GRADED COALGEBRAS
 AND MORITA-TAKEUCHI CONTEXTS

By
S. Dãscălescu, C. NĂstãsescu, S. Raianu
and F. Van Oystaeyen

0. Introduction

Viewing a G-graded k-coalgebra over the field k as a right $k G$-comodule coalgebra it is possible to use a Hopf algebraic approach to the study of coalgebras graded by an arbitrary group that was started in [NT].

Let $C=\oplus_{g \in G} C_{g}$ be a G-graded coalgebra. The graded C-comodules may be viewed as comodules over the smash product $C \rtimes k G$, the general definition of which was given in [M]. Coalgebras graded by an arbitrary group have been considered in [FM] in order to introduce the notion of G-graded Hopf algebras. On the other hand, M. Takeuchi introduced in [T] the sets of preequivalence data connecting categories of comodules over two coalgebras (we call such a set a Morita-Takeuchi context). The main result of this note is a coalgebra version of a result established by M. Cohen, S. Montgomery in [CM] for group-graded rings: for a graded coalgebra C the coalgebras C_{1} and $C \rtimes k G$ are connected by a Morita-Takeuchi context in which one of the structure maps is injective. Most of the results in this note are consequences of the foregoing. As a first application we find that a coalgebra C is strongly graded if and only if the other structure map of the context is also injective. The final section provides analogues of the Cohen-Montgomery duality theorems: if C is a coalgebra graded by the flnite group G of order n, then G acts on the smash coproduct as a group of automorphisms of coalgebras and $(C \rtimes k G) \rtimes k G^{*}$ is coalgebra isomorphic to the comatrix coalgebra $M^{c}(n, C)$. If G is a finite group of order n, acting on the coalgebra D as a group of coalgebra automorphisms, then the smash coproduct $D \rtimes k G^{*}$ is strongly graded by G and moreover: $\left(D \rtimes k G^{*}\right) \rtimes k G \cong M^{c}(n, D)$. The second duality theorem is again a direct consequence of the Morita-Takeuchi context mentioned above.

[^0]
1. Graded Coalgebras and the Smash Coproduct

Throughout this paper k is a field. We use Sweedler's "sigma" notation [S] and further notation and conventions in [T], [D]. Let G be a group with identity element 1 . Recall that a k-coalgebra (C, Δ, ε) is graded by G if C is a direct sum of k-subspaces, $C=\bigoplus_{\sigma \in G} C_{\sigma}$, such that $\Delta\left(C_{\sigma}\right) \subset \sum_{x y=\sigma} C_{x} \otimes C_{y}$, for all $\sigma \in G$, and $\varepsilon\left(C_{\sigma}\right)=0$ for $\sigma \neq 1$. A right C-comodule M with structure map $\rho: M \rightarrow M \otimes C$ is a graded C-comodule if $M=\bigoplus_{\sigma \in G} M_{\sigma}$ as k-subspaces, such that $\rho\left(M_{\sigma}\right) \subset \sum_{x y=\sigma} M_{x} \otimes C_{y}$ for all $\sigma \in G$. For graded right C-comodules M and N a graded comodule morphism is a C-comodule morphism $f: M \rightarrow N$ such that $f\left(M_{\sigma}\right)$ $\subset N_{\sigma}$ for $\sigma \in G$. The category of graded right C-comodules, denoted by gr^{C}, is a Grothendieck category, cf. [NT]. The main purpose of this section is to develop a Hopf algebraic approach to the graded theory. First we recall, see [S] or [A], some deflnitions.
1.1. Definition. Let H be a bialgebra over the field k, A a k-algebra and $\left(C, \Delta_{C}, \varepsilon_{C}\right)$ a k-coalgebra. Then:
i. A is said to be a (right) H-module algebra if A is a right H-module such that $(a b) \cdot h=\sum\left(a \cdot h_{1}\right)\left(b \cdot h_{2}\right)$ and $1_{A} \cdot h=\varepsilon(h) 1_{A}$ for any $h \in H$, and $a, b \in A$.
ii. C is a right H-comodule coalgebra if C is an H-comodule by $c \mapsto \sum c_{(0)}$ $\otimes c_{(1)}$ such that we have:

$$
\begin{aligned}
\sum c_{1(0)} \otimes c_{2(0)} \otimes c_{1(1)} c_{2(1)} & =\sum c_{(0) 1} \otimes c_{(0) 2} \otimes c_{1(1)}, \\
\sum \varepsilon_{C}\left(c_{(0)}\right) c_{(1)} & =\varepsilon_{C}(c) 1_{H} \quad \text { for all } c \in C
\end{aligned}
$$

iii. C is a (left) H-module coalgebra if C is a left H-module such that: $\Delta_{C}(h \cdot c)=\Sigma h_{1} \cdot c_{1} \otimes h_{2} \cdot c_{2}, \varepsilon_{C}(h \cdot c)=\varepsilon_{H}(h) \varepsilon_{C}(c)$ for $c \in C, h \in H$.
In the sequel we shall not refer to "right" of "left" as in the above definitions, the choice of "sides" shall remain fixed throughout.

For any group G the group algebra $k G$ has a bialgebra structure defined by $\Delta(g)=g \otimes g$ and $\varepsilon(g)=1$ for all $g \in G$. The next result establishes the connection between G-graded coalgebras and $k G$-comodule coalgebras.
1.2. Proposition. A coalgebra C graded by G many in a natural way be viewed as a $k G$-comodule coalgebra; conversely every $k G$-comodule coalgebra is a G-graded coalgebra.

Proof. For a G-graded C the map $\rho: C \rightarrow C \otimes k G, c \mapsto c \otimes \sigma$ for all $\sigma \in G$,
$c \in C_{\sigma}$, defines a $k G$-comodule coalgebra structure on C. Conversely, if C is a $k G$-comodule coalgebra then any $c \in C$ has a unique presentation $\rho(c)=$ $\sum_{g \in G} c_{g} \otimes g$. Put $C_{g}=\left\{c_{g}, c \in C\right\}, g \in G ; C_{g}$ is a k-subspace of C. From $(I \otimes \varepsilon) \rho(c)=c \otimes 1$ we derive that $c=\Sigma_{g \in G} c_{g}$ and $C=\Sigma_{g \in G} C_{g}$. For $c \in C, g \in G$ we have that $c \in C_{g}$ if and only if $\rho(c)=c \otimes g$. If $\sum_{g \in G} c_{g}=0$ for some $c_{g} \in C_{g}$ then by applying ρ we obtain $\Sigma c_{g} \otimes g=0$ or $c_{g}=0$ for all $g \in G$. Therefore $C=\bigoplus_{g \in G} C_{g}$. Consider $c \in C_{\sigma}$ and $\Delta(c)=\Sigma c_{1} \otimes c_{2}$ with homogeneous c_{1} 's and c_{2} 's. From 1.1 we retain that $\sum c_{1} \otimes c_{2} \otimes \sigma$ equals $\sum c_{1} \otimes c_{2} \otimes \operatorname{deg} c_{1} \cdot \operatorname{deg} c_{2}$, or in other words $\Delta(c)$ is the sum of all terms with $\sigma=\operatorname{deg} c_{1} \cdot \operatorname{deg} c_{2}$, establishing that C is a G-graded coalgebra.

We say that the group G acts on the coalgebra D whenever there is a group morphism $\varphi: G \rightarrow$ Aut (D), the latter denoting the set of all coalgebra automorphisms of D with group structure defined as follows: if $f, g \in \operatorname{Aut}(D)$, $f \cdot g=f \circ g$.
1.3. Proposition. If G acts on the coalgebra D then D has the structure of a $k G$-module coalgebra; conversely any $k G$-module coalgebra has a natural G action.

Proof. Suppose that $\varphi: G \rightarrow$ Aut (D) determines that G acts on D then the map $k G \otimes D \rightarrow D, g \otimes d \mapsto \varphi(g)(d)$ defines a $k G$-module structure on D as desired. Conversely, if D is a $k G$-module coalgebra then we may define a G action on D by $\varphi: G \rightarrow \operatorname{Aut}(D), \varphi(g)(d)=g \cdot d$ for $g \in G, d \in D$.
1.4. Remark. Let, for a finite group $G, k G^{*}$ be the dual bialgebra for the finite dimensional bialgebra $k G$. If the finite group G acts on the coalgebra D then D is also a $k G^{*}$-comodule coalgebra. If $\left\{p_{g}, g \in G\right\}$ is the dual basis of $\{g, g \in G\}$ then $\left\{p_{g}, g \in G\right\}$ is a system of orthogonal idempotents of $k G^{*}$. The coalgebra structure of $k G^{*}$ is given in the usual way by : $\Delta\left(p_{g}\right)=\sum_{x y=g} p_{x} \otimes p_{y}$, $\varepsilon\left(p_{g}\right)=\delta_{g, 1}$.

The right comodule structure of D is given by $\rho: D \rightarrow D \otimes k G^{*}, \rho(d)=$ $\sum_{g \in G}(g \cdot d) \otimes p_{g}$.

In the sequel, the smash coproduct plays a central part. For a bialgebra H and an H-module coalgebra C the smash-coproduct $C \rtimes H$ is defined as the k-space $C \otimes H$ with $\Delta: C \rtimes H \rightarrow(C \rtimes H) \otimes(C \rtimes H)$ given by $\Delta(c \rtimes h)=\Sigma\left(c_{1} \rtimes c_{2(1)} \cdot h_{2}\right)$ $\otimes\left(c_{2(0)} \rtimes h_{1}\right)$, and $\varepsilon: C \rtimes H \rightarrow k$ given by $\varepsilon(c \rtimes h)=\varepsilon_{C}(c) \varepsilon_{H}(h)$.

1.5. Proposition. $C \rtimes H$ with Δ and ε as above is a coalgebra.

Proof. This is just the right hand version of Theorem 2.11 of [M], a proof is given in Proposition 2.3 of [FM].

The smash coproduct is useful in general but has particular interest in some special cases frequently considered:

i. Graded smash coproduct

If the coalgebra C is graded by G then the coalgebra structure of $C \rtimes k G$ is given by : $\Delta(c \rtimes g)=\sum\left(c_{1} \rtimes \operatorname{deg} c_{2} \cdot g\right) \otimes\left(c_{2} \otimes g\right)$, for any homogeneous $c \in C$ and $g \in G$ (where we assumed, as we will always do in the sequel, that we have used the homogeneous decomposition $\Sigma c_{1} \otimes c_{2}$), whereas for all $c \in C, g \in G$ we have that $\varepsilon(c \rtimes g)=\varepsilon_{C}(c)$.
ii. If the finite group G acts on the coalgebra D, i.e. D is a $k G^{*}$-comodule coalgebra, then the coalgebra structure of $D \rtimes k G^{*}$ is given by :

$$
\Delta\left(d \rtimes p_{g}\right)=\sum_{u v=g}\left(d_{1} \rtimes p_{v}\right) \otimes\left(v \cdot d_{2} \rtimes p_{u}\right),
$$

and

$$
\varepsilon\left(d \rtimes p_{g}\right)=\varepsilon_{D}(d) \delta_{g .1}, \quad \text { for all } d \in D, g \in G .
$$

Note that the graded smash coproduct appears in a natural way when one studies graded comodules. Recall that a k-Abelian category is k-equivalent to a category of comodules \mathscr{M}^{c} over some coalgebra C if and only it it is of finite type (Theorem 5.1 of [T]). The coalgebra giving the category as a category of comodules may, in general, be a somewhat mystical object. However for a G-graded coalgebra C the k-Abelian category of graded comodules, say gr^{C}, is of finite type and it is therefore, equivalent to a category of comodules over the coalgebra given in the following.

Theorem 1.6. If C is a coalgebra graded by G then the categories $g r^{C}$ and and $\mathscr{M}^{C \rtimes k G}$ are isomorphic.

Proof. Take $M \in \operatorname{gr}^{C}$ with $\rho: M \rightarrow M \otimes C, \rho(m)=\Sigma m_{0} \otimes m_{1}$. We make M into a right $C \ngtr k G$-comodule by defining $\rho^{\prime}: M \rightarrow M \otimes(C \rtimes K g), m \mapsto \Sigma m_{0} \otimes$ $\left(m_{1} \rtimes(\operatorname{deg} m)^{-1}\right)$ for homogeneous $m \in M$. A morphism $f: M \rightarrow N$ of G-graded C comodules is also a morphism of $C \ngtr k G$-comodules and we have defined a functor $T: \mathrm{gr}^{C} \rightarrow \mathcal{M}^{C \times k G}$.

Conversely, starting from an $M \in \mathscr{M}^{C \times k G}$ we obtain on M a right C-comodule
structure and a right $k G$-comodule structure because the linear maps $\alpha: C \rtimes k G$ $\rightarrow C, c \rtimes g \mapsto c$, and $\beta: C \rtimes k G \rightarrow k G, c \rtimes g \mapsto \varepsilon_{C}(c) g^{-1}$ for $c \in C, g \in G$, are coalgebra morphisms. As in the proof of Proposition 1.2 it follows that $M=\oplus_{g \in G} M_{g}$ and a straightforward verification learns that M becomes a graded C-comodule. Now, for $M, N \in \mathscr{M}^{C \rtimes k G}$ and a morphism of $C \rtimes k G$-comodules $f: M \rightarrow N$ it follows that f is also a morphism of G-graded C-comodules when M and N are viewed as such. This defines the functors $S: \mathscr{M}^{C \times k G} \rightarrow \mathrm{gr}^{C}$ and it is easily seen that T and S are isomorphisms of categories and inverse to each other.
1.7. Remarks. 1. If the coalgebra C is graded by a finite group G, then the dual algebra C^{*} is graded by G with $C_{g}^{*}=\left\{f \in C^{*}, f\left(C_{x}\right)=0\right.$ for all $\left.x \neq g\right\}$. Hence C^{*} is a $k G^{*}$-module algebra and we may construct the smash product $C^{*} \# k G^{*}$ with multiplication given by : $\left(c^{*} \# h^{*}\right)\left(d^{*} \# g^{*}\right)=\Sigma\left(c^{*}\left(d^{*} \cdot h_{1}^{*}\right) \# g^{*} h_{2}^{*}\right.$, for all $c^{*}, d^{*} \in C$. and $h^{*}, g^{*} \in k G^{*}$. It is easy to see that the algebra $C^{*} \# k G^{*}$ is algebra-isomorphic to the dual algebra of $C \rtimes k G$.
2. If G acts on the coalgebra D via $\varphi: G \rightarrow \operatorname{Aut}(D)$, then the group morphism $\bar{\varphi}: G \rightarrow \operatorname{Aut}\left(D^{*}\right)$ given by $\bar{\varphi}(g)\left(d^{*}\right)=d^{*} \varphi(g)$ for $g \in G, d^{*} \in D^{*}$, defines an action of G on the algebra D^{*}. Note that $\operatorname{Aut}\left(D^{*}\right)$ is a group with respect to $\sigma \cdot \tau=\tau \circ \sigma$ for $\sigma, \tau \in \operatorname{Aut}\left(D^{*}\right)$. Thus D is a $k G$-module coalgebra and D^{*} is a $k G$-module algebra. If G is finite then D is a $k G^{*}$-comodule coalgebra and the dual algebra of the smash coproduct $D \rtimes k G^{*}$ is isomorphic to the skew group ring $D^{*} \# k G$.

2. The Morita-Takeuchi Context Associated to a Graded Coalgebra

The Morita-theorems for categories of comodules have been proved by M. Takeuchi in [T]; we call a set of pre-equivalence data as in [T] a MoritaTakeuchi context.
2.1. Definition. A Morita-Takeuchi context ($C, D,{ }_{c} P_{D},{ }_{D} Q_{C}, f, g$) consists of coalgebras C and D, bicomodules ${ }_{C} P_{D},{ }_{D} Q_{C}$ and bicolinear maps $f: C \rightarrow P \square_{D} Q$, $g: D \rightarrow Q \square_{C} P$ making the following diagrams commute:

The context is called strict if f and g are injective, hence isomorphisms. In
this case the categories \mathscr{M}^{C} and \mathscr{M}^{D} of comodules over C, resp. D, are equivalent categories.

The following remark extends a corresponding one for Morita contexts given in [CRW].
2.2. Proposition. Let $\left(C, D,{ }_{c} P_{D},{ }_{D} Q_{C}, f, g\right)$ be a Morita-Takeuchi context such that f is injective. Then \mathscr{M}^{C} is equivalent to a quotient category of \mathscr{M}^{D}.

Proof. Theorem 2.5 of [T] yields that f is an isomorphism and the exact functor $S=-\square_{D} Q: \mathscr{M}^{D} \rightarrow \mathscr{M}^{C}$, has a right adjoint $T=-\square_{c} P: \mathscr{M}^{C} \rightarrow \mathcal{M}^{D}$ such that the natural transformation $f^{-1}: S T \rightarrow I d$ is an isomorphism. By a result of P. Gabriel (cf. [G] or Proposition 15.18 of [F]) we have: $\operatorname{ker} S=\left\{X \in \mathscr{M}^{D}\right.$, $\left.X \square_{D} Q=0\right\}$ is a localizing subcategory of \mathscr{S}^{D} and S induces an equivalence from the quotient category $\mathcal{M} / \operatorname{Ker} S$ to \mathscr{M}^{C}.
2.3. Corollary. Let $\left(C, D,{ }_{c} P_{D},{ }_{D} Q_{C}, f, g\right)$ be a Morita-Takeuchi context such that f is injective then g is injective (i.e. the context is strict) if and only if ${ }_{D} Q$ is faithfully coflat.

Proof. By Proposition 2.2 the injectivity of g is equivalent to S being an equivalence, again equivalent to $\operatorname{Ker} S=\{0\}$ or ${ }_{D} Q$ being faithfully coflat.

Before establishing the main result of this section let us point out that there is a natural way to associate a graded coalgebra to a given Morita-Takeuchi context. Indeed, if we have a Morita-Takeuchi context ($C, D,{ }_{c} P_{D},{ }_{D} Q_{C}, f, g$) let $x \mapsto \sum x_{-1} \otimes x_{0}$, resp. $x \mapsto \sum x_{(0)} \otimes x_{(1)}$, be the left, resp. right, comodule structure of P, resp. Q. The image of $u \in C$ (resp. D) under f (resp. g) in $P \square_{D} Q$ (resp. $Q \square_{C} P$) will be denoted by $\Sigma f(u)_{1} \otimes f(u)_{2}$. (resp. $\left.\Sigma g(u)_{1} \otimes g(u)_{2}\right)$.

Put $\Gamma=\left(\begin{array}{ll}C & P \\ Q & D\end{array}\right)=\left\{\left(\begin{array}{ll}c & p \\ q & d\end{array}\right), c \in C, d \in D, p \in P, q \in Q\right\}$.
We make Γ into a coalgebra by defining $\Delta: \Gamma \rightarrow \Gamma \otimes \Gamma$ as follows:

$$
\begin{aligned}
& \Delta\left(\begin{array}{ll}
c & 0 \\
0 & 0
\end{array}\right)=\Sigma\left(\begin{array}{ll}
c_{1} & 0 \\
0 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
c_{2} & 0 \\
0 & 0
\end{array}\right)+\Sigma\left(\begin{array}{ll}
0 & f(c)_{1} \\
0 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 0 \\
f(c)_{2} & 0
\end{array}\right) \\
& \Delta\left(\begin{array}{ll}
0 & 0 \\
0 & d
\end{array}\right)=\Sigma\left(\begin{array}{ll}
0 & 0 \\
0 & d_{1}
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 0 \\
d_{2} & 0
\end{array}\right)+\Sigma\left(\begin{array}{ll}
0 & 0 \\
g(d)_{1} & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & g(d)_{2} \\
0 & 0
\end{array}\right) \\
& \Delta\left(\begin{array}{ll}
0 & p \\
0 & 0
\end{array}\right)=\Sigma\left(\begin{array}{ll}
p_{-1} & 0 \\
0 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & p_{0} \\
0 & 0
\end{array}\right)+\Sigma\left(\begin{array}{ll}
0 & p_{(0)} \\
0 & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 0 \\
0 & p_{(1)}
\end{array}\right) \\
& \Delta\left(\begin{array}{ll}
0 & 0 \\
q & 0
\end{array}\right)=\Sigma\left(\begin{array}{ll}
0 & 0 \\
0 & q_{-1}
\end{array}\right) \otimes\left(\begin{array}{ll}
0 & 0 \\
q_{0} & 0
\end{array}\right)+\Sigma\left(\begin{array}{ll}
0 & 0 \\
q_{(0)} & 0
\end{array}\right) \otimes\left(\begin{array}{ll}
q_{(1)} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

for $c \in C, d \in D, p \in P, q \in Q$, and extended linearly, $\varepsilon: I \rightarrow k$ given by $\varepsilon\left(\begin{array}{ll}c & p \\ q & d\end{array}\right)$ $=\varepsilon_{C}(c)+\varepsilon_{D}(d)$. Moreover Γ is \boldsymbol{Z}-graded by putting $\Gamma_{0}=\left(\begin{array}{cc}C & 0 \\ 0 & D\end{array}\right), \Gamma_{-1}=\left(\begin{array}{ll}0 & 0 \\ Q & 0\end{array}\right)$ and $\Gamma_{1}=\left(\begin{array}{ll}0 & P \\ 0 & 0\end{array}\right), \Gamma_{k}=0$ for $k \neq-1,0,1$.

Let $C=\bigoplus_{\sigma \in G} C_{\sigma}$ be a coalgebra, graded by G. Recall from [NT] that C_{1} is a coalgebra with comultiplication $\Delta_{1}: C_{1} \rightarrow C_{1} \otimes C_{1}$ given by $\Delta_{1}(c)=\sum \pi\left(c_{1}\right) \otimes$ $\pi\left(c_{2}\right)=\sum \pi\left(c_{1}\right) \otimes c_{2}=\sum c_{1} \otimes \pi\left(c_{2}\right)$ for all $c \in C_{1}$, where $\pi: C \rightarrow C_{1}$ is the natural projection. The co-unit of C_{1} is just ε_{C} restricted to C_{1}. Since π is a coalgebra map, C becomes a left C_{1}-comodule via the structure map $\rho_{1}^{l}: C \rightarrow C_{1} \otimes C$, $c \mapsto \Sigma \pi\left(c_{1}\right) \otimes c_{2}$ (c homogeneous) and it becomes a right C_{1}-comodule via $\rho_{1}^{r}: C \rightarrow$ $C \otimes C_{1}, c \mapsto \Sigma c_{1} \otimes \pi\left(c_{2}\right)$ (c homogeneous). Now C is a graded right C-comodule, so by Theorem 1.6 C is a right $C \rtimes k G$-comodule via the map

$$
\rho_{2}^{r}: C \rightarrow C \otimes(C \rtimes k G), c \mapsto \Sigma c_{1} \otimes\left(c_{2} \rtimes(\operatorname{deg} c)^{-1}\right)
$$

for c homogeneous. For any homogeneous $c \in C$, we have $\left(I \otimes \rho_{2}^{r}\right) \rho_{1}^{l}(c)=\left(\rho_{1}^{l} \otimes I\right)$ $\rho_{2}^{r}(c)=\Sigma \pi\left(c_{1}\right) \otimes c_{2} \otimes\left(c_{3} \rtimes(\operatorname{deg} c)^{-1}\right)$; thus C becomes a left C_{1}, right $C \rtimes k G$ bicomodule. In a similar way C becomes a left $C \rtimes k G$, right C_{1}-bicomodule where the left $C \ngtr k G$-comodule-structure of C is given by $\rho_{2}^{l}(c)=\Sigma\left(c_{1} \rtimes \operatorname{deg} c_{2}\right)$ $\otimes c_{2}$, for any homogeneous $c \in C$.

Define $f: C_{1} \rightarrow C \square_{c \nless k G} C, c \mapsto \Sigma c_{1} \otimes c_{2}=\Delta_{C}(c)$. Observe that for any $c \in C_{1}$ we obtain:

$$
\begin{aligned}
\sum \rho_{2}^{r}\left(c_{1}\right) \otimes c_{2} & =\Sigma c_{1} \otimes c_{2}\left(\operatorname{deg} c_{2}\right)^{-1}\left(\operatorname{deg} c_{1}\right)^{-1} \otimes c_{3} \\
& =\Sigma c_{1} \otimes c_{2} \otimes \operatorname{deg} c_{3} \otimes c_{3} \\
& =\Sigma c_{1} \otimes \rho_{2}^{l}\left(c_{2}\right)
\end{aligned}
$$

so the definition of f above is satisfactory. Moreover, f is a morphism of left and right C_{1}-comodules as is easily verified. Note also that f is injective because it is the restriction of the comultiplication of C to C_{1}.

Next define $g: C \rtimes k G \rightarrow C \square_{c_{1}} C, c \rtimes x \mapsto \Sigma c_{1} \otimes \pi_{x^{-1}}\left(c_{2}\right)$ for $x \in G$ and homogeneous $c \in C$, where π_{x} denotes the projection from C to C_{x}. In order to have that g is well-defined it is necessary that: $\Sigma\left(c_{1}\right)_{1} \otimes \pi\left(\left(c_{1}\right)_{2}\right) \otimes \pi_{x^{-1}}\left(c_{2}\right)=\Sigma c_{1} \otimes$ $\pi\left(\pi_{x^{-1}}\left(\left(c_{2}\right)_{1}\right)\right) \otimes \pi_{x^{-1}}\left(\left(c_{2}\right)_{2}\right)$. However the left hand side is obtained from $\Sigma c_{1} \otimes c_{2}$ $\otimes c_{3}$ by collecting the terms with $\operatorname{deg} c_{2}=1$ and $\operatorname{deg} c_{3}=x^{-1}$; on the other hand the right hand sum is an expression of the same thing. Moreover g is a morphism of right (and left) $C \rtimes k G$-comodules; this follows from: $\sum_{\operatorname{deg}_{2}=x-1}\left(c_{1} \otimes\right.$
$\left.\left(c_{2}\right)_{1}\right) \otimes\left(\left(c_{2}\right)_{2} \rtimes x\right)=\sum_{\operatorname{deg}\left(c_{1}\right)_{2}=x^{-1}\left(\operatorname{deg} c_{2}\right)-1}\left(\left(c_{1}\right)_{1} \otimes\left(c_{1}\right)_{2}\right) \otimes\left(c_{2} \rtimes x\right)$ because both members
 follows in a similar way.
2.4. Theorem. With notation as above: $\left(C_{1}, C \rtimes k G,{ }_{c_{1}} C_{C \times k G, c \times k} C_{C_{1}}, f, g\right)$ is a Morita-Takeuchi context. The map f is injective hence an isomorphism.

Proof. The only thing left to be proved is that f and g do satisfy the compatibility conditions, i.e. the following diagrams are commutative:

Now for $c \in C_{x}$ we have: $(I \square g) \theta(c)=(I \square g)\left(\Sigma c_{1} \otimes\left(c_{2} \rtimes x^{-1}\right)\right)=\Sigma c_{1} \otimes c_{2} \otimes \pi_{x}\left(c_{3}\right)=$ $\sum_{\operatorname{deg} c_{3}=x} c_{1} \otimes c_{2} \otimes c_{3}$, and also $(f \square I)(\psi(c))=(f \square I)\left(\sum \pi\left(c_{1}\right) \otimes c_{2}\right)=(f \square I)\left(\sum_{\operatorname{deg} c_{1}=1} c_{1}\right.$ $\left.\otimes c_{2}\right)=(f \square I)\left(\sum_{\operatorname{deg} c_{2}=x} c_{1} \otimes c_{2}\right)=\sum_{\operatorname{deg} c_{3}=x} c_{1} \otimes c_{2} \otimes c_{3}$.

That proves commutativity of the first diagram. For the second diagram we just compute: $(I \square f) \theta^{\prime}(c)=(I \square f)\left(\sum c_{1} \otimes \pi\left(c_{2}\right)\right)=(I \square f)\left(\sum_{\operatorname{deg}} c_{2}=1 c_{1} \otimes c_{2}\right)=(I \square f)$ ($\left.\sum_{\operatorname{deg} c_{1}=x} c_{1} \otimes c_{2}\right)=\sum_{\operatorname{deg} c_{1}=x} c_{1} \otimes c_{2} \otimes c_{3}$ and also $(g \square I) \psi^{\prime}(c)=(g \square I)\left(\Sigma\left(c_{1} \rtimes \operatorname{deg} c_{2}\right)\right.$ $\left.\otimes c_{2}\right)=\sum_{\operatorname{deg} c_{2}=\left(\operatorname{deg} c_{3}\right)-1} c_{1} \otimes c_{2} \otimes c_{3}=\sum \operatorname{deg} c_{2} \operatorname{deg} c_{3}=1 c_{1} \otimes c_{2} \otimes c_{3}=\sum \operatorname{deg} c_{1}=x c_{1} \otimes c_{2} \otimes c_{3}$.
2.5. Corollary. If $C=\oplus_{\sigma \in G} C_{o}$ is a graded coalgebra then $\mathscr{M}^{c_{1}}$ is equivalent to a quotient category of $g r^{C}$.

Proof. A consequence of Theorem 1.6, Theorem 2.4 and Proposition 2.2.

Recall that a G-graded coalgebra $C=\bigoplus_{\sigma \in G} C_{\sigma}$ is said to be strongly graded if the canonical k-linear map $\gamma_{u, v}: C_{u, v} \rightarrow C_{u} \otimes C_{v}, c \mapsto \Sigma \pi_{u}\left(c_{1}\right) \otimes \pi_{v}\left(c_{2}\right)$, is injective for all $u, v \in G$ (see [NT]). The next result establishes that strongly graded coalgebras may be characterized using the Morita-Takeuchi context from Theorem 2.4 just like in the case of group-graded rings (see [CM]).
2.6. Corollary. Let $C=\oplus_{\sigma \in G} C_{\sigma}$ be a G-graded coalgebra, then the following assertions are equivalent:

1. C is strongly G-graded
2. The context given in Theorem 2.4. is strict
3. C is faithfully coflat as a left $C \rtimes k G$-comodule.

Proof. 2. $\Rightarrow 1$. Take $u, v \in G$ and $c \in C_{u v}$ such that we have: $\gamma_{u, v}(c)=$ $\Sigma \pi_{u}\left(c_{1}\right) \otimes \pi_{v}\left(c_{2}\right)=0$. Then $g\left(c \rtimes v^{-1}\right)=\Sigma c_{1} \otimes \pi_{v}\left(c_{2}\right)=\Sigma \pi_{u}\left(c_{1}\right) \otimes \pi_{u}\left(c_{2}\right)=0$, hence $c \rtimes v^{-1}=0$ and $c=0$.
$1 . \Rightarrow 2$. Let $\alpha=\Sigma c_{i} \rtimes x_{i} \in C \rtimes k G$ with c_{i} homogeneous of degree σ_{i}. Suppose that for $i \neq j$ we have $\left(\sigma_{i}, x_{i}\right) \neq\left(\sigma_{j}, x_{j}\right)$. If $g(\alpha)=0$ then $\sum_{i,\left(c_{i}\right)}\left(c_{i}\right)_{1} \otimes$
 $\left.\pi_{i \sigma x_{i}}\left(\left(c_{i}\right)_{1}\right) \otimes \pi_{x \bar{i}^{1}}\left(c_{i}\right)_{2}\right) \in C_{\sigma_{i} x_{i}} \otimes C_{x \bar{i}^{1}}$. \quad Since $C \otimes C=\oplus_{u, v \in G} C_{u} \otimes C_{v}$ we obtain for fixed i, the relation: $\sum\left(c_{i}\right) \pi_{\sigma_{i} x_{i}}\left(\left(c_{i}\right)_{1}\right) \otimes \pi_{r_{\bar{i}}}\left(\left(c_{i}\right)_{2}\right)=0$. The latter yields $\gamma_{\pi_{i} x_{i}, x_{\bar{i}}}\left(c_{i}\right)$ $=0$ and therefore $c_{i}=0$ for every choice of i, i.e. $\alpha=0$ follows.
$2 . \Leftrightarrow 3$. Follows from Corollary 2.3.
As a further application we reobtain Theorem 5.3 of [NT] which is a coalgebra version of a well-known result of E. Dade.
2.7. Corollary. The graded coalgebra C is strongly graded if and only if the induced functor $-\square_{c_{1}} C: \mathscr{M}^{C_{1}} \mathrm{gr}^{C}$ is an equivalence of categories.
2.8. Remark. The functor (-$)_{1}: \operatorname{gr}^{C} \rightarrow \mathscr{M}^{C_{1}}, M \rightarrow M_{1}$, is naturally isomorphic to the functor $-\square_{c \rtimes k G} G$ since they are both left adjoints of the induced functor $-\square_{c_{1}} C$ (see [NT] Proposition 4.1, [T] Remark 2.4). Therefore the localizing category implicit in Corollary 2.5 is just $\operatorname{Ker}(-)_{1}=\operatorname{Ker}\left(-\square{ }_{c \times k} C\right)$.

As a final application of these techniques let us include a short proof of Corollary 6.4 in [NT].
2.9. Corollary. If C is a strongly graded coalgebra for the group G then G is a finite group.

Proof. If G is infinite we could select a non-zero homogeneous $c \in C$ and $x \in G$ such that $x \neq \operatorname{deg}\left(c_{2}\right)^{-1}$ for all c_{2}. Then $g(c \rtimes x)=0$, but that would contradict injectivity of g.

3. Duality.

For a quasi-finite right C-comodule M, the so-called coalgebra of "co-endomorphisms" of M has been defined in [T., 1.17] and it is denoted by $e_{-c}(M)$. Unfortunately this coalgebra is not easy to use because of the rather complex comultiplication, so it will be useful to give a nicer description of $e_{-c}(M)$ in some particular situation, e.g. in case M is a finitely cogenerated free-comodule (that is, $M \cong X \otimes C$, for some finite dimensional k-vectorspace X, with the obvious
comodule structure).
Let C be a coalgebra, X an n-dimens!onal k-space with basis $\left\{x_{1}, \cdots, x_{n}\right\}$. Consider the $n \times n$ comatrix coalgebra $M^{c}(n, k)$ which is a k-space with basis $\left\{x_{i j}, 1 \leqq i, j \leqq n\right\}$ and Δ, ε given as follows: $\Delta\left(x_{i j}\right)=\Sigma_{p} x_{i p} \otimes x_{p j}, \varepsilon\left(x_{i j}\right)=\delta_{i j}$.

The $n \times n$ comatrix coalgebras over C, denoted by $M^{c}(n, C)$ is defined to be the tensor product of coalgebra $C \otimes M^{c}(n, k)$. We endow $C \otimes X$ with a left C-and a right $M^{c}(n, C)$-bicomodule structure as follows. The left C-comodule structure is given by by the map: $\rho_{1}^{l}: C \otimes X \rightarrow C \otimes C \otimes X, c \otimes x \mapsto \Sigma c_{1} \otimes c_{2} \otimes x$. The right $M^{c}(n, C)$-comodule structure is given by the map: $\rho_{2}^{r}: C \otimes X \rightarrow C \otimes X$ $\otimes M^{c}(n, C), c \otimes x_{i} \mapsto \Sigma_{p} c_{1} \otimes x_{p} \otimes c_{2} \otimes x_{p i}$.

In a similar way $C \otimes X$ is a left $M^{c}(n, C)$-right C-bicomodule via the structure maps:

$$
\begin{aligned}
& \rho_{1}^{r}: C \otimes X \rightarrow C \otimes X \otimes C, c \otimes x \mapsto \Sigma c_{1} \otimes x \otimes c_{2} \\
& \rho_{2}^{l}: C \otimes X \rightarrow M^{c}(n, C) \otimes C \otimes X, c \otimes x_{i} \mapsto \sum_{p} c_{1} \otimes x_{i p} \otimes c_{2} \otimes x_{p}
\end{aligned}
$$

Define $f: C \rightarrow(C \otimes X) \square_{M c(n, C)}(C \otimes X), c \mapsto \sum_{i,(c)}\left(c_{i} \otimes x_{i}\right) \otimes\left(c_{2} \otimes x_{i}\right)$, which is obviously injective and C-bicolinear. Define $g: M^{c}(n, C) \rightarrow(C \otimes X) \square_{c}(C \otimes X), c \otimes$ $x_{i j} \mapsto \Sigma\left(c_{1} \otimes x_{i}\right) \otimes\left(c_{2} \otimes x_{j}\right)$ which is also injective and $M^{c}(n, C)$-bicolinear. One easily verifies the following relations:

$$
\begin{aligned}
& (I \square f) \rho_{1}^{r}\left(c \otimes x_{i}\right)=(g \square I) \rho_{2}^{l}\left\langle c \otimes x_{i}\right)=\sum_{p} c_{1} \otimes x_{i} \otimes c_{2} \otimes x_{p} \otimes c_{3} \otimes x_{p} \\
& (f \square I) \rho_{1}^{l}\left(c \otimes x_{i}\right)=(I \square g) \rho_{2}^{r}\left(c \otimes x_{i}\right)=\sum_{p} c_{1} \otimes x_{p} \otimes c_{2} \otimes x_{p} \otimes c_{3} \otimes x_{i}
\end{aligned}
$$

According to results of [T] we immediately obtain:
3.1. Proposition. ($\left.C, M^{c}(n, C), C \otimes X, C \otimes X, f, g\right)$ is a strict MoritaTakeuchi context. In particular we have coalgebra isomorphisms:

$$
e_{C-}(C \otimes X) \cong M^{c}(n, C) \cong e_{-c}(C \otimes X)
$$

3.2. Theorem. Let G be a finite group acting on the coalgebra D, then $D \rtimes k G^{*}$ is a strongly graded coalgebra and there exist coalgebra isomorphisms:

$$
\left(D \rtimes k G^{*}\right) \rtimes k G \cong e_{D_{-}}\left(D \rtimes k G^{*}\right) \cong M^{c}(n, D)
$$

where $n=|G|$.
Proof. The map $\rho: D \otimes k G^{*}, d \mapsto \Sigma_{g}(g \cdot d) \otimes p_{g}$, makes D into a $k G^{*}$ comodule. The comultiplication of $D \rtimes k G^{*}$ is given by $\Delta\left(d \rtimes p_{x}\right)=\sum_{u v=x}\left(d \rtimes p_{v}\right)$ $\otimes\left(v d_{2} \rtimes p_{u}\right)$. This establishes that $D \rtimes k G^{*}$ is a graded coalgebra of type G with grading given by $\left(D \rtimes k G^{*}\right)_{g}=D \rtimes p_{g^{-1}}$. The canonical morphism $D \rtimes p_{1} \rightarrow$
$\left(D \rtimes p_{\sigma^{-1}}\right) \otimes\left(D \rtimes p_{\sigma}\right), d \rtimes p_{1} \mapsto \Sigma\left(d_{1} \rtimes p_{\sigma^{-1]}}\right) \otimes\left(\sigma^{-1} d_{2} \rtimes \rho_{\sigma}\right)$, is clearly injective. Thus $D \rtimes k G^{*}$ is a strongly graded coalgebra, and $\left(D \rtimes k G^{*}\right)_{1}=D \rtimes p_{1} \cong D$. Applying the Morita-Takeuchi context (constructed in Section 2) to $D \rtimes k G^{*}$, we have a strict context and so it provides us with coalgebra isomorphisms:

$$
\left(D \rtimes k G^{*}\right) \rtimes k G \cong e_{\left(D \rtimes p_{1}\right)}\left(D \rtimes k G^{*}\right) \cong e_{D-}\left(D \rtimes k G^{*}\right) .
$$

The left $\left(D \rtimes p_{1}\right)$-structure of $D \rtimes k G^{*}$ is given by $d \rtimes p_{x^{\mapsto} \rightarrow \Sigma}\left(d_{1} \rtimes p_{1}\right) \otimes\left(d_{2} \rtimes p_{x}\right)$, and this yields exactly the left D-comodule structure of $D \otimes X$ where $X=k G^{*}$ is a k-space of dimension n. Proposition 3.1 yields the second isomorphism.

A similar result holds for graded coalgebras (or coactions).
3.3. Theorem. Let C be a coalgebra graded by the finite gronp G. Then G acts on the coalgebra $C \rtimes k G$ and there are coalgebra isomorphisms:

$$
(C \rtimes k G) \rtimes k G^{*} \cong e_{C_{-}}(C \rtimes k G) \cong M^{c}(n, C)
$$

Proof. An action of G on the coalgebra $C \rtimes k G$ is given by $h \cdot(c \rtimes g)=$ $c \rtimes g h^{-1}, g, h \in G$ and $c \in C$. Thus $C \rtimes k G$ becomes a $k G^{*}$-comodule coalgebra via the map:

$$
c \rtimes g \mapsto \sum_{y} y \cdot(c \rtimes g) \otimes p_{y}=\sum_{y}\left(c \rtimes g y^{-1}\right) \otimes p_{y}
$$

The comultiplication of $(C \rtimes k G) \rtimes k G^{*}$ is given by

$$
\Delta\left((c \rtimes x) \rtimes p_{g}\right)=\sum_{u v=g}\left(\left(c_{1} \rtimes \operatorname{deg} c_{2} \cdot x\right) \rtimes p_{v}\right) \otimes\left(\left(c_{2} \rtimes x v^{-1}\right) \rtimes p_{u}\right)
$$

for any $x, g \in G$ and homogeneous $c \in C$. Now let $\left\{e_{x, y}, x, y \in G\right\}$ be a basis for $M^{c}(n, k)$. Define a map $F:(C \rtimes k G) \rtimes k G^{*} \rightarrow M^{c}(n, C),(c \rtimes x) \rtimes p_{g} \mapsto c \otimes e_{\alpha, \beta}$ where $\alpha=\operatorname{deg} c \cdot x, \beta=x g^{-1}$ for $x, g \in G$ and homogeneous $c \in C$. Let us check that F is a coalgebra morphism. Indeed,

$$
\begin{aligned}
\Delta\left(F\left((c \rtimes x) \rtimes p_{g}\right)\right) & =\Delta\left(c \otimes e_{\alpha, \beta}\right) \\
& =\sum_{z,(c)}\left(c_{1} \otimes e_{\alpha, z}\right) \otimes\left(c_{2} \otimes e_{z, \beta}\right)
\end{aligned}
$$

and also

$$
\begin{aligned}
(F \otimes F)\left(\Delta\left((e \rtimes x) \rtimes p_{g}\right)\right. & =\sum_{u v=g}\left(c_{1} \otimes e_{\operatorname{deg}} c_{1} \operatorname{deg} c_{2} x \operatorname{deg} c_{2} x x^{-1}\right) \otimes\left(c_{2} \otimes e_{\operatorname{deg}} c_{2} x v^{-1, x v^{-1,}, u^{-1}}\right) \\
& =\sum_{v}\left(c_{1} \otimes e_{\alpha, \operatorname{deg}} c_{2} x v^{-1}\right) \otimes\left(c_{2} \otimes e_{\operatorname{deg}} c_{2} x v^{-1, \beta}\right) .
\end{aligned}
$$

Since $\left\{\operatorname{deg} c_{2} x v^{-1}, v \in G\right\}=G$, both sums are equal. Now, consider $(c \rtimes x) \rtimes p_{g} \in$ $(C \rtimes k G) \rtimes k G^{*}$ for $x, g \in G$ and c homogeneous. Write ε for the co-unit of $(C \rtimes k G) \rtimes k G^{*}$ and ε^{\prime} for the co-unit of $M^{c}(n, C)$. Then we have:

$$
\begin{aligned}
\varepsilon\left((c \rtimes x) \rtimes p_{g}\right) & =\varepsilon_{C}(c) \delta_{\operatorname{deg} c, 1} \delta_{g, 1} \\
\varepsilon^{\prime}\left(c \otimes e_{\alpha, \beta}\right) & =\varepsilon_{C}(c) \delta_{\operatorname{deg} c, 1} \delta_{\operatorname{deg} c x, x g^{-1}} \\
& =\varepsilon_{C}(c) \delta_{\operatorname{deg} c, 1} \delta_{x, x g^{-1}}=\varepsilon_{C}(c) \delta_{\operatorname{deg} c, 1} \delta_{1, g^{-1}} \\
& =\varepsilon_{C}(c) \delta_{\operatorname{deg} c, 1} \delta_{g, 1} .
\end{aligned}
$$

Therefore F is a coalgebra map as claimed. Now define $H: M^{c}(n, C) \rightarrow(C \rtimes k G)$ $\rtimes k G^{*}$ by putting $H\left(c \otimes c_{u, v}\right)=\left(c \rtimes(\operatorname{deg} c)^{-1} u\right) \rtimes p_{v^{-1}(\operatorname{deg} c)-1 u}$, for $u, v \in G$ and homogeneous $c \in C$. Again H is a coalgebra morphism because:

$$
\begin{aligned}
& \Delta\left(H\left(c \otimes e_{u, v}\right)\right. \\
& \quad=\sum_{z t=v^{-1}(\operatorname{deg} c)-1 u}\left(\left(c_{1} \rtimes \operatorname{deg} c_{2}(\operatorname{deg} c)^{-1} u\right) \rtimes p_{t}\right) \otimes\left(\left(c_{2} \rtimes(\operatorname{deg} c)^{-1} u t^{-1}\left(\rtimes p_{z}\right)\right.\right. \\
& (H \otimes H)\left(\Delta\left(c \otimes e_{u, v}\right)\right) \\
& \quad=(H \otimes H)\left(\sum_{h}\left(c_{1} \otimes e_{u, h}\right) \otimes\left(c_{2} \otimes e_{h, v}\right)\right) \\
& \quad=\sum_{h}\left(\left(c_{1} \rtimes\left(\operatorname{deg} c_{1}\right)^{-1} u\right) \rtimes p_{n-1\left(\operatorname{deg} c_{1}\right)-1 u}\right) \otimes\left(\left(c_{2} \rtimes\left(\operatorname{deg} c_{2}\right)^{-1} h\right) \rtimes p_{v-1\left(\operatorname{deg} c_{2}\right)-1 h}\right) .
\end{aligned}
$$

For fixed c_{1} and u we have that $\left.\left\{h^{-1}\left(\operatorname{deg} c_{1}\right)^{-1} u\right), h \in G\right\}=G$ and if we write $t=h^{-1}\left(\operatorname{deg} c_{1}\right)^{-1} u, z=v^{-1}\left(\operatorname{deg} c_{2}\right)^{-1} h$, then the above sums are clearly equal as desired. The fact that H preserves the co-unit too is obvious. Finally it is clear that $F \cdot H$ and $H \cdot F$ are the identities so that we do arrive at a coalgebra isomorphism. The isomorphism involving $e_{c_{-}}(C \rtimes k G)$ is obvious because of Proposition 3.1 (the left C-comodule structure of $C \rtimes k G$ is given $\mathrm{bp} c \rtimes g \mapsto$ $\left.\sum c_{1} \otimes\left(c_{2} \rtimes g\right)\right)$.
3.4. COROLLORy. There exists a strict Morita-Tekeuchi context connecting C and $(C \rtimes k G) \rtimes k G^{*}$.

Proof. $C \rtimes k G$ is a left C-comodule that is a quasi-finite injective cogenerator (in view of Proposition 3.1 and [T]). Moreover $C \rtimes k G$ is a right $(C \rtimes k G) \rtimes k G^{*}$-comodule via $c \rtimes g \mapsto \Sigma_{u}\left(c_{1} \rtimes \operatorname{deg} c_{2} g u\right) \otimes\left(c_{2} \rtimes g u\right) \rtimes p_{u-1}$, for $g \in G$ and homogeneous $c \in C$. Hence $C \rtimes k G$ is a $C-(C \rtimes k G) \rtimes k G^{*}$-bicomodule. The assertion now follows from [T, Theorem 3.5 iv].
3.5. Remarks. The Morita-Takeuchi context of the above corollary may be given in detail. This may have an independent interest because it provides another proof of Theorem 3.3 and provides a hint for establishing a more general duality result we do not dwell upon here. The second bicomodule is also $C \rtimes k G$ with right C-comodule structure given by the map: $c \rtimes g \mapsto$ $\Sigma\left(c_{1} \rtimes \operatorname{deg} c_{2} g\right) \otimes c_{2}$ (for homogeneous c) and left ($\left.C \rtimes k G\right) \rtimes k G^{*}$-comodule struc-
ture given by : $c \rtimes g \mapsto \Sigma_{h}\left(c_{1} \rtimes \operatorname{deg} c_{2} g\right) \rtimes p_{h} \otimes\left(c_{2} \rtimes g h\right)$ (for homogeneous c) we have $f: C \rightarrow(C \rtimes k G) \square_{(C \ngtr k G) \times k G *}(C \rtimes k G), f(c)=\Sigma_{h}\left(c_{1} \rtimes \operatorname{deg} c_{2} h\right) \otimes\left(c_{2} \rtimes h_{2}\right)$ for homogeneous $c \in C, g:(C \rtimes k G) \rtimes k G^{*} \rightarrow(C \rtimes k G) \square_{c}(C \rtimes k G), g\left((c \rtimes g) \rtimes p_{h}\right)=\sum\left(c_{1} \rtimes\right.$ $\left.\operatorname{deg} c_{2} g\right) \otimes\left(c_{2} \rtimes g h\right)$, for homogeneous $c \in C$. It is also easily seen that f and g are injective maps.

Acknowledgement. We thank Akira Masuoka for bringing paper [T] to our attention.

References

[A] E. Abe, Hopf Algebras, Cambridge University Press, 1977.
[CM] M. Cohen, S. Montgomery, Group Graded Rings, Smash Products and Group Actions, Trans. AMS, 282 (1984), 237-258.
[CRW] M. Cohen, S. Raianu and S. Westreich, Semiinvariants of Hopf Algebra Actions, Israel J. Math., 88 (1994), 279-306.
[D] Y. Doi, Homological Coalgebra, J. Math. Soc. Japan, 33 (1981), 31-50.
[F] C. Faith, Algebras, Rings, Modules and Categories, Vol. I, Springer Verlag, Berlin, 1973.
[FM] D. Fischman and S. Montgomery, Biproducts of Braided Hopf Algebras and a Double Centralizer Theorem for Lie Color Algebras, preprint.
[G] P. Gabriel, Des Catégories Abeliennes, Bull. Soc. Math. France, 90 (1962), 323-448.
[M] R.K. Molnar, Semi-Direct Products of Hopf Algebras, J. Algebra, 47 (1977), 29-51.
[NT] C. Nǎstăsescu and B. Torrecillas, Graded Coalgebras, Tsukuba Math. J., 17 (1993), 461-479.
[S] M. Sweedler, Hopf Algebras, Benjamin, 1969.
[T] M. Takeuchi, Morita Theorem for Categories of Comodules, J. of Fac. of Sci., Univ. of Tokyo, Vol. 24, no. 3, 1977, 629-644.

S. Dăscǎlescu, C. Năstăsescu, S. Raianu Facultatea de Matematică

Str. Academiei 14
RO-70109, Bucharest, 1
Romania
F. Van Oystaeyen

Dept. of Mathematics
UIA, Universiteitsplein 1
B-2610 Antwerpen, Wilrijk
Belgium
Added in proof. A general duality result for crossed coproducts was proved by S. Dāsoālesae, S. Raianu, Y. Zhang in "Finite Hopf-Galois coextensions, crossed coproducts and duality", to appear in J. Algelma.

[^0]: Received November 25, 1993.

