamma^{\#}$ is an isomorphism if and only if the following
conditions are satisfied:
(i) $L$ has an identity
(ii) $(0:G)_{L}=0$ and $(0:G)_{H}=0$

$(iii)For$ every $f\in M_{R}(G, R)$ , there is an $h\in H$ (depending on $f$) such that $hg=$

$f(g)$ for all $g\in G$ .
(iv) For every $f\in M_{R}(G)$ , there is an $x\in L$ (depending on $f$) such that $xg=f(g)$

for all $g\in G$ .

PROOF. If $\alpha$ is an isomorphism, then $\alpha_{11}$ : $L\rightarrow M_{R}(G)$ is an isomorphism.
Since $M_{R}(G)$ has an identity, so does $L$ . The remainder of the proof follows from
Proposition 2.1 and the fact that $\alpha_{11}$ : $L\rightarrow M_{R}(G)$ is surjective iff for every
$f\in M_{R}(G)$ there is an $x\in L$ such that $\alpha_{||}^{X}=f$ , i.e. $xg=f(g)$ for all $g\in G$ . A
similar argument takes care of (iii). $\blacksquare$
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The conditions in Proposition 2.2 can be realized if, for example , $L$

has an identity, the right (respt. left) L-module $H$ (respt. $G$) is unital and
$L=GH:=\{gh|g\in G,h\in H\}.Indeed$ , if 1 is the identity of $L$ , then $1=g_{0}h_{0}$ for
some $g_{0}\in G,h_{0}\in H$ . If $xG=0(x\in L)$ , then $x=x1=(xg_{0})h_{0}=0$ ; hence
$(0:G)_{L}=0$ . If $hG=0(h\in H)$ , then $h=h1=(hg_{0})h_{0}=0$ and thus $(0:G)_{H}=0$ . For
$f\in M_{R}(G, R)$ , let $f(g_{0})=r_{0}$ .Then $x:=r_{0}h_{0}\in H$ and for every $g\in G,f(g)=f(1g)=$

$f(g_{0}(h_{0}g))=f(g_{0})(h_{0}g)=r_{0}(h_{0}g)=(r_{0}h_{0})g=xg$ . A similar argument shows that
(iv) is also satisfied.

Not every morita context may have the faithfulness required in Proposition
2.1, but it has at least a homomorphic image which does. For the morita context
$\Gamma=(L, G, H, R)=(\Gamma_{11},\Gamma_{12},\Gamma_{21},\Gamma_{22})$ let $A_{11}=(0:G)_{L},$ $A_{12}=0,$ $\Delta_{21}=(0:G)_{H}$ and
$\Delta_{22}=0$ . Then $\Delta=(\Delta_{11},\Delta_{12},\Delta_{21},\Delta_{22})$ is an ideal of $\Gamma$ .
Let $\beta:\Gamma\rightarrow\Gamma/\Delta:=(\Gamma_{11}/A_{11},\Gamma_{12}/\Delta_{12},\Gamma_{21}/A_{21},\Gamma_{22}/\Delta_{22})$ be the canonical morita context
homomorphism. Then
$(0;\Gamma_{12}/\Delta_{12})_{\Gamma_{11}/\Delta_{11}}=0$ and $(0;\Gamma_{12}/\Delta_{12})_{\Gamma_{21}/\Delta_{21}}=0$ .

3. Recognizing morita near-rings

Let $A$ be a near-ring with an identity 1. For an idempotent $e\in A$ , let $e_{1}=e$

and let $e_{2}=1-e$ . For $i=1,2$ , let $D_{i}=\{e_{1}ae_{i}+e_{2}be_{j}|a,b\in A\}$ and let $S$ be the
subnear-ring of $A$ generated by $\{e_{j}ae_{j}|1\leq i,j\leq 2,a\in A\}$ .

PROPOSITION 3.1. Let $A$ be a near-ring with identity. Then $A$ is isomorphic to
a morita near-ring $M_{2}(\Gamma)$ for some morita context $\Gamma=(\Gamma_{11},\Gamma_{12},\Gamma_{21},\Gamma_{22})$ where

$\Gamma_{11}$ and $\Gamma_{22}$ are near-rings with identity (all modules in $\Gamma$ are unital) if and only
$lfA$ contains a distributive idempotent $e$ for which the following holds:

(i) $ea+(1- e)b=(1- e)b+ea$ for all $a,$ $b\in A$

(ii) $(0:D_{1})_{A}\cap(0;D_{2})_{A}=0$

(iii) $S=A$ .

PROOF. Suppose $A\cong M_{2}(\Gamma)$ . Let I be the identity of $M_{2}(\Gamma)$ . Then $I=s_{11}^{1}+s_{22}^{1}$

(we use 1 to denote both the identity of $\Gamma_{11}$ and $\Gamma_{22}$ ). Let $e=e_{1}=s_{11}^{1}$ . Then $e$ is a
distributive idempotent and $s_{11}^{1}U+(I-s_{1l}^{1})V=s_{11}^{1}U+s_{22}^{1}V=s_{22}^{1}V+s_{11}^{1}U=(I-s_{11}^{1})V+$

$s_{11}^{1}U$ for all $U,$ $V\in M_{2}(\Gamma)$ . Using properties 1.1 (7) and (4), we have

$D_{j}=\{s_{11}^{1}Us_{ii}^{1}+s_{22}^{1}Vs_{ii}^{1}|U, V\in M_{2}(\Gamma)\}$

$=\{s_{1i}^{a}\downarrow+s_{2i}^{a_{2}}|a_{j}\in\Gamma_{;j}\}$ for $i=1,2$ .

Hence, if $UD_{i}=0$ for $i=1,2$ , then
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$U\left\{\begin{array}{l}a_{||}a_{|2}\\a_{2|}a_{22}\end{array}\right\}=U\left\{\begin{array}{l}a_{ll}0\\a_{2|}0\end{array}\right\}+U\left\{\begin{array}{l}0a_{|2}\\0a_{22}\end{array}\right\}=U(s_{||^{||}}^{tl}+s_{21^{21}}^{\ell l})\left\{\begin{array}{l}l0\\01\end{array}\right\}+U(s_{14^{2}}^{a}+s_{2}^{a}t^{2})\left\{\begin{array}{l}l0\\01\end{array}\right\}=0$

for all $a_{jk}\in\Gamma_{jk},j,k\in N_{2}$ . Thus $U=0$ .
Finally, $\{s_{ii}^{I}Us_{j}^{I}|U\in M_{2}(\Gamma),i,j\in N_{2}\}=\{s_{ij}^{a}|a\in\Gamma_{i/}.,i,j\in N_{2}\}$ and so $S=M_{2}(\Gamma)$ .

Conversely, let $e_{1}=e$ be a distributive idempotent of $A$ which satisfies conditions
(i), (ii) and (iii). Then $e_{2};=1-e$ is idempotent. Furthermore, it is easily seen that
$e_{2}$ is distributive by using condition (i). Note also $e_{1}e_{2}=0=e_{2}e_{1}$ . For each
$i,j\in N_{2}$ , let $\Gamma_{ij}=e_{j}Ae_{j}$ . Clearly $\Gamma_{i/}$ is a subgroup of $A$ and if the mappings

$\Gamma_{i_{\dot{j}}}\times\Gamma_{jk}\rightarrow\Gamma_{ik}$ are defined by $(x,y)|\rightarrow xy$ ,

we obtain a near-ring morita context $\Gamma=(\Gamma_{11},\Gamma_{12},\Gamma_{21},\Gamma_{22})$ . Each near-ring $\Gamma_{ii}$

has an identity $e_{j}$ and all $\Gamma_{ii}$ -modules (left or right) are unital, $i=1,2$ . Define
$\theta:M_{2}(\Gamma)\rightarrow A=S$ by $\theta(U)=u$ where $u\in S$ is obtained from $U\in M_{2}(\Gamma)by$ replacing
each $s_{ij}^{X}$ present in $U$ by $x$ . At the outset we have to verify that $\theta$ is well-defined.
We first need two remarks:
(1) If $x\in\Gamma_{i/}$. $=e_{j}Ae_{j}$ , then $x=e_{i}ae_{j}$ for some $a\in A$ and thus $x=e_{j}xe_{j}$ .
(2) If $U\in M_{2}(\Gamma)$ and $U(s_{1i}^{a_{1}}+s_{2i}^{a_{2}})=s_{1i}^{b_{1}}+s_{2^{2}}^{b}$ , then $u(a_{1}+a_{2})=b_{1}+b_{2}$ :We will
substantiate this claim by induction on $w(U)$ . If $w(U)=1$ , then $U=s_{j^{X}k}$ for some
$x\in\Gamma_{jk}$ . Thus $\theta(U)=u=x$ and $U(s_{1i}^{a_{1}}+s_{2i}^{a_{2}})=s_{j^{X}k}(s_{1i}^{a_{1}}+s_{2j}^{a_{2}})=s_{i}^{xa_{k}}$ . Now $u(a_{1}+a_{2})=$

$x(a_{1}+a_{2})=e_{j}xe_{k}(e_{1}a_{1}e_{i}+e_{2}a_{2}e_{j})=e_{j}xe_{k}e_{k}a_{k}e_{j}=xa_{k}$ . Suppose the result holds for
all $V\in M_{2}(\Gamma)$ with $w(V)<m,m\geq 2$ . If $w(U)=m$ , then $U=U_{1}+U_{2}$ or $U=U_{1}U_{2}$

where $U_{1}U_{2}\in M_{2}(\Gamma)$ with $w(U_{j})<m,i=1,2$ . Suppose $U_{1}(s_{1i}^{a_{1}}+s_{2}^{a}2)=(s_{1i}^{b_{1}}+s_{2i}^{b_{2}})$ ,

$U_{2}(s_{1i}^{a_{1}}+s_{2i}^{a_{2}})=(s_{1i^{1}}^{c}+s_{2i}^{\iota_{2}})$ and $U_{1}(s_{1i^{1}}^{c}+s_{2i}^{\mathfrak{c}_{2}})=(s_{1j}^{d_{1}}+s_{2i}^{d_{2}})$ . $IfU=U_{1}+U_{2}$ then $U(s_{1i}^{a_{1}}+$

$s_{2i}^{a_{2}})=s_{1i}^{b_{1^{+C}1}}+s_{2i}^{b_{2^{+\mathfrak{c}}2}}$ and $u(a_{1}+a_{2})=(u_{1}+u_{2})(a_{1}+a_{2})=b_{1}+b_{2}+c_{1}+c_{2}=b_{1}+c_{1}+b_{2}+$

$ c_{2}\sin$ ce $b_{2}+c_{1}=e_{2}b_{2}e_{j}+e_{I}c_{1}e_{j}=e_{1}c_{1}e_{j}+e_{2}b_{2}e_{j}=c_{1}+b_{2}$ . I $fU=U_{1}U_{2},thenU(s_{1i}^{a_{1}}+s_{2i}^{a_{2}})$

$=s_{1i}^{d_{I}}+s_{2i}^{d_{2}}$ and $u(a_{1}+a_{2})=u_{1}u_{2}(a_{1}+a_{2})=u_{1}(c_{1}+c_{2})=d_{1}+d_{2}$ .
We now show that $\theta$ is well-defined. Suppose $U,$ $V\in M_{2}(\Gamma)$ with $U=V$ . For

$i,j\in N_{2}$ , let $a_{ij}\in\Gamma_{i/}$ . Suppose

$U\left\{\begin{array}{l}a_{|l}a_{l2}\\a_{2|}a_{22}\end{array}\right\}=V\left\{\begin{array}{l}a_{ll}a_{l2}\\a_{2|}a_{22}\end{array}\right\}=\left\{\begin{array}{l}b_{l|}b_{|2}\\b_{21}b_{22}\end{array}\right\}$ .

By property 1.1 (8),

$U(s_{1i}^{a_{1}}+s_{2i}^{a_{2}})=V(s_{1i^{1}}^{a}+s_{2i}^{a_{2}})=s_{1i}^{b_{1}}+s_{2i}^{b_{2}}fori\in N_{2}$ .

From (2) above,

$u(a_{1i}+a_{2i})=v(a_{1i}+a_{2i})$ , i.e.

$(u- v)(e_{1}a_{1j}e_{j}+e_{2}a_{2i}e_{j})=(u- v)(a_{1i}+a_{2i})=0$
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and so $u- v\in(O:D_{1})_{A}\cap(0:D_{2})_{A}=0.Henceu=v$ and $\theta(U)=\theta(V)$ . Thus $\theta$ is

well-defined and clearly it is a near-ring homomorphism. For any $u\in A=S,$ $u$ is a
finite combination of sums and products of $e_{i}ae_{j}\prime s,a\in A$ . By replacing each $e_{i}ae_{j}$

in $u$ by $s_{i/}^{e_{i}ae_{j}}$ we obtain an element $U$ of $M_{2}(\Gamma)$ for which $\theta(U)=u$ . Thus $\theta$ is

surjective. Finally we show that $\theta$ is injective. Suppose $u=\theta(U)=0$ for

$U\in M_{2}(\Gamma)$ . For all $i,j\in N_{2}$ and $a_{ij}\in\Gamma_{ij}$ if $U\left\{\begin{array}{l}a_{l1}a_{l2}\\a_{21}a_{22}\end{array}\right\}=\left\{\begin{array}{l}b_{ll}b_{12}\\b_{2l}b_{22}\end{array}\right\}$ , then

$U(s_{1i}^{a_{1i}}+s_{2i}^{a_{2i}})=s_{1i}^{b_{1i}}+s_{2i}^{b_{2i}}$ and so $0=u(a_{1i}+a_{2i})=b_{1i}+b_{2i}$ for $i\in N_{2}$ . Thus for all
$i,j\in N_{2},0=e_{j}(b_{1i}+b_{2l})=e_{j}bfi=b_{ji}$ , hence $U=0$ . $\blacksquare$

Let us remark that if $A$ is a ring, then any idempotent $e\in A$ satisfies the

conditions of the previous result and $A$ is isomorphic to the morita ring

$\left\{\begin{array}{lllll}eAe & & eA(1- & e) & \\(1- & e)Ae & (1- & e)A(1- & e)\end{array}\right\}$ ; of course,

$A=eAe+eA(1-e)+(1-e)Ae+(1-e)A(1-e)$
is just the Peirce decomposition of $A$ .
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