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A REMARK ON MINIMAL MODELS

By

Koichiro IKEDA

Abstract. We prove the following theorem: Let $T$ be superstable
and let $A$ any set. Then there is no minimal model over $A$ which
has an infinite set of indiscernibles over $A$ .

0. Introduction

A model $M$ is said to be minimal if there is no proper elementary submodel
of $M$. We consider the size of indiscemible sets in a minimal model. Shelah
showed that if a theory $T$ is totally transcendental then there is no infinite
indiscernible set in a minimal model of $T$ (see [3, IV, Theorem 4.21]). On the
other hand, in [2] Marcus constructed a minimal (and prime) structure with an
infinite indiscernible set. His structure is stable but not superstable. Our aim
here is therefore to extend the above statement to a superstable tlieory.

Shelah’s proof is as follows: Let $M$ be a model having an infinite indis-
cernible set $I$ . Pick any $a\in I$ and let $J=I-\{a\}$ . Since $T$ is totally tran-
scendental, there is $N\prec M$ which is primary (and hence atomic) over $J$ . By
indiscemibility of $I$ , we have $a\not\in N$ . Hence $M$ is not minimal.

Our proof is similar to his one. However, for the general case, we do not
necessarily have the existence of primary models. So, instead of $N$ above, we
take in $M$ a maximal set $E$ which includes $J$ but is independent from $a$ . We
call such $E$ a $tp(a)$-envelope of $J$ in $M$ (see Definition 1.2 for the exact defini-
tion). First we show that if $T$ is superstable, $E$ is an elementary submodel of
$M$ (Lemma 1.4). It follows that $M$ is not minimal, and hence we can obtain
our theorem. At the end of the paper, we give a stable structure having an
infinite indiscemible set (Example 1.7). The way of the construction is essentially

same as Marcus’s one [2].

1. The size of indiscernible sets

1.1. NOTATION. We fix a (possibly uncountable) stable theory $T$ . We
usually work in a big model $C$ of $T$ . Our notations are fairly standard.
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$A,$ $B,$ $\cdots$ are used to denote small subsets of C. $\overline{a},\overline{b},$
$\cdots$ are used to denote

finite sequences of elements in C. $\varphi,$
$\psi,$ $\cdots$ are used to denote formulas (with

parameters). $p,$ $q,$
$\cdots$ are used to denote types (with parameters). The nonforking

extension of a stationary types $p$ to the domain $A$ is denoted by $p|A$ . The
type of $a$ over $A$ is denoted by $tp(a/A)$ . $R^{\infty}(p)$ (resp. $R^{\infty}(\varphi)$) is the infinity

rank of a type $p$ (resp. a formula $\varphi$). We simply write $R^{\infty}(a/A)$ instead of
$R^{\infty}(tp(a/A))$ . The set of realizations of a type $p$ (resp. a formula $\varphi$ ) in a model
$M$ is denoted by $p^{M}$ (resp. $\varphi^{M}$ ).

1.2. DEFINITION. Let $M$ be a model and $A\subset B\subset M$ . Let $p\in S(A)$ be
stationary. Then a p-envelope of $B$ in $M$ is a maximal set $E$ such that
$B\subset E\subset M$ and any element of $(p|B)^{M}$ is independent from $E$ over $A$ .

1.3. REMARK. The notion of ”envelopes” was introduced in [1], and was
defined in the context of totally categorical theories. Our definition is a
generalization of that in [1].

1.4. LEMMA. Let $T$ be superstable. Let $M$ be a model and $A\subset M$. Let
$p\in S(A)$ be stationary. Suppose that $M$ contains some infinite Morley sequence $I$

of $p$ . Then a p-envelope of $I\cup A$ in $M$ is an elementary submodel of $M$.

PROOF. For the simplicity of the notation, we may assume that $ A=\emptyset$ .
Take any p-envelope $E$ of $I$ in $M$. If $(p|l)^{H}=\emptyset$ , then $E=M$. So we assume
that $(p|I)^{H}\neq\emptyset$ . Assume by way of contradiction that $E$ is not an elementary

submodel of $M$. Then, by the Tarski criterion, there is a consistent formula
$\varphi(x,\overline{e}_{0})\in L(E)$ such that $\varphi^{M}\cap E=\emptyset$ . By superstability, pick an element $b$ of
$\varphi^{M}$ such that $R^{\infty}(b/E)$ is minimal.

CLAIM. Any $a\in(p|I)^{M}$ is independent from $b$ over $E$ .

PROOF. Assume otherwise. Then there is an element $a$ of $(p I)^{M}$ such
that $tp(a/Eb)$ forks over $E$ . Take a formula $\theta(x,\overline{e}_{1})\in tp(b/E)$ such that
$R^{\infty}(b/E)=R^{\infty}(\theta)$ . Now $tp(a/Eb)$ forks over $\emptyset$, so there is $\overline{e}\in E$ such that
$tp(a/\overline{e}b)$ forks over $\emptyset$ . Then we may assume that $\overline{e}_{0},\overline{e}_{1}\subset\overline{e}$ . Note that $tp(a/\overline{e})$

does not fork over $\emptyset$ (because $\overline{e}\in E$ ). It follows that $tp(b/\overline{e}a)$ forks over $\overline{e}$ . So
we can get a formula $\psi(x,\overline{e}, a)\in rp(b/\overline{e}a)$ such that, if $F\psi(b^{\prime},\overline{e}, a)$ then
$tp(b^{\prime}/\overline{e}a)$ forks over $\overline{e}$ . Let $\Gamma(a,\overline{e})$ denote $(\exists x)(\varphi(x,\overline{e}_{0})\wedge\psi(x,\overline{e}, a)\wedge\theta(x,\overline{e}_{1}))$ .
Now the weight of $\overline{e}$ is finite since $ R^{\infty}(\overline{e})<\infty$ . Therefore we can pick $a^{\prime}\in I$

such that $tp(a^{\prime}/\overline{e})$ does not fork over $\emptyset$ . Remember that $tp(a/\overline{e})$ does not forks
over $\emptyset$ . It follows that $tp(a/\overline{e})=tp(a^{\prime}/\overline{e})$ . Hence $\Gamma(a^{\prime},\overline{e})$ holds. Therefore
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there is an element $b^{\prime}\in\varphi^{M}$ such that $R^{\infty}(b^{\prime}/\overline{e})\leqq R^{\infty}(b/E)$ and $tp(b^{\prime}/\overline{e}a^{\prime})$ forks
over $\overline{e}$ . Thus $R^{\infty}(b/E)\geqq R^{\infty}(b^{\prime}/\overline{e})>R^{\infty}(b^{\prime}/\overline{e}a^{\prime})\geqq R^{\infty}(b^{\prime}/E)$ . Moreover $R^{\infty}(b^{\prime}/E)\neq 0$

because $b^{\prime}$ satisfies $\varphi$ . But this contradicts the minimality of $R^{\infty}(b/E)$ . Hence
the claim holds.

Thus any $a\in(p|I)^{M}$ is independent from $bE$ over $I$ . But this contradicts
that $E$ is an envelope. Hence $E$ is an elementary submodel. This completes

the proof of the lemma. $\square $

1.5. EXAMPLE. Let Per $(\omega)$ denote the set of permutations of $\omega$ which
move only a finite number of elements. For each $ i<\omega$, define a function
$\pi_{i}$ ; Per $(\omega)\rightarrow\omega$ such that $\pi_{i}(\sigma)=\sigma(i)$ . Let $A=\omega\cup Per(\omega)$ . Consider the structure
$M=(A;\omega, Per(\omega),$ $\{\pi_{i}\}_{i<\omega}$). Then $\omega$ is a Morley sequence of $tp(O)$ . Note that
for any $\sigma\in Per(\omega),$ $\omega\subset dcl(\sigma)$ ( $=the$ definable closure of $\sigma$ ). Therefore $\omega-\{0\}$

is the $tp(O)$-envelope of $\omega-\{0\}$ in $M$. However $\omega-\{0\}$ is not a model. Moreover
$T=Th(M)$ is not superstable (since the weight of $\sigma$ is infinite). This example

shows that we need, in lemma 1.4, the assumption that $T$ is superstable.

1.6. THEOREM. Let $T$ be superstable and let $A$ any set. Then there is no
minimal model over A which has an infinite set of indiscernibles over $A$ .

PROOF. Suppose that $M$ has an infinite set $I$ of indiscernibles over some
set $A$ . We can assume that $I$ is already an infinite Morley sequence of some
$p\in S(A)$ because $\kappa(T)$ is countable. Pick any $a\in I$ . By lemma 1.4, a p-envelope
$E$ of $(I-\{a\})\cup A$ in $M$ is an elementary submodel of $M$. It is clear that $a\not\in E$ .
Hence $M$ is not minimal. A contradiction. $\square $

1.7. EXAMPLE (see [2]). Theorem 1.6 can not be extended to a stable
theory. We construct a minimal structure with an infinite indiscemible set.
Recall the structure $M=(A;\omega, Per(\omega),$ $\{\pi_{i}\}_{i<\omega}$ ) (see Example 1.5). Note that

this structure is not minimal. But by modifying the construction, we can obtain
a minimal one: For each $ n<\omega$, we define inductively $P_{n}$ and $\{\pi_{a}^{n} : a\in P_{n}\}$

which satisfy the following properties:
(i) $ P_{0}=\omega$, and $\pi_{a}^{0}=\pi_{a}(a\in P_{0})$ ;
(ii) $P_{n+1}=Per(P_{n})(n<\omega)$ ;
(iii) $\pi_{a}^{n+1}$ ; $P_{n+1}\rightarrow P_{n}$ is a function such that $\pi_{a}^{n+1}(\sigma)=\sigma(a)(a\in P_{n}, n<\omega)$ .

Let $A^{*}=\cup\{P_{n} : n<\omega\}$ . Consider the structure $M^{*}=(A^{*};$ $\{P_{n} : n<\omega\}$ ,
$\{\pi_{a}^{n} : a\in P_{n}, n<\omega\})$ . Then for each $ n<\omega$, if $\sigma\in P_{n+1}$ then we have $P_{n}\subset dcl(\sigma)$ .
Hence $M^{*}$ is a minimal model (Proof: Take any $N\prec M^{*}$ and $a\in M^{*}$ . Then
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there is some $n$ such that $a\in P_{n}$ . Now $ P_{n+1}\cap N\neq\emptyset$ , so we can pick some
$\sigma\in P_{n+1}\cap N$. Therefore $a\in dcl(\sigma)\subset N$, so $a\in N$ . It follows that $N=M^{*}$). It is
easy to see that $ P_{0}=\omega$ is an infinite indiscernible set. Moreover $M*is$ not

superstable, since $M$ is interpreted in $M^{*}$ (Recall that $M$ is not superstable).

References

[1] G. L. Cherlin, L. Harrington and A. H. Lachlan, $\aleph_{0}$-categorical, $\aleph_{0}$-stable structures,

Annals of Pure and Applied Logic 2 (1985), 101-137.
[2] L. Marcus, A minimal prime model with an infinite set of indiscernibles, Israel

Journal of Mathematics 11 (1972), 180-183.
[3] S. Shelah, Classification Theory, North-Holland, Amsterdam, 1990.

Institute of Mathematics
University of Tsukuba
Tsukuba-shi, lbaraki, 305
Japan


	A REMARK ON MINIMAL MODELS
	0. Introduction
	1. The size of indiscernible ...
	References


