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A REMARK ON MINIMAL MODELS

By

Koichiro IKEDA

Abstract. We prove the following theorem: Let 7 be superstable
and let A any set. Then there is no minimal model over A which
has an infinite set of indiscernibles over A.

0. Introduction

A model M is said to be minimal if there is no proper elementary submodel
of M. We consider the size of indiscernible sets in a minimal model. Shelah
showed that if a theory T is totally transcendental then there is no infinite
indiscernible set in a minimal model of T (see [3, IV, Theorem 4.21]). On the
other hand, in Marcus constructed a minimal (and prime) structure with an
infinite indiscernible set. His structure is stable but not superstable. Our aim
here is therefore to extend the above statement to a superstable thieory.

Shelah’s proof is as follows: Let M be a model having an infinite indis-
cernible set I. Pick any a<I and let J=I—{a}. Since T is totally tran-
scendental, there is N<M which is primary (and hence atomic) over J. By
indiscernibility of I, we have a& N. Hence M is not minimal.

Our proof is similar to his one. However, for the general case, we do not
necessarily have the existence of primary models. So, instead of N above, we
take in M a maximal set £ which includes J but is independent from a. We
call such E a tp(a)-envelope of J in M (see Definition 1.2 for the exact defini-
tion). First we show that if T is superstable, E is an elementary submodel of
M (Lemma 1.4). It follows that M is not minimal, and hence we can obtain
our theorem. At the end of the paper, we give a stable structure having an
infinite indiscernible set (Example 1.7). The way of the construction is essentially
same as Marcus’s one [2].

1. The size of indiscernible sets

1.1. NOTATION. We fix a (possibly uncountable) stable theory T. We
usually work in a big model C of T. Our notations are fairly standard.
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A, B, -~ are used to denote small subsets of C. &, b, --- are used to denote
finite sequences of elements in C. ¢, ¢, --- are used to denote formulas (with
parameters). p, g, --- are used to denote types (with parameters). The nonforking
extension of a stationary types p to the domain A is denoted by p | A. The
type of a over A is denoted by tp(a/A). R=(p) (resp. R=(¢p)) is the infinity
rank of a type p (resp. a formula ¢). We simply write R<(a/A) instead of
R=(tp(a/A)). The set of realizations of a type p (resp. a formula ¢) in a model
M is denoted by p¥ (resp. ¢).

1.2. DEFINITION. Let M be a model and ACBCM. Let p=S(A) be
stationary. Then a p-envelope of B in M is a maximal set E such that
Bc EcCM and any element of (p | B)Y is independent from E over A.

1.3. REMARK. The notion of “envelopes” was introduced in [1], and was
defined in the context of totally categorical theories. Our definition is a
generalization of that in [1].

1.4. LEMMA. Let T be superstable. Let M be a model and ACM. Let
p=S(A) be stationary. Suppose that M contains some infinite Morley sequence I
of p. Then a p-envelope of I\UA in M is an elementary submodel of M.

PrOOF. For the simplicity of the notation, we may assume that A=0.
Take any p-envelope E of I in M. If (p | I)¥=0, then E=M. So we assume
that (p | 1)¥+0. Assume by way of contradiction that E is not an elementary
submodel of M. Then, by the Tarski criterion, there is a consistent formula
o(x, g))L(E) such that ¢ "NE=0. By superstability, pick an element b of
¥ such that R<(b/E) is minimal.

CLAIM. Any a<(p | I)¥ is independent from b over E.

PROOF. Assume otherwise. Then there is an element a of (p | I)¥ such
that ¢p(a/Eb) forks over E. Take a formula 6(x, ¢,)stp(b/E) such that
R=(b/E)=R>(8). Now ip(a/Eb) forks over 0, so there is ¢ FE such that
tp(a/eb) forks over . Then we may assume that &, &,Cé. Note that tp(a/e)
does not fork over @ (because é<E). It follows that tp(b/éa) forks over €. So
we can get a formula ¢(x, ¢, a)etp(b/ga) such that, if E=¢@¥’, &, a) then
tp(b’/éa) forks over é. Let ['(a, &) denote (Ix)¢(x, Z)NP(x, &, a)AO(x, &,)).
Now the weight of ¢ is finite since R(€)<<co. Therefore we can pick ae¢’el
such that ?p(a’/eé) does not fork over . Remember that ¢p(a/é) does not forks
over . It follows that tp(a/é)=tp(a’/é). Hence ['(a’, &) holds. Therefore
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there is an element b’¢* such that R<(b'/e)<R=(b/E) and tp(b’'/ea’) forks
over &. Thus R*(b/E)=R>=(b’'/2)>R>(b’/éa’)=R>(b’/E). Moreover R>(b'/E)+0
because b’ satisfies ¢. But this contradicts the minimality of R*(b/E). Hence
the claim holds.

Thus any a&(p | I)” is independent from bE over I. But this contradicts
that E is an envelope. Hence E is an elementary submodel. This completes
the proof of the lemma. O

1.5. EXAMPLE. Let Per(w) denote the set of permutations of @ which
move only a finite number of elements. For each i<w, define a function
7 : Per(w)—w such that 7;(6)=0(). Let A=w\UPer(w). Consider the structure
M=(A; w, Per(w), {m:}:<o). Then w is a Morley sequence of {p(0). Note that
for any o< Per(w), wCdcl(e) (=the definable closure of ¢). Therefore w— {0}
is the ¢p(0)-envelope of w— {0} in M. However w— {0} is not a model. Moreover
T=Th(M) is not superstable (since the weight of ¢ is infinite). This example
shows that we need, in lemma 1.4, the assumption that 7 is superstable.

1.6. THEOREM. Let T be superstable and let A any set. Then there is no
minimal model over A which has an infinite set of indiscernibles over A.

PROOF. Suppose that M has an infinite set / of indiscernibles over some
set A. We can assume that [ is already an infinite Morley sequence of some
pE=S(A) because x(T) is countable. Pick any a=l. By lemma 1.4, a p-envelope
E of (I—{a})UA in M is an elementary submodel of M. It is clear that a& E.
Hence M is not minimal. A contradiction. [

1.7. EXAMPLE (see [2]). Theorem 1.6 can not be extended to a stable
theory. We construct a minimal structure with an infinite indiscernible set.
Recall the structure M=(A;w, Per(w), {7:}:cw) (see Example 1.5). Note that
this structure is not minimal. But by modifying the construction, we can obtain
a minimal one: For each n<w, we define inductively P, and {zn}: a&P,}
which satisfy the following properties:

(i) Py,=w, and ni=r, (aE€Ph,);

(ii) Pop=Per(P,) (n<w);

(ili) =%*': P,,;—P, is a function such that #2*(o)=0(a) (aEP,, n<w).

Let A*=\U{P,: n<w}. Consider the structure M*=(A*; {P,: n<w},

{nz:aeP,, n<w}). Then for each n<w, if s&P,,, then we have P,Cdcl(0o).
Hence M* is a minimal model (Proof: Take any N<M* and a=M*. Then
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there is some n such that a=P,. Now P,.,\N=+#0, so we can pick some
o= P, ,,\N. Therefore acdcl(6)CN, so acN. It follows that N=M*). It is
easy to see that P,=w is an infinite indiscernible set. Moreover M* is not
superstable, since M is interpreted in M* (Recall that M is not superstable).
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