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0. Introduction

Viewing a G-graded k-coalgebra over the field $k$ as a right $k$ G-comodule
coalgebra it is possible to use a Hopf algebraic approach to the study of coalge-
bras graded by an arbitrary group that was started in [NT].

Let $C=\oplus_{g\in G}C_{g}$ be a G-graded coalgebra. The graded C-comodules may
be viewed as comodules over the smash product $C\rangle\triangleleft kG$ , the general definition
of which was given in [M]. Coalgebras graded by an arbitrary group have
been considered in [FM] in order to lntroduce the notion of G-graded Hopf
algebras. On the other hand, M. Takeuchi introduced in [T] the sets of pre-
equivalence data connecting categories of comodules over two coalgebras (we

call such a set a Morita-Takeuchi context). The main result of this note is a
coalgebra version of a result established by M. Cohen, S. Montgomery in [CM]

for group-graded rings: for a graded coalgebra $C$ the coalgebras $C_{1}$ and $C\rangle\not\in kG$

are connected by a Morita-Takeuchi context in which one of the structure maps
is injective. Most of the results in this note are consequences of the foregoing.
As a first application we find that a coalgebra $C$ is strongly graded if and only
if the other structure map of the context is also injective. The final section
provides analogues of the Cohen-Montgomery duality theorems: if $C$ is a co-
algebra graded by the flnite group $G$ of order $n$ , then $G$ acts on the smash
coproduct as a group of automorphisms of coalgebras and $(C\rangle\triangleleft kG)*kG^{*}$ is
coalgebra isomorphic to the comatrix coalgebra $M^{c}(n, C)$ . If $G$ is a finite group
of order $n$ , acting on the coalgebra $D$ as a group of coalgebra automorphisms,
then the smash coproduct $D\rangle\triangleleft kG^{*}$ is strongly graded by $G$ and moreover:
$(D\rangle\triangleleft kG^{*})\aleph kG\cong M^{c}(n, D)$ . The second duality theorem is again a direct con-
sequence of the Morita-Takeuchi context mentioned above.
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1. Graded Coalgebras and the Smash Coproduct

Throughout this paper $k$ is a field. We use Sweedler’s “sigma” notation
[S] and further notation and conventions in [T], [D]. Let $G$ be a group with
identity element 1. Recall that a k-coalgebra $(C, \Delta, \epsilon)$ is graded by $G$ if $C$ is
a direct sum of k-subspaces, $C=\oplus_{\sigma\in G}C_{\sigma}$ , such that $\Delta(C_{\sigma})\subset\Sigma_{x}{}_{y=\sigma}C_{x}\otimes C_{y}$ , for
all $\sigma\in G$ , and $\epsilon(C_{\sigma})=0$ for $\sigma\neq 1$ . A right C-comodule $M$ with structure map
$\rho:M\rightarrow M\otimes C$ is a graded C-comodule if $M=\oplus_{\sigma\in G}M_{\sigma}$ as k-subspaces, such that
$\rho(M_{\sigma})\subset\sum_{xy=\sigma}M_{x}\otimes C_{y}$ for all $\sigma\in G$ . For graded right C-comodules $M$ and $N$ a
graded comodule morphism is a C-comodule morphism $f:M\rightarrow N$ such that $f(M_{\sigma})$

$\subset N_{\sigma}$ for $\sigma\in G$ . The category of graded right C-comodules, denoted by $gr^{C}$ , is
a Grothendieck category, cf. [NT]. The main purpose of this section is to
develop a Hopf algebraic approach to the graded theory. First we recall, see
[S] or [A], some deflnitions.

1.1. DEFINITION. Let $H$ be a bialgebra over the field $k,$ $A$ a k-algebra and
$(C, \Delta_{C}, \epsilon_{C})$ a k-coalgebra. Then:

$i$ . $A$ is said to be a (right) H-module algebra if $A$ is a right H-module
such that $(ab)\cdot h=\sum(a\cdot h_{1})(b\cdot h_{2})$ and $1_{A}\cdot h=\epsilon(h)1_{A}$ for any $h\in H$, and
$a,$ $b\in A$ .

ii. $C$ is a right H-comodule coalgebra if $C$ is an H-comodule by $c\leftrightarrow\sum c_{(0)}$

$\otimes c_{(1)}$ such that we have:

$\Sigma c_{1(0)}\otimes c_{2(0)}\otimes c_{1(1)}c_{2(1)}=\Sigma c_{(0)1}\otimes c_{(0)2}\otimes c_{1(1)}$ ,

$\Sigma\epsilon_{C}(c_{(0)})c_{(1)}=\epsilon_{C}(c)1_{H}$ for all $c\in C$

iii. $C$ is a (left) H-module coalgebra if $C$ is a left H-module such that:
$\Delta_{C}(h\cdot c)=\Sigma h{}_{1}C_{1}\otimes h_{2}\cdot c_{2},$ $\epsilon_{C}(h\cdot c)=\epsilon_{H}(h)\epsilon_{C}(c)$ for $c\in C,$ $h\in H$.

In the sequel we shall not refer to “right” of “left” as in the above definitions,

the choice of “sides” shall remain fixed throughout.

For any group $G$ the group algebra $kG$ has a bialgebra structure defined
by $\Delta(g)=g\otimes g$ and $\epsilon(g)=1$ for all $g\in G$ . The next result establishes the con-
nection between G-graded coalgebras and $k$ G-comodule coalgebras.

1.2. PROPOSITION. A coalgebra $C$ graded by $G$ many in a natural way be
viewed as a kG-comodule coalgebra; conversely every kG-comodule coalgebra is
a G-graded coalgebra.

PROOF. For a G-graded $C$ the map $\rho:C\rightarrow C\otimes kG,$ $ c\leftrightarrow c\otimes\sigma$ for all $\sigma\in G$ ,
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$c\in C_{\sigma}$ , defines a kG-comodule coalgebra structure on $C$ . Conversely, if $C$ is a
kG-comodule coalgebra then any $c\in C$ has a unique presentation $\rho(c)=$

$\sum_{g\in G}c_{g}\otimes g$ . Put $C_{g}=\{c_{g}, c\in C\},$ $g\in G;C_{g}$ is a k-subspace of $C$ . From
$(I\otimes\epsilon)\rho(c)=c\otimes 1$ we derive that $c=\Sigma_{g\in G}c_{g}$ and $C=\Sigma_{g\in G}C_{g}$ . For $c\in C,$ $g\in G$

we have that $c\in C_{g}$ if and only if $\rho(c)=c\otimes g$ . If $\Sigma_{g\in G}c_{g}=0$ for some $c_{g}\in C_{g}$

then by applying $\rho$ we obtain $\sum c_{g}\otimes g=0$ or $c_{g}=0$ for all $g\in G$ . Therefore
$C=\oplus_{g\in G}C_{g}$ . Consider $c\in C_{\sigma}$ and $\Delta(c)=\sum c_{1}\otimes c_{2}$ with homogeneous $c_{1}\prime s$ and
$c_{2}\prime s$ . From 1.1 we retain that $\sum c_{I}\otimes c_{2}\otimes\sigma$ equals $\sum c_{1}\otimes c_{2}\otimes\deg c_{1}\cdot\deg c_{2}$ , or in
other words $\Delta(c)$ is the sum of all terms with $\sigma=\deg c_{1}\cdot\deg c_{2}$ , establishing that
$C$ is a G-graded coalgebra. $\square $

We say that the group $G$ acts on the coalgebra $D$ whenever there is a
group morphism $\varphi:G\rightarrow Aut(D)$ , the latter denoting the set of all coalgebra
automorphisms of $D$ with group structure defined as follows: if $f,$ $g\in Aut(D)$ ,
$f\cdot g=f\circ g$ .

1.3. PROPOSITION. If $G$ acts on the coalgebra $D$ then $D$ has the structure
of a $kG$ -module coalgebra; conversely any $k$ G-module coalgebra has a natural G-
action.

PROOF. Suppose that $\varphi:G\rightarrow Aut(D)$ determines that $G$ acts on $D$ then
the map $kG\otimes D\rightarrow D,$ $ g\otimes d-\rangle$ $\varphi(g)(d)$ defines a $kG$ -module structure on $D$ as
desired. Conversely, if $D$ is a $kG$ -module coalgebra then we may define a G-
action on $D$ by $\varphi:G\rightarrow Aut(D),$ $\varphi(g)(d)=g\cdot d$ for $g\in G,$ $d\in D$ . $\square $

1.4. REMARK. Let, for a finite group $G,$ $kG^{*}$ be the dual bialgebra for the
finite dimensional bialgebra $kG$ . If the finite group $G$ acts on the coalgebra $D$

then $D$ is also a $kG^{*}$-comodule coalgebra. If $\{p_{g}, g\in G\}$ is the dual basis of
$\{g, g\in G\}$ then $\{p_{g}, g\in G\}$ is a system of orthogonal idempotents of $kG^{*}$ . The
coalgebra structure of $kG^{*}$ is given in the usual way by: $\Delta(p_{g})=\Sigma_{xy=g}p_{x}\otimes p_{y}$ ,
$\epsilon(p_{g})=\delta_{g,1}$ .

The right comodule structure of $D$ is given by $\rho:D\rightarrow D\otimes kG^{*},$ $\rho(d)=$

$\Sigma_{g\in G}(g\cdot d)\otimes p_{g}$ .

In the sequel, the smash coproduct plays a central part. For a bialgebra
$H$ and an H-module coalgebra $C$ the smash-coproduct $C\rangle\triangleleft H$ is defined as the
k-space $C\otimes H$ with $\Delta:C\rangle\triangleleft H\rightarrow(C\rangle\triangleleft H)\otimes(C\rangle\triangleleft H)$ given by $\Delta(c\rangle\triangleleft h)=\Sigma(c_{1}\aleph c_{2(1)}\cdot h_{2})$

$\otimes(c_{2(0)}nh_{1})$ , and $\epsilon$ : $CnH\rightarrow k$ given by $\epsilon(c\rangle\triangleleft h)=\epsilon_{C}(c)\epsilon_{H}(h)$ .
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1.5. PROPOSITION. $C\rangle\triangleleft H$ with $\Delta$ and $\epsilon$ as above is a coalgebra.

PROOF. This is just the right hand version of Theorem 2.11 of [M], a
proof is given in Proposition 2.3 of [FM]. $\square $

The smash coproduct is useful in general but has particular interest in some
special cases frequently considered:

$i$ . Graded smash coproduct
If the coalgebra $C$ is graded by $G$ then the coalgebra structure of $C\aleph kG$

is given by: $\Delta(c\rangle\triangleleft g)=\sum(c_{1}\rangle\triangleleft\deg c_{2}\cdot g)\otimes(c_{2}\otimes g)$ , for any homogeneous $c\in C$ and
$g\in G$ (where we assumed, as we will always do in the sequel, that we have
used the homogeneous decomposition $\sum c_{1}\otimes c_{2}$), whereas for all $c\in C,$ $g\in G$ we
have that $\epsilon(c\rangle\triangleleft g)=\epsilon_{C}(c)$ .

ii. If the finite group $G$ acts on the coalgebra $D,$ $i$ . $e$ . $D$ is a $kG^{*}$-comodule
coalgebra, then the coalgebra structure of $D\rangle\triangleleft kG^{*}$ is given by:

$\Delta(d\aleph p_{g})=\sum_{uv=g}(d_{1}\rangle\triangleleft p_{v})\otimes(v\cdot d_{2}\aleph p_{u})$ ,

and
$\epsilon(d*p_{g})=\epsilon_{D}(d)\delta_{g.1}$ , for all $d\in D,$ $g\in G$ .

Note that the graded smash coproduct appears in a natural way when one
studies graded comodules. Recall that a k-Abelian category is k-equivalent to
a category of comodules $\ovalbox{\tt\small REJECT}^{c}$ over some coalgebra $C$ if and only it it is of finite
type (Theorem 5.1 of [T]). The coalgebra giving the category as a category
of comodules may, in general, be a somewhat mystical object. However for a
G-graded coalgebra $C$ the k-Abelian category of graded comodules, say $gr^{C}$ , is
of finite type and it is therefore, equivalent to a category of comodules over
the coalgebra given in the following.

THEOREM 1.6. If $C$ is a coalgebra graded by $G$ then the categones $gr^{C}$ and
and $Bl^{C\aleph kG}$ are isomorphic.

PROOF. Take $M\in gr^{c}$ with $\rho:M\rightarrow M\otimes C,$ $\rho(m)=\sum m_{0}\otimes m_{1}$ . We make $M$

into a right $C\rangle\triangleleft k$ G-comodule by defining $\rho^{\prime}$ : $M\rightarrow M\otimes(C\rangle\triangleleft Kg),$ $ m-\sum m_{0}\otimes$

$(m_{1}\rangle\triangleleft(\deg m)^{-1})$ for homogeneous $m\in M$. A morphism $f:M\rightarrow N$ of G-graded C-
comodules is also a morphism of $C\rangle\triangleleft kG$ -comodules and we have defined a
functor $T:gr^{c}\rightarrow\ovalbox{\tt\small REJECT}^{C)\triangleleft kG}$ .

Conversely, starting from an $M\in\ovalbox{\tt\small REJECT}^{C)\not\in kG}$ we obtain on $M$ a right C-comodule
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structure and a right $k$ G-comodule structure because the linear maps $\alpha;C\rangle\triangleleft kG$

$\rightarrow C,$ $c\aleph g-c$ , and $\beta$ : $C\rangle\triangleleft kG\rightarrow kG,$ $c\rangle\triangleleft g-\epsilon_{C}(c)g^{-1}$ for $c\in C,$ $g\in G$ , are coalgebra
morphisms. As in the proof of Proposition 1.2 it follows that $M=\oplus_{g\in G}M_{g}$ and
a straightforward verification learns that $M$ becomes a graded C-comodule.
Now, for $M,$ $N\in\ovalbox{\tt\small REJECT}^{c\rangle\sqrt kG}$ and a morphism of $C\aleph kG$ -comodules $f:M\rightarrow N$ it fol-
lows that $f$ is also a morphism of G-graded C-comodules when $M$ and $N$ are
viewed as such. This defines the functors $S:\ovalbox{\tt\small REJECT}^{C\rangle\sqrt kG}\rightarrow gr^{C}$ and it is easily seen
that $T$ and $S$ are isomorphisms of categories and inverse to each other.

1.7. REMARKS. 1. If the coalgebra $C$ is graded by a finite group $G$ , then
the dual algebra $C^{*}$ is graded by $G$ with $C_{g}^{*}=$ { $f\in C^{*},$ $f(C_{x})=0$ for all $x\neq g$ }.

Hence $c*$ is a $kG^{*}$-module algebra and we may construct the smash product
$C^{*}\# kG^{*}$ with multiplication given by: $(c^{*}\# h^{*})(d^{*}\# g^{*})=\sum(c^{*}(d^{*}\cdot h^{\star_{1}})\# g^{*}h_{2}^{*}$ , for
all $C^{*},$ $d^{*}\in C$ . and $h^{*},$ $g^{*}\in kG^{*}$ . It is easy to see that the algebra $C^{*}\# kG^{*}$ is
algebra-isomorphic to the dual algebra of $C\rangle\triangleleft kG$ .

2. If $G$ acts on the coalgebra $D$ via $\varphi:G\rightarrow Aut(D)$ , then the group mor-
phism $\overline{\varphi}:G\rightarrow Aut(D^{*})$ given by $\overline{\varphi}(g)(d^{*})=d^{*}\varphi(g)$ for $g\in G,$ $d^{*}\in D^{*}$ , defines an
action of $G$ on the algebra $D^{*}$ . Note that Aut $(D^{*})$ is a group with respect to
$\sigma\cdot\tau=\tau\circ\sigma$ for $\sigma,$ $\tau\in Aut(D^{*})$ . Thus $D$ is a $kG$ -module coalgebra and $D^{*}$ is a
$kG$-module algebra. If $G$ is finite then $D$ is a $kG^{*}$-comodule coalgebra and the
dual algebra of the smash coproduct $D\rangle\triangleleft kG^{*}$ is isomorphic to the skew group
ring $D^{*}\# kG$ .

2. The Morita-Takeuchi Context Associated to a Graded Coalgebra

The Morita-theorems for categories of comodules have been proved by M.
Takeuchi in [T]; we call a set of pre-equivalence data as in [T] a Morita-
Takeuchi context.

2.1. DEFINITION. A Morita-Takeuchi context $(C, D,{}_{C}P_{DD}Q_{C}, f, g)$ consists
of coalgebras $C$ and $D$ , bicomodules ${}_{c}P_{DD}Q_{C}$ and bicolinear maps $f:C\rightarrow P\coprod_{D}Q$ ,
$g:D\rightarrow Q\coprod_{C}P$ making the following diagrams commute:

$P\downarrow\cong^{\rightarrow}\cong P\coprod_{\psi}DD|_{I\coprod g}$ $\cong\downarrow^{Q}\rightarrow Q\coprod_{I\coprod}{}_{C}C\downarrow f$

$C\coprod_{C}P-P\coprod_{D}Q\square _{C}P$ $D\coprod_{D}Q-Q\coprod_{C}P\coprod_{D}Q$

$f\coprod I$ $g\coprod I$

The context is called strict if $f$ and $g$ are injective, hence isomorphisms. In
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this case the categories $\ovalbox{\tt\small REJECT}^{c}$ and $R^{D}$ of comodules over $C$ , resp. $D$ , are equi-

valent categories.

The following remark extends a corresponding one for Morita contexts
given in [CRW].

2.2. PROPOSITION. Let $(C, D,{}_{c}P_{D,D}Q_{C}, f, g)$ be a Morita-Takeuchi context
such that $f$ is in.iective. Then $\ovalbox{\tt\small REJECT}^{c}$ is equivalent to a quotient category of $\ovalbox{\tt\small REJECT}^{D}$ .

PROOF. Theorem 2.5 of [T] yields that $f$ is an isomorphism and the exact

functor $S=-\coprod_{D}Q:\ovalbox{\tt\small REJECT}^{D}\rightarrow\ovalbox{\tt\small REJECT}^{C}$ , has a right adjoint $T=-\coprod {}_{c}P:\ovalbox{\tt\small REJECT}^{C}\rightarrow\ovalbox{\tt\small REJECT}^{D}$ such
that the natural transformation $f^{-1}$ : $ST\rightarrow Id$ is an isomorphism. By a result
of P. Gabriel (cf. [G] or Proposition 15.18 of [F]) we have: $kerS=\{X\in\ovalbox{\tt\small REJECT}^{D}$ ,

$X\coprod_{D}Q=0\}$ is a localizing subcategory of $\ovalbox{\tt\small REJECT}^{D}$ and $S$ induces an equivalence

from the quotient category $\ovalbox{\tt\small REJECT}/KerS$ to $Bt^{C}$ . $\square $

2.3. COROLLARY. Let $(C, D,{}_{c}P_{D,D}Q_{C}, f, g)$ be a Morita-Takeuchi context
such that $f$ is injective then $g$ is $in$] $ective$ (i.e. the context is strict) if and only

if $DQ$ is faithfully coflat. $\square $

PROOF. By Proposition 2.2 the injectivity of $g$ is equivalent to $S$ being an
equivalence, again equivalent to $KerS=\{0\}$ or $DQ$ being faithfully coflat. $\square $

Before establishing the main result of this section let us point out that there
is a natural way to associate a graded coalgebra to a given Morita-Takeuchi
context. Indeed, if we have a Morita-Takeuchi context $(C, D,{}_{c}P_{D}, DQ_{c}, f, g)$

let $x\rightarrow\sum x_{-1}\otimes x_{0}$ , resp. $x\leftrightarrow\sum x_{(0)}\otimes x_{(1)}$ , be the left, resp. right, comodule struc-

ture of $P$, resp. $Q$ . The image of $u\in C$ (resp. $D$) under $f$ (resp. g) in $P\coprod_{D}Q$

(resp. $Q\coprod {}_{C}P$) will be denoted by $\sum f(u)_{1}\otimes f(u)_{2}$ . (resp. $\sum g(u)_{1}\otimes g(u)_{2}$).

Put $\Gamma=\left(\begin{array}{ll}C & P\\Q & D\end{array}\right)=\{\left(\begin{array}{ll}c & p\\q & d\end{array}\right),$ $c\in C,$ $d\in D,$ $p\in P,$ $q\in Q\}$ .

We make $\Gamma$ into a coalgebra by defining $\Delta:\Gamma\rightarrow\Gamma\otimes\Gamma$ as follows:

$\Delta\left(\begin{array}{ll}c & 0\\0 & 0\end{array}\right)=\Sigma\left(\begin{array}{ll}c_{1} & 0\\0 & 0\end{array}\right)\otimes\left(\begin{array}{ll}c_{2} & 0\\0 & 0\end{array}\right)+\Sigma\left(\begin{array}{ll}0 & f(c)_{1}\\0 & 0\end{array}\right)\otimes\left(\begin{array}{ll}0 & 0\\f(c)_{2} & 0\end{array}\right)$

$\Delta\left(\begin{array}{ll}0 & 0\\0 & d\end{array}\right)=\sum\left(\begin{array}{ll}0 & 0\\0 & d_{1}\end{array}\right)\otimes\left(\begin{array}{ll}0 & 0\\d_{2} & 0\end{array}\right)+\Sigma\left(\begin{array}{ll}0 & 0\\g(d)_{1} & 0\end{array}\right)\otimes\left(\begin{array}{ll}0 & g(d)_{2}\\0 & 0\end{array}\right)$

$\Delta\left(\begin{array}{ll}0 & p\\0 & 0\end{array}\right)=\sum\left(\begin{array}{ll}p_{-1} & 0\\0 & 0\end{array}\right)\otimes\left(\begin{array}{ll}0 & p_{0}\\0 & 0\end{array}\right)+\sum\left(\begin{array}{ll}0 & p_{(0)}\\0 & 0\end{array}\right)\otimes\left(\begin{array}{ll}0 & 0\\0 & p_{(1)}\end{array}\right)$

$\Delta\left(\begin{array}{ll}0 & 0\\q & 0\end{array}\right)=\sum\left(\begin{array}{ll}0 & 0\\0 & q_{-1}\end{array}\right)\otimes\left(\begin{array}{ll}0 & 0\\q_{0} & 0\end{array}\right)+\sum\left(\begin{array}{ll}0 & 0\\q_{(0)} & 0\end{array}\right)$
$\otimes\left(\begin{array}{ll}q_{(1)} & 0\\0 & 0\end{array}\right)$
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for $c\in C,$ $d\in D,$ $p\in P,$ $q\in Q$ , and extended linearly, $\epsilon$ : $I^{1}\rightarrow k$ given by $\epsilon\left(\begin{array}{ll}c & p\\q & d\end{array}\right)$

$=\epsilon_{C}(c)+\epsilon_{D}(d)$ . Moreover $\Gamma$ is Z-graded by putting $\Gamma_{0}=\left(\begin{array}{ll}C & 0\\0 & D\end{array}\right),$ $\Gamma_{-1}=\left(\begin{array}{ll}0 & 0\\Q & 0\end{array}\right)$

and $\Gamma_{1}=\left(\begin{array}{ll}0 & P\\0 & 0\end{array}\right),$ $\Gamma_{k}=0$ for $k\neq-1,0,1$ .

Let $C=\oplus_{\sigma\in G}C_{\sigma}$ be a coalgebra, graded by $G$ . Recall from [NT] that $C_{1}$

is a coalgebra with comultiplication $\Delta_{1}$ : $C_{1}\rightarrow C_{1}\otimes C_{1}$ given by $\Delta_{1}(c)=\sum\pi(c_{1})\otimes$

$\pi(c_{2})=\sum\pi(c_{1})\otimes c_{2}=\sum c_{1}\otimes\pi(c_{2})$ for all $c\in C_{1}$ , where $\pi:C\rightarrow C_{1}$ is the natural
projection. The co-unit of $C_{1}$ is just $\epsilon_{C}$ restricted to $C_{1}$ . Since $\pi$ is a coalge-
bra map, $C$ becomes a left $C_{1}$ -comodule via the structure map $\rho_{1}^{l}$ : $C\rightarrow C_{1}\otimes C$ ,
$c-\sum\pi(c_{1})\otimes c_{2}$ ( $c$ homogeneous) and it becomes a right $C_{1}$ -comodule via $\rho_{1}^{r}$ : $ C\rightarrow$

$C\otimes C_{1},$ $c-\succ\sum c_{1}\otimes\pi(c_{2})$ ( $c$ homogeneous). Now $C$ is a graded right C-comodule,
so by Theorem 1.6 $C$ is a right $C$ xkG-comodule via the map

$\rho_{2}^{r}$ : $C\rightarrow C\otimes(C\aleph kG),$ $c\rightarrow\Sigma c_{1}\otimes(c_{2}\rangle((\deg c)^{-1})$

for $c$ homogeneous. For any homogeneous $c\in C$ , we have $(l\otimes\rho_{2}^{r})\rho_{1}^{l}(c)=(\rho_{1}^{l}\otimes I)$

$\rho_{2}^{r}(c)=\sum\pi(c_{1})\otimes c_{2}\otimes(c_{3}\rangle\triangleleft(\deg c)^{-1})$ ; thus $C$ becomes a left $C_{1}$ , right $C\aleph k$ G-
bicomodule. In a similar way $C$ becomes a left $C\rangle\triangleleft kG$ , right $C_{1}$ -bicomodule
where the left $C\aleph k$ G-comodule-structure of $C$ is given by $\rho_{2}^{\iota}(c)=\sum(c_{1}\aleph\deg c_{2})$

$\otimes c_{2}$ , for any homogeneous $c\in C$ .

Define $f:C_{1}\rightarrow C\coprod_{C\aleph}{}_{kG}C,$ $c\rightarrow\sum c_{1}\otimes c_{2}=\Delta_{C}(c)$ . Observe that for any $c\in C_{1}$

we obtain:
$\Sigma\rho_{2}^{r}(c_{1})\otimes c_{2}=\Sigma c_{1}\otimes c_{2}(\deg c_{2})^{-1}(\deg c_{1})^{-1}\otimes c_{3}$

$=\sum c_{1}\otimes c_{2}\otimes\deg c_{3}\otimes c_{3}$

$=\sum c_{1}\otimes\rho_{2}^{\iota}(c_{2})$

so the definition of $f$ above is satisfactory. Moreover, $f$ is a morphism of left
and right $C_{1}$ -comodules as is easily verified. Note also that $f$ is injective be-
cause it is the restriction of the comultiplication of $C$ to $C_{I}$ .

Next define $g:C\rangle\triangleleft kG\rightarrow C\coprod_{C_{1}}C,$ $c\rangle\sqrt x-\sum c_{I}\otimes\pi_{x^{-1}}(c_{2})$ for $x\in G$ and homo-
geneous $c\in C$ , where $\pi_{x}$ denotes the projection from $C$ to $C_{x}$ . In order to have
that $g$ is well-defined it is necessary that: $\sum(c_{1})_{1}\otimes\pi((c_{1})_{2})\otimes\pi_{x^{-1}}(c_{2})=\sum c_{1}\otimes$

$\pi(\pi_{x^{-1}}((c_{2})_{1}))\otimes\pi_{x^{-1}}((c_{2})_{2})$ . However the left hand side is obtained from $\Sigma c_{1}\otimes c_{2}$

$\otimes c_{3}$ by collecting the terms with $\deg c_{2}=1$ and $\deg c_{3}=x^{-1}$ ; on the other hand
the right hand sum is an expression of the same thing. Moreover $g$ is a mor-
phism of right (and left) $C\rangle\triangleleft kG$-comodules; this follows from: $\Sigma_{\deg c_{2}=x^{-1}}(c_{1}\otimes$
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$(c_{2})_{\iota})\otimes((c_{2})_{2}xx)=\sum_{de()=x^{-1}(\deg c_{2})-1}gc_{12}((c_{1})_{1}\otimes(c_{1})_{2})\otimes(c_{2}\rangle\triangleleft x)$ because both members
are actually equal to: $\Sigma_{\deg c_{2}\deg c_{3}=x-1}(c_{1}\otimes c_{2})\otimes(c_{3}\rangle\triangleleft x)$ . The other assertion (left)

follows in a similar way.

2.4. THEOREM. With notation as above: $(C_{1}, C\rangle\triangleleft kG, c_{1}C_{C\times kG.C}{}_{kG}C_{C_{1}}, f, g)$

is a Morita-Takeuchi context. The map $f$ is injective hence an isomorphism.

PROOF. The only thing left to be proved is that $f$ and $g$ do satisfy the
compatibility conditions, $i.e$ . the following diagrams are commutative:

$C$
$\underline{\theta}C\coprod {}_{CXkG}C\aleph kG$

$C$

$\underline{\theta^{\prime}}$

$C\coprod_{C_{1}}C$

$\cong\downarrow\psi$

$\cong$

$\downarrow I\coprod g$ $\cong\downarrow\psi^{\prime}$

$\cong$

$\downarrow I\square f$

$C_{1}\coprod_{C_{1}}C_{\overline{f\coprod I}}C\coprod_{C\times}{}_{kG}C\coprod_{c_{1}}C$

$(C\aleph kG)\square $ CX ${}_{kG}C_{g\overline{\coprod I}}C\coprod_{C_{1}}C\square $ CX ${}_{kG}C$ .

Now for $c\in C_{x}$ we have: $(I\coprod g)\theta(c)=(I\square g)(\sum c_{1}\otimes(c_{2}\aleph x^{-1}))=\sum c_{1}\otimes c_{2}\otimes\pi_{x}(c_{3})=$

$\Sigma_{\deg c_{3}=x}c_{1}\otimes c_{2}\otimes c_{3}$ , and also $(f\coprod I)(\psi(c))=(f\coprod I)(\Sigma\pi(c_{1})\otimes c_{2})=(f\coprod I)(\Sigma_{\deg c_{1}}{}_{=1}C_{1}$

$\otimes c_{2})=(f\coprod I)(\Sigma_{\deg c_{2}=x}c_{1}\otimes c_{2})=\Sigma_{\deg c_{3}=x}C_{1}\otimes C_{2}\otimes C_{3}$ .

That proves commutativity of the first diagram. For the second diagram

we just compute: $(I\coprod f)\theta^{\prime}(c)=(I\coprod f)(\Sigma c_{1}\otimes\pi(c_{2}))=(I\coprod f)(\Sigma_{\deg c_{2}}{}_{=1}C_{1}\otimes c_{2})=(I\coprod f)$

$(\Sigma_{\deg c_{1}=x}C_{1}\otimes c_{2})=\Sigma_{\deg c_{1}\Rightarrow x}C_{1}\otimes c_{2}\otimes c_{3}$ and also $(g\coprod I)\psi^{\prime}(c)=(g\coprod I)(\Sigma(c_{1}\rangle\triangleleft\deg c_{2})$

$\otimes c_{2})=\Sigma_{\deg c_{2}=(\deg c_{3})-\iota C_{1}\otimes C_{2}\otimes c_{3}=\Sigma_{\deg c_{2}\deg c_{3}}{}_{=1}C_{1}\otimes C_{2}\otimes c_{3}=\Sigma_{\deg c_{1}=x}C_{1}\otimes C_{2}\otimes C_{3}}$ . $\square $

2.5. COROLLARY. $JfC=\oplus_{\sigma\in G}C_{\sigma}$ is a graded coalgebra then $\ovalbox{\tt\small REJECT}^{C_{1}}$ is equi-

valent to a quotient category of $gr^{c}$ .

PROOF. A consequence of Theorem 1.6, Theorem 2.4 and Proposition 2.2. $\square $

Recall that a G-graded coalgebra $C=\oplus_{\sigma\in G}C_{\sigma}$ is said to be strongly graded

if the canonical k-linear map $\gamma_{u.v}$ : $C_{u,v}\rightarrow C_{u}\otimes C_{v},$ $c\vdash\rightarrow\Sigma\pi_{u}(c_{1})\otimes\pi_{v}(c_{2})$ , is injective

for all $u,$ $v\in G$ (see [NT]). The next result establishes that strongly graded

coalgebras may be characterized using the Morita-Takeuchi context from Theo-
rem 2.4 just like in the case of group-graded rings (see [CM]).

2.6. COROLLARY. Let $C=\oplus_{\sigma\in G}C_{\sigma}$ be a G-graded coalgebra, then the follow-
ing assertions are equivalent:

1. $C$ is strongly G-graded

2. The context given in Theorem 2.4. is strict
3. $C$ is faithfully coflat as a left $Cx$ kG-comodule.
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PROOF. $2.\Rightarrow 1$ . Take $u,$ $v\in G$ and $c\in C_{uv}$ such that we have: $\gamma_{u,v}(c)=$

$\Sigma\pi_{u}(c_{1})\otimes\pi_{v}(c_{2})=0$ . Then $g(c\aleph v^{-1})=\Sigma c_{1}\otimes\pi_{v}(c_{2})=\Sigma\pi_{u}(c_{1})\otimes\pi_{u}(c_{2})=0$ , hence
$c\rangle\triangleleft v^{-1}=0$ and $c=0$ .

$1.\Rightarrow 2$ . Let $\alpha=\sum c_{i}\aleph x_{i}\in C\rangle\triangleleft kG$ with $c_{i}$ homogeneous of degree $\sigma_{i}$ . Sup-
pose that for $i\neq j$ we have $(\sigma_{i}, x_{i})\neq(\sigma_{j}, x_{j})$ . If $g(\alpha)=0$ then $\sum_{t.(c_{i})}(c_{i})_{1}\otimes$

$\pi_{x\overline{i}^{1}}((c_{i})_{2})=0$ , therefore $\Sigma_{i.(c_{i})}\pi_{\sigma_{i}x_{i}}((c_{i})_{1})\otimes\pi_{x\overline{i}^{1}}((c_{i})_{2})=0$ . On the other hand:
$\pi i^{\sigma x}((c_{i})_{1})\otimes\pi(c_{i})_{2})\in C_{\sigma_{i}x_{i}}\otimes C_{x}$ . Since $C\otimes C=\oplus_{u}.{}_{v\in G}C_{u}\otimes C_{v}$ we obtain for
fixed $i$, the relation: $\Sigma_{(c_{i})}\pi_{\sigma}i^{x}i((c_{i})_{I})\otimes\pi_{r_{\overline{l}}^{1}}((c_{i})_{2})=0$ . The latter yields $\gamma_{\sigma xx_{i}^{-1}}ii\cdot(c_{i})$

$=0$ and therefore $c_{i}=0$ for every choice of $i,$ $i$ . $e$ . $\alpha=0$ follows.
$2.\Leftrightarrow 3$ . Follows from Corollary 2.3. $\square $

As a further application we reobtain Theorem 5.3 of [NT] which is a co-
algebra version of a well-known result of E. Dade.

2.7. COROLLARY. The graded coalgebra $C$ is strongly graded if and only if
the induced functor $-\coprod_{C_{1}}C;\ovalbox{\tt\small REJECT}^{C_{1}}\rightarrow gr^{C}$ is an equivalence of categories.

2.8. REMARK. The functor $(-)_{1}$ : $gr^{c}\rightarrow\ovalbox{\tt\small REJECT}^{C_{1}},$ $M\vdash\rightarrow M_{1}$ , is naturally isomorphic

to the functor $-\coprod_{C\aleph kG}G$ since they are both left adjoints of the induced
functor $-\coprod_{C_{1}}C$ (see [NT] Proposition 4.1, [T] Remark 2.4). Therefore the
localizing category implicit in Corollary 2.5 is just $Ker(-)_{1}=Ker(-\square {}_{c\rangle 4kG}C)$ .

As a final application of these techniques let us include a short proof of
Corollary 6.4 in [NT].

2.9. COROLLARY. If $C$ is a strongly graded coalgebra for the group $G$ then
$G$ is a finite group.

PROOF. If $G$ is infinite we could select a non-zero homogeneous $c\in C$ and
$x\in G$ such that $x\neq\deg(c_{2})^{-1}$ for all $c_{2}$ . Then $g(cxx)=0$ , but that would con-
tradict injectivity of $g$ . $\square $

3. Duality.

For a quasi-finite right C-comodule $M$, the so-called coalgebra of ”co-endo-
morphisms” of $M$ has been defined in [T., 1.17] and it is denoted by $e_{-C}(M)$ .
Unfortunately this coalgebra is not easy to use because of the rather complex

comultiplication, so it will be useful to give a nicer description of $e_{-C}(M)$ in
some particular situation, $e$ . $g$ . in case $M$ is a finitely cogenerated free-comodule
(that is, $M\cong X\otimes C$ , for some finite dimensional k-vectorspace $X$, with the obvious
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comodule structure).

Let $C$ be a coalgebra, $X$ an $n$ -dimensIonal k-space with basis $\{x_{1}, \cdots, x_{n}\}$ .
Consider the $n\times n$ comatrix coalgebra $M^{c}(n, k)$ which is a k-space with basis
$\{x_{ij}, 1\leqq i, j\leqq n\}$ and $\Delta,$ $\epsilon$ given as follows: $\Delta(x_{ij})=\sum_{p}x_{ip}\otimes x_{pi},$ $\epsilon(x_{ij})=\delta_{ij}$ .

The $n\times n$ comatrix coalgebras over $C$ , denoted by $M^{c}(n, C)$ is defined to

be the tensor product of coalgebra $C\otimes M^{c}(n, k)$ . We endow $C\otimes X$ with a left

C-and a right $M^{c}(n, C)$-bicomodule structure as follows. The left C-comodule
structure is given by by the map: $\rho_{1}^{l}$ : $C\otimes X\rightarrow C\otimes C\otimes X,$ $c\otimes x\mapsto\sum C_{1}\otimes C_{2}\otimes X$ .
The right $M^{c}(n, C)$-comodule structure is given by the map: $\rho_{2}^{r}$ : $C\otimes X\rightarrow C\otimes X$

$\otimes M^{c}(n, C),$ $C\otimes X_{i}\leftrightarrow\Sigma_{p}C_{1}\otimes X_{p}\otimes C_{2}\otimes X_{pi}$ .
In a similar way $C\otimes X$ is a left $M^{c}(n, C)$-right C-bicomodule via the structure

maps:
$\rho_{1}^{r}$ : $C\otimes X\rightarrow C\otimes X\otimes C,$ $c\otimes x-\succ\Sigma c_{1}\otimes x\otimes c_{2}$

$\rho_{2}^{l}$ : $C\otimes X\rightarrow M^{c}(n, C)\otimes C\otimes X,$
$c\otimes x_{i}\leftrightarrow\sum_{p}c_{1}\otimes x_{ip}\otimes c_{g}\otimes x_{p}$

Define $f:C\rightarrow(C\otimes X)\coprod_{M^{c}tn.C)}(C\otimes X),$ $ c-\rangle$ $\sum_{i,(c)}(c_{i}\otimes x_{i})\otimes(c_{2}\otimes x_{i})$ , which is ob-
viously injective and C-bicolinear. Define $g:M^{c}(n, C)\rightarrow(C\otimes X)\coprod_{c}(C\otimes X),$ $ C\otimes$

$x_{ij}\leftrightarrow\sum(c_{1}\otimes x_{i})\otimes(c_{2}\otimes x_{j})$ which is also injective and $M^{c}(n, C)$-bicolinear. One
easily verifies the following relations:

(I $\coprod f$ ) $\rho_{1}^{r}(c\otimes x_{i})=(g\coprod I)\rho_{2}^{l}\langle c\otimes x_{i})=\sum_{p}c_{1}\otimes x_{i}\otimes c_{2}\otimes x_{p}\otimes c_{s}\otimes x_{p}$

$(f\coprod I)\rho_{1}^{l}(c\otimes x_{i})=(I\square g)\rho_{2}^{r}(c\otimes x_{i})=\sum_{p}c_{1}\otimes x_{p}\otimes c_{2}\otimes x_{p}\otimes c_{3}\otimes x_{i}$

According to results of [T] we immediately obtain:

3.1. PROPOSITION. $(C, M^{c}(n, C), C\otimes X, C\otimes X, f, g)$ is a strict Morita-
Takeuchi context. In particular we have coalgebra isomorphisms:

$e_{C-}(C\otimes X)\cong M^{c}(n, C)\cong e_{-C}(C\otimes X)$

3.2. THEOREM. Let $G$ be a finite group acting on the coalgebra $D$ , then
$D\rangle tkG^{*}$ is a strongly graded coalgebra and there exist coalgebra isomorphlsms:

$(D\aleph kG^{*})\rangle\triangleleft kG\cong e_{D-}(D\aleph kG^{*})\cong M^{c}(n, D)$

where $n=|G|$ .

PROOF. The map $\rho:D\otimes kG^{*},$ $d\mapsto\Sigma_{g}(g\cdot d)\otimes p_{g}$ , makes $D$ into a $kG^{*_{-}}$

comodule. The comultiplication of $DxkG^{*}$ is given by $\Delta(dxp_{x})=\Sigma_{uv=x}(d\aleph p_{v})$

$\otimes(vd_{2}\aleph p_{u})$ . This establishes that $D\aleph kG^{*}$ is a graded coalgebra of type $G$

with grading given by $(D\rangle tkG^{*})_{g}=D*p_{g}-1$ . The canonical morphism $ D\aleph p_{1}\rightarrow$
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$(D\rangle\not\in p_{\sigma^{-1}})\otimes(D\rangle tp_{\sigma}),$ $ d\rangle\triangleleft p_{1}-\rangle$ $\sum(d_{1}\aleph p_{\sigma^{-1}3})\otimes(\sigma^{-1}d_{2}\aleph\rho_{\sigma})$ , is clearly injective. Thus
$D\rangle\triangleleft kG^{*}$ is a strongly graded coalgebra, and $(D\rangle\triangleleft kG^{*})_{1}=Dnp_{1}\cong D$ . Applying

the Morita-Takeuchi context (constructed in Section 2) to $DxkG^{*}$ , we have a
strict context and so it provides us with coalgebra isomorphisms:

$(D\rangle\triangleleft kG^{*})\rangle\triangleleft kG\cong e_{(D\chi p_{1})-}(D\rangle\triangleleft kG^{*})\cong e_{D-}(D\aleph kG^{*})$ .

The left $(D\rangle\triangleleft p_{1})$-structure of $D\rangle\triangleleft kG^{*}$ is given by $d\rangle\triangleleft p_{x}\mapsto\div\sum(d_{1}\rangle\triangleleft p_{1})\otimes(d_{2}\aleph p_{x})$ ,

and this yields exactly the left D-comodule structure of $D\otimes X$ where $X=kG^{*}$

is a k-space of dimension $n$ . Proposition 3.1 yields the second isomorphism. $\square $

A similar result holds for graded coalgebras (or coactions).

3.3. THEOREM. Let $C$ be a coalgebra graded by the finite gronp G. Then
$G$ acts on the coalgebra $CnkG$ and there are coalgebra isomorphisms:

$(C\rangle\triangleleft kG)\rangle\not\in kG^{*}\cong e_{C-}(C\rangle\triangleleft kG)\cong M^{c}(n, C)$

PROOF. An action of $G$ on the coalgebra $C\aleph kG$ is given by $h\cdot(c\aleph g)=$

$c\rangle\triangleleft gh^{-1},$ $g,$ $h\in G$ and $c\in C$ . Thus $C\rangle\triangleleft kG$ becomes a $kG^{*}$-comodule coalgebra

via the map:
$C\aleph g-\sum_{y}y\cdot(C\aleph g)\otimes p_{y}=\sum_{y}(c\aleph gy^{-1})\otimes p_{y}$ .

The comultiplication of $(C\aleph kG)\aleph kG^{*}$ is given by

$\Delta((c\rangle 4x)\aleph p_{g})=\sum_{uv=g}((C_{1}\rangle\triangleleft\deg c_{2}\cdot x)\aleph p_{v})\otimes((C_{2}\aleph xv^{-1})\aleph p_{u})$

for any $x,$ $g\in G$ and homogeneous $c\in C$ . Now let $\{e_{x,y}, x, y\in G\}$ be a basis
for $M^{C}(n, k)$ . Define a map $F:(C\rangle\triangleleft kG)\aleph kG^{*}\rightarrow M^{c}(n, C),$ $(c\rangle\triangleleft x)\aleph p_{g}-c\otimes e_{\alpha.\beta}$

where $\alpha=\deg c\cdot x,$ $\beta=xg^{-1}$ for $x,$ $g\in G$ and homogeneous $c\in C$ . Let us check
that $F$ is a coalgebra morphism. Indeed,

$\Delta(F((C\aleph x)\aleph p_{g}))=\Delta(c\otimes e_{\alpha.\beta})$

$=\sum_{z.(C)}(c_{1}\otimes e_{\alpha.z})\otimes(c_{2}\otimes e_{z.\beta})$

and also

$(F\otimes F)(\Delta((e\aleph x)\rangle\triangleleft p_{g})=\sum_{uv=g}(c_{1}\otimes e_{\deg c_{1}\deg c_{2}x\deg c_{2}xv^{-1}})\otimes(c_{2}\otimes e_{\deg c_{2}xv^{-1}.xv^{-1}.u^{-1}})$

$=\sum_{v}(c_{1}\otimes e_{\alpha.\deg c_{2}xv^{-1}})\otimes(c_{2}\otimes e_{\deg c_{2}xv^{-1}.\beta})$ .

Since $\{\deg c_{2}xv^{-1}, v\in G\}=G$ , both sums are equal. Now, consider $(cxx)xp_{g}\in$

$(C\aleph kG)\aleph kG^{*}$ for $x,$ $g\in G$ and $c$ homogeneous. Write $\epsilon$ for the co-unit of
$(CxkG)xkG^{*}$ and $\epsilon^{\prime}$ for the co-unit of $M^{c}(n, C)$ . Then we have:



406 S. $D\check{A}SC\check{A}$ LESCU, C. $N\check{A}$ STASESCU, S. RAIANU and F. Van 0YSTAEYEN

$\epsilon((C\aleph x)\rangle\triangleleft p_{g})=\epsilon_{C}(c)\delta_{\deg c.1}\delta_{g.1}$

$\epsilon^{\prime}(c\otimes e_{\alpha.\beta})=\epsilon_{C}(c)\delta_{\deg c.1}\delta_{\deg cx.xg}-1$

$=\epsilon_{C}(c)\delta_{\deg c.1}\delta_{x.xg}-1=\epsilon_{C}(c)\delta_{\deg c.1}\delta_{1.g}-1$

$=\epsilon_{C}(c)\delta_{\deg c.1}\delta_{g.1}$ .

Therefore $F$ is a coalgebra map as claimed. Now define $H:M^{c}(n, C)\rightarrow(C\aleph kG)$

$\times kG^{*}$ by putting $H(c\otimes c_{u.v})=(C\aleph(\deg c)^{-1}u)\aleph p_{v-I(\deg c)-1u}$ , for $u,$ $v\in G$ and

homogeneous $c\in C$ . Again $H$ is a coalgebra morphism because:

$\Delta(H(c\otimes e_{u.v})$

$=\Sigma_{zt=v-1(dec)}g$ -lu $((C_{1}\rangle\triangleleft\deg c_{2}(\deg c)^{-1}u)\aleph p_{\iota})\otimes((C_{2}\aleph(\deg c)^{-1}ut^{-1}(\aleph p_{z})$

$(H\otimes H)(\Delta(c\otimes e_{u.v}))$

$=(H\otimes H)(\Sigma_{\hslash}(c_{1}\otimes e_{u.h})\otimes(c_{2}\otimes e_{h.v}))$

$=\Sigma_{h}((C_{1}\aleph(\deg c_{1})^{-1}u)\aleph p_{h-1(\deg c_{1})-Iu})\otimes((C_{2}\aleph(\deg c_{2})^{-1}h)\aleph p_{v-1(\deg c_{2^{)-1h}}})$ .

For fixed $c_{1}$ and $u$ we have that $\{h^{-1}(\deg c_{1})^{-1}u), h\in G\}=G$ and if we write
$t=h^{-1}(\deg c_{1})^{-1}u,$ $z=v^{-1}(\deg c_{2})^{-1}h$ , then the above sums are clearly equal as
desired. The fact that $H$ preserves the co-unit too is obvious. $F\dot{l}nally$ it is
clear that $F\cdot H$ and $H\cdot F$ are the identities so that we do arrive at a coalgebra
isomorphism. The isomorphism involving $e_{c-}(C\rangle\triangleleft kG)$ is obvious because of
Proposition 3.1 (the left C-comodule structure of $C\aleph kG$ is given bp $ cxg\mapsto$

$\Sigma c_{1}\otimes(c_{2}xg))$ . $\square $

3.4. COROLLORY. There exists a strict Morita-Tekeuchi context connecting $C$

and $(C\aleph kG)\aleph kG^{*}$ .

PROOF. $C\aleph kG$ is a left C-comodule that is a quasi-finite injective co-
generator (in view of Proposition 3.1 and [T]). Moreover $C\aleph kG$ is a right
( $C\rangle(kG)\aleph kG^{*}$-comodule via $c\aleph g-\Sigma_{u}(c_{1}\aleph\deg c_{2}gu)\otimes(c_{2}\aleph gu)\aleph p_{u^{-1}}$ , for $g\in G$

and homogeneous $c\in C$ . Hence $C\aleph kG$ is a $C-(C\aleph kG)\aleph kG^{*}$-bicomodule. The
assertion now follows from [ $T$ , Theorem 3.5 iv]. $\square $

3.5. REMARKS. The Morita-Takeuchi context of the above corollary may
be given in detail. This may have an independent interest because it provides

another proof of Theorem 3.3 and provides a hint for establishing a more
general duality result we do not dwell upon here. The second bicomodule is
also $C\aleph kG$ with right C-comodule structure given by the map: $cxg-$,
$\sum(c_{1}\aleph\deg c_{2}g)\otimes c_{2}$ (for homogeneous c) and left $(CxkG)x$ $k$ G*-comodule struc-
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ture given by: $c\aleph g-\succ\Sigma_{\hslash}(c_{1}\aleph\deg c_{2}g)\aleph p_{h}\otimes(c_{2}\aleph gh)$ (for homogeneous c) we have
$f$ : $C\rightarrow(C\aleph kG)\coprod_{(C\aleph kG)\prime\triangleleft kG*}(C\aleph kG),$ $f(c)=\sum_{h}(c_{1}\aleph\deg c_{2}h)\otimes(c_{2}\aleph h_{2})$ for homo-
geneous $c\in C,$ $g:(C\aleph kG)\aleph kG^{*}\rightarrow(C\aleph kG)\coprod_{C}(C\aleph kG),$ $ g((c\aleph g)\aleph p_{h})=\sum(C_{1}\aleph$

$\deg c_{2}g)\otimes(c_{2}xgh)$ , for homogeneous $c\in C$ . It is also easily seen that $f$ and $g$

are $in|ective$ maps.
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