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A SIMPLE CONSTRUCTION OF MESHES IN
APPROXIMATE SYSTEMS

By

N. UGLESIC

Abstract. Recently, S. Mardesi¢, L.R. Rubin and T. Watanabe
have developed a theory of approximate inverse systems and appro-
ximate resolutions, providing thus a new tool to study topological
spaces. M.G. Charalambous then introduced a somewhat simpler
but more general notion of approximate system. Subsequently, S.
Mardesi¢ showed, by a rather general and complicated construction,
that the two notions of approximate systems (approximate resolu-
tions) share all relevant properties of their limits (resolutions).

This paper presents a new and rather simple construction with
the same properties. Moreover, in the case of topologically com-
plete approximate resolutions, uniqueness up to isomorphisms is
established. At the end, it is indicated how one can extend this
construction onto approxXimate mappings.

1. Introduction

S. Mardesi¢, L.R. Rubin and T. Watanabe ([5], [7]) have developed a
theory of (gauged) approximate resolutions of spaces and mappings, which
allows successful study of topologically complete spaces using techniques of
(gauged and noncommutative) inverse systems and resolutions. A gauged ap-
proximate (inverse) system contains a prescribed collection of normal coverings,
called meshes, which controlls the noncommutativity of the bonding mappings
and it refines the relevant normal coverings.

Recently M.G. Charalambous ([1]) showed that one can study limits of
approximate systems of uniform spaces without meshes, Subsequently, S.
Mardesi¢ ([4]) proved that, generally, gauging is not essential for objects, i.e.,
for approximate systems (resolutions) of Tychonoff (topologically complete)
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spaces. To a given nongauged approximate system X, he constructed an in-
duced gauged approximate system X, showing that X and 2 share all the
relevant limit and resolution properties.

This paper brings a new, more natural and much simpler construction of
an induced gauged approximate system. Moreover, in the case of topologically
complete approximate resolutions the uniqueness (up to isomorphism) of the
induced object is proved.

For the sake of completeness, let us briefly recall the main definitions from

[7].

(1.1) DEFINITION. A (gauged) approximate (inverse) system is a collection
X=(X,4, Uga, Paar, A) consisting of :

—a preordered set A=(A, <), which is directed and unbounded ;

-—for each a= A, a (topological) space X, and a normal covering (mesh) U,
of X,

—for each related pair a<a’ in A, a (continuous) mapping paa:: Xo—Xe
(Paa=Llx, is the identity mapping on X,).

The data are to satisfy the following three conditions :

(Al)  (PaarParar, DPaar)<U.  whenever a<a’<a”;

(A2) VacsA) (VUCow(Xy) (Fa’'>a) (Va,>a,>a’)
(PaayDayay Daag)<U;

(A3) (VaeAd) VUECw(Xy) (Fa’>a) (Va”">a’) Ugr<pazaU.

Here, for any two mappings f, g: X—Y and any covering <V of Y, (f, g)
<<V means that, for every x< X, there exists a V< such that f(x) and g(x)
belong to V. Instead of (f, g)<<V we shall often write f=«g. For coverings
U, U’ of X, U’<U means that U’ refines U. Cov(X) is the set of all normal
coverings of a space X. If X’ESX and U< Cov»(X), then the star of X’ with
respect to U is the set

WX, U)y=UlUeU| X' NU+B}SX .

Recall that every U & Cov»(X) admits a U’'ECov(X) such that seU’'= {st(U, U’)|
U’eU’} belongs to Cov(X) and stU’<U. We inductively define s£U=U, s'U
stU, -, st U= {se(U’, V)| U’ €t 'U}, nN, which all belong to Cov(X). The

above definition may be written as st*U=s«(s¢t" U, U). (Somewhere st"U is
defined by st"U=st(st""'U) which only technically differs from the above).

(1.2) DEFINITION. A (gauged) approximate system X is called uniform
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provided condition
AU)  Va<pawl, a<a’,

is satisfied.

(1.3) DEFINITION. A (gauged) approximate map q from a space Y into a
(gauged) approximate sytem ¥, q:Y—X, is any collection g= {g.|a= A} =(qg.)
of mappings ¢, : Y —X, such that

(AS) For every a=A and every UE&Cov(X,) there exists an a’>a such
that (g, Pearqa-)<<U, Whenever a”>a’.

(1.4) REMARK. Observe that in condition (AS) meshes do not appear. There-
fore, a more appropriate condition for a gauged approximate map q:Y—-X
should be

(qa: /)aa’(]a’)<Scha, a<la’.

(Of course, the above condition and (A2), (A3) of X imply (AS) for q.)

(1.5) DEFINITION. A (gauged) approximate map p=(p,): X—X is called a
limit of % provided it has the following universal property :

(UL) For any approximate map q: Y —X there exists a unique mapping
g:Y—X satisfying p,g=q., for every acA.

Since a limit space X is determined up to a unique homeomorphism, we
often speak of the limit X of & and we write X=Ilim .

We adopt Theorem (2.8) from [7] as the definition of a gauged approximate
resolution of a space.

(1.6) DEFINITION. A gauged approximate resolution of a space X is any
approximate map p: X—X satisfying the following two conditions :

(Bl) (YUe€Con(X)) (FacA) (Va'<a) pilUa<VU;
(B2) (YacA) (Fa’>a) (Va">a’) paalXan)Sst(pa(X), Vo).

A gauged approximate system X is said to be a gauged approximate resolu-
tion provided, there exist a topologically complete space X and a gauged appro-
ximate resolution p: X—¥ of X.

(1.7) DEFINITION. A gauged approximate mapping f from a gauged appro-
ximate system X to a gauged approximate system Y=(Y,, Vs, gw, B), f: X—q,
is any collection f={f, f,|b= B} consisting of a function f: B—A and of map-
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pings f,: X,»—Y, bEB, such that the following condition holds:
(AM) (Vb<b’ in B) (Fa>f®), f(b’) in A) (Va’>a)
(oo forDrwy.ars JoPrwr.a)<stVy.

The set of all gauged approximate mappings from % to @ is denoted by
AP (x, @).

A gauged approximate mapping f:X— is called uniform, provided f
satisfies the additional condition

(AMU) U, <f5'(Vs), bEB.

(1.8) DEFINITION. Let f, f'={f’, fylb€B} : X—4 be gauged approximate
mappings. We say that £ is contiguous (or simply equivalent) to f’, f=f’,
provided, for each b= B, there exists an a= A, a> f(b), f’(b), such that

(EM) (Fobrwr.ar [oDs ), a)<stVp, whenever a’>a.

The relation = generates an equivalence relation ~ on the set AP(¥, @)).
The quotient set AP(X, @)/~ will be denoted by AP[¥, 4], and the equi-
valence class of £ by [F].

If f: X—9 and g={g, gclceC}: Y—ZF=(Z., W, 7., C) are gauged appro-
Ximate maps, where g is uniform, then the collection {gf, g.f,«,|cEC} deter-
mines the “composite” gauged approximate map gf : X¥—stZ*=(Z,, stW, re.:, C*),
where Z*=(Z., W, rcr, C*) is the uniform system associated with & ([7], (1.6)
and (8.1)). By [7] (8.7), for any f: 2X—4y and g:Yy—=Z, where C is cofinite,
there exists a uniform g’: y—2 such that g’~g and ¢g'f: Xx—=Z.

(1.9) The category APRES. The class of objects Ob(APRES) is formed by
all cofinite gauged approximate resolutions X consisting of topologically com-
plete spaces. The set of morphisms APRES(Z¥, @) is the set AP[2, 4]. The
identity morphism 1y on X is the class [ly¢], where 1x=1{1,, ly,la€A} e
AP(%x, %). The existence of uniform representatives of morphisms and good
properties of the limit guarantee the existence of a well-defined composition in
APRES as well as its associativity ([7] (8.10), (8.11), (8.12)).

We finally mention the criterion for isomorphisms in APRES obtained in

(2.2).

(1.10) Let %, y=Ob(APRES) and feAP(¥, ¢) be given. Then [f] is an
isomorphism in APRES if and only if there exists an n& N, such that, for every
be B, there is an a,= A, a,> f(b), such that, for any a= A, there are a b’>b,



A simple construction of meshes in approximate systems 223

an a’>a, f(b’) and a mapping k: Y, —X, satisfying the following three con-
ditions :

(AD) (FoDrwr. aRqorsn, qoon)<st"AVp, whonever b”>b’;

(DA) (Paar, RforDrwr, an)<st"U,, whenever a”>a’;

MU) Wy <k HU.T

We conclude this introduction with the definition of a non-gauged approxi-

mate inverse system (approximate resolution) as in [4], adding several nontrivial
examples of such systems.

(1.11) DEFINITION. An approximate (inverse) system X is a collection
(Xa, Paar, A) consisting of :

—a preordered set A=(A, <), which is directed and unbounded ;

—for each a= A, a (topological) space X, ;

—for every related pair a<a’, a (continuous) mapping paar: Xo—Xa (Paa
=1y, is the identity mapping on X,). Moreover, the following condition is
required :

(A) (VacsA) (YUECow(X,) (Fa,>a) (VYa’>a’>a,)

(paa”y paa’pa’a”)<CU.

Note that (A)=(A2). The boldface characters denote approximate systems
in the sense of the above definition, while gauged approximate systems are
denoted by script characters.

(1.12) DEFINITION. An approximate resolution of a space X is any approxi-
mate map p=(p.): X—>X=(Xg, paa’, A) satisfying the following two conditions :
(Rl) (YP€POL) (YVe&Cov(P)) (Vf:X—P) (FacA) (Va'>a)
(3g: Xa—P) (ghar, NV
(R2) (VP=POL) (YW ECov (P)) AV’ &Cov(P)) (VacA) (Vg, g': Xo—P)
(gha, &' P)<V'=(Fa’>a) (Va”>a’) (@paar, &'Paa)<V),
where POL denotes the class of all polyhedra (CW-topology).

An approximate system X is said to be an approximate resolution provided,
there exist a topologically complete space X and an approximate resolution
p: X—X of X.

(1.13) TRIVIAL EXAMPLES. (a) Every usual (commutative) inverse system
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(resolution of a space X, [3]) is an approximate system (approximate resolution
of X). (This is not true neither for gauged approximate systems nor for
gauged approximate resolutions; see (1.14) below),

(b) Every gauged approximate system X (gauged approximate resolution
p: X—X of X), after forgetting of the meshes, becomes an approximate system
X (approximate resolution p: X—X of X).

(c) Every approximate system (approximate resolution) X, which admits
gauges in the sense of [7](1.7) ([7](3.4)), is an approximate system (approximate
resolution).

(1.14) REMARK AND NONTRIVIAL EXAMPLES. One naturally asks if it is
possible to choose coverings U,< Cov»(X,) such that a given approximate system
X=(X,, paar, A) becomes a gauged approximate system X=(X,, U,, Paa:, A)?
If X is commutative, all X, are compact metric and A is cofinite, the answer
is affirmative ([9](3.8), [7](1.8)). The same holds even without assuming com-
mutativity. However, the preorder of A has to be then slightly changed to
preserve condition (Al).

The following examples show that the answer to the above question is
negative even in the commutative case of compact Hausdorff or locally compact
metric (polyhedral) terms.

Let = be an uncountable cardinal number and let /™ be the corresponding
Tychonoff cube. Then I7 is compact Hausdorff but not metrizable. Take X=
(X4, Prn, N, where X,=17, for all n& N, and p,..=1;., for all pairs n<n’.
Then X is a usual (commutative) inverse sequence, and thus, an approximate
system. Suppose that there exists a sequence of normal coverings U, ECov(X,),
ne N, such that X=(X,, U,, prar, N) is a gauged approximate system. Then
(A3) implies that {U,|ne N} is a cofinal subfamily of Cov(I%).

CLAaM. {U,|neN} is a development of I°, i.e., (see [2], p. 408), for
every x I and every neighbourhood V(x) in I7 there exists an neN such
that st(x, U,)EV,. Indeed, let xI* and let V, be any neighbourhood of x in
I7. Since I7 is regular, there exists a neighbourhood U of x such that USU
CV, Take V,=I\U. Then W= {V,, V,}&Cov (7). Choose a V’'&Cov(I%)
satisfying stcV’<<y. Then there exists a V/ecy’ such that xeV’ and s«(V’, &V’)
SV, Since {U,|neN} is cofinal in Cov (I7), there is an n< N such that U, <V’
Consequently,

st(x, Uy)Est(x, VNSV, VHEV,

and the claim is proved.
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Now, since I is collectionwise normal, the Bing metrization theorem ([2]
(5.4.1)) implies metrizability of I, which is a contradiction. Therefore, X does
not admit gauges.

In the same way, using collectionwise normal non-metrizable spaces, one can
construct inverse sequences which do not admit gauges.

Another example in the (commutative) locally compact metric case is X=
(Xn, Pan+, N), where X,=[0, 1)SR, for every n, and p,,- 1s the identity map-
ping for every pair n<n’. Since Co» ([0, 1)) has no countable cofinal subfamily
(compare [6], Examples 4 and 5), again (A3) cannot be fulfilled for any choice
of U,eCov(X,), nN.

2. The main construction

There are various ways how to associate a gauged approximate system
with a non-gauged one. A very general construction of that kind was exhibited
by S. Mardesi¢ in [4]. However, its main properties ([4], Theorem 1) can also

be obtained by adapting a much simpler construction due to T. Watanabe ([9]
3.7).

(2.1) Let X=(X,., paar, A) be an approximate system. For each ac=A
choose a cofinal subfamily C,ZCo»(X,) of the minimal cardinality. Consider
the family A= {(a, V)|a€A, UEC,}= UA({a} X Cq). Define A={ASA|@+#A

ac
finite} and order it by inclusion. Then A is a directed, unbounded, cofinite and

antisymmetric set. Therefore, there exists an increasing surjection s: 4—A4
such that s({(a, VU)})=a, for every (a, U)eA. For each A= A, define

X¥=X,, and LUT:i/\ PatscrUsECov (XY,
=1

whenever A= {(a,, U,), -+, (an, U,)}. Since s increases, the covering U¥ is
well defined. Observe that U¥, ¢, =, for any (a, U)sA. For every pair
A<A’ in A4, put

PR=Dpsr,san + X& — X¥.

Let us show that the collection (X¥, U¥, p¥., A) satisfies conditions (A2)
and (A3) of (1.1).

(A2). Let A€4 and UECov (X¥=X;(2,) be given. For s() and U, choose
an a,>s(d) by (A) of X. Since s is an increasing surjection, there exists a
A’>2 such that s(4A)>a,. If 4,>4,>4", then s(4,)>s(4;)>s(4")>a, and therefore,

— — — K
PR, =Py, sap=UDsr.sapPscay. sap = DI, P2, -
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(A3). Let A4, 2= {(a,, U,), -+, (@n, Un)}, and let UECov (X¥=X,(1,) be
given. Take a U’'&C4;, refining U and let /=AU {(s(R), U’)}. Then A’>A.
If 2”>2’7 i' e'! 2”: {(aly CL]I); Tty (am, qjm)y (s(z)y CIJ,), (am+1’ Cl]"l+l>’ Tty (an; Cl]")}’
then

n
CL]371=( {/_\_1 p;i_umcUi)/\ Pitn. saanm U’ < pstnscanU’
= PRV < pIFU .

(2.2) Let us define a new relation <* on A4 by putting A<*2’ provided
A=A, or A+, A<A and (VA,> A, >1")

(Phapr DB PT2,)<UY, UKL (pH)'UE.

Note that A<*1’ implies 1< A’, and A<*A’<4” and A# 4’ imply A<*2”. Since
the collection (X¥, U¥, pi, A) satisfies (A2) and (A3), A*=(A4, <*)is a directed,
unbounded, cofinite and antisymmetric set. Furthermore, the collection (X¥, U¥,
p¥., A*) also satisfies conditions (A2) and (A3). Moreover, it obviously satisfies
(A1) and (AU) too. Therefore, X*=(X¥ U¥, pk., A*) is a uniform gauged
approximate system. Hence, we have proved the following theorem :

(2.3) THEOREM. For every approximate system X =(X,, paqr, A) there exist
a gauged approximate system X*=(X¥, U¥ pk., A*) and a function s: A*—A
having the following properties:

(i) A* is cofinite and antisymmetric;

(ii) s 7s increasing and surjective;

(iil) XF=X:w), for each A€ A*, and p¥y=Ds1). 521y, Whenever A<*A’;

(iv) for any a€ A and UECov(X,), there is a A A* such that s(A)=a and
Vi<U;

(V) X* is uniform.

A gauged system X* with properties (i)-(v) is said to be induced by X.

(2.4) REMARK AND QUESTION. In the construction of a gauged approximate
system ¥, associated with a given approximate system X, it is often convenient
to obtain ¥ with an indexing set of minimal cardinality. In the preceding
construction the entire family Jl’:a\eJA({a} X Cov (X)) would also do. However,

X*' obtained in that way, would have A* as its indexing set and this set is,
in general, of a larger cardinality than A*. Moreover, A* even need not be
cofinal in A*. Of course, the construction in (2.1) may also start with any
cofinal A’C A.
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The above consideration raises the following question: Let X=(X,, paq, 4)
be an approximate system which does not admit gauges, and let X=(Xj;, U,,
pw, B) be a gauged approximate system such that each X} is an X, and each
Do 1S @ pager. Is it necessarily |B|=|A*| (=|A|)? (Assume that A is ob-
tained via a cofinal A’S A and a cofinal C,SCov(X,), acA’, all of minimal
cardinalities!)

We now center our attention to the relation between a given approxXimate
map q:Y—X and the induced (gauged) approximate map g*:Y—X*, and vice
versa.

Let g=(¢,): Y—X be an approximate map from a space Y into an appro-
ximate system X. Define the collection g*=(¢¥), by putting ¢g¥f=gs1): Y —Xs2»
=X¥, A=A4*. Conversely, if a gauged approximate map q=(q;):Y—X* is
given, define the collection g=(7,), by putting §o=¢sa): Y —=XFKay=X,, a€A,
where ¢: A—/A* is a section of s, i.e., so=14.

We say that g* is induced by q and that q is associated with q.

Observe that (¢*)"=¢q : Y—Y, but in general (g)*+#q : Y —X* (see (2.6) below).

As in [4], one can easily prove:

(2.5) (i) If q:Y—Y is an approximate map, then the induced g*:Y—X is
a gauged approximate map.

(i) If g: Y—2*is a gauged approximate map, then any associated ¢q:Y—X
is an approximate map.

Since Theorem (2.3) in essence coincides with [4], Theorem 1, all the cor-
responding statements from [4] may be transferred to our X* ¢*:Y—X%* and
q:Y—X. Therefore, we shall not repeat them. Only the following three
facts are not to be found in [4].

(2.6) LEMMA. Let a gauged approximate map q:Y—X* be given. If in
the approximate system X all X, are Tychonoff spaces, then (q)*=q, for any asso-
ciated q:Y—X.

PROOF. Note that (¢)*=(gsscz): Y —X*, where ¢ is a section of s. We must
prove that g,sc1y=qi, A= A*. Since X%),=Xsi1,=X¥, A= 4*, and all X, are
Tychonoff spaces, it is sufficient to verify the following:

(VA A*) (NUECov (Xsay)) (Goscar, q1)<U .

Indeed, by (AS) of q for A, gs(4) and a U’, stU’'<U, there exists a A’>*1, os()
such that



228 N. UGLESIE

(qz, PTrgr)<U’

(Goscary DEcrr. 2, Q2)<U".
Hence,

Qascr=a'PJsc>, 27, gr=">Dsr.scanqa=pE 1, g1 =aqa

and consequently
(Goscr, q)<stU'<U .

(2.7) Let in an approximate system X all X, be Tychonoff spaces and let
p=(p;): X—¥* be an approximate map. Then p is a limit if and only if any
ﬁ’—:(ﬁa:pa(a)):X—"X iS a limit.

PROOF. Since all X, from X are Tychonoff spaces we may apply the an-
alogue of [4], Theorem 4 and our Lemma (2.6). Hence, p is a limit if and only
if (p)*=p is a limit.

In an analogous way one obtaines

(2.8) Let in an approximate system X all X, be Tychonoff spaces and let
p=(p;): X—* be an approximate map. Then p is a gauged approximate
resolution of X if and only if any p=(p.=pb.)): X—X is an approximate
resolution of X.

3. The uniqueness of X*

The theorem below indicates which of the properties (2.3), (i)-(v), are “uni-
versal”, i.e., essential in the theory of (gauged) approximate resolutions. As a
consequence, it assures the uniqueness (up to isomorphism) of the induced
gauged approximate resolution.

(8.1) THEOREM. Let X=(Xq4, paa’, A) be an approximate resolution consist-

ing of topologically complete spaces. Let X'=(X}, Us, pow, B), X7=(X¥, UY,
n., C) be gauged approximate resolutions and let s’: B—A, s”: C—A be func-

tions having the following properties:

(i) B and C are cofinite;

(ii) s’ and s” are increasing and surjective;

(iii) Xp=Xs w, for each b&EB, popr=7DPe .5 @), Whenever b<b’, X=X,
for each c=C and pée=Dpsrcc), snc'y, Whenever c<c’.

Then ¢’ is isomorphic to X” in the category APRES.

PROOF. First of all, note that the assumption on X and property (i) guar-
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antee that X/, £”€O0b(APRES). Since X*=(X¥, U¥, p¥v, A4*) and s: A*—A
have all the above properties, if suffices to prove the theorem in the case X”
=x*, Let u: A*-/A* be an increasing function defined by choosing a u(4)>*
>*4 such that su(A) satisfies condition (A) of X simultaneously, for s(4,), -+,
s(4x), s(4) and UY, -+, U¥,, U¥F respectively, where 4,, ---, 4, are all the pre-
decessors of A in A* (such a function u exists, since A* is cofinite and s is
increasing and surjective). Furthermore, since s’ is surjective, there exists a
function g: A*—B such that s’g=s. Then, su=s'gu: A*—A. Take f=gu:
A*—B and

Fi=pEuwley = bsr.suy ' Xrcr=Xsuty = Xery=X%, reA*.
Then, f={f, filAe€A*} : X'—X* is a gruged approximate map. Indeed, If any
A<*2’ in A* are given, choose a b> f(4), f(A’) in B and let a b’>b be given.
Then,
Pl fabran,e=pfdk vanlpeuan,s

=Dsr. 52 Pscany. suanrDsrgucary, s v

=q¥Pscr, sucanrPsuary, e o) =U*Pscr, s o)

=¥Pscir, surPsuctr, s 0H=DEur1Paucr, o

=faibrar b -
Therefore,

BEfadran.e, FaPraye)<stUF,

which establishes condition (AM), for f€AP(x’, X£*). We now apply (1.10) to
prove that [f] is an isomorphism in APRES. Take n=1. If A=.4*, take b,=
f(QQ) and let any b>b, in B be given. Pick up a U&Csr sy (see (2.1)) refining
Ul Cov(Xy=Xs ) and then choose a A’>*1 in A*, such that (s/(b), V)&’
and s(4’) satisfies condition (A) of X, for s’(b) and U;. Note that s(A’)>s’(b)>
s’ (bo)=s"f(A)=s"gu(A)=su(d) in A. Choose a b’>b, f(2’) and take k=7, ) 22"y :
X3=X;an—Xsry=X;. Let any 27>*2 and b”>b" be given. Then,

FaPs, ok DE 20=Dscy, su) Psucar. sy Ds' ), 82 Pacary, ecan
=y*Dscar, e @ Dsr ), 82 Pecany, scan

=a¥Psctr, sxn Pscany, san =Dl Pl av=a¥pla .
Hence,

(faD5 s ok D% 20, D) <stU¥,

which verifies condition (AD) for f. Furthermore,
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Rfarbrcin, ov=Ds w52y Psary, sucinyDsucary, s wn

=@ Ps . su2) Pauary. s’ om =V Ds’ 1), 37 0m) = Pt »
and consequently
(Rf 2 plcars,on Dow,)<stUs,

which proves condition (DA) for f. Finally, by (2.1),
U¥ <(Psr .22 U <(Per vy, s2y) ' Up=k™'U,,

which verifies (MU) for f. This completes the proof of the theorem.

As an immediate consequence of Theorems (3.1) and (2.3) we get the follow-
ing corollary :

(3.2) COROLLARY. Let X=(Xq, paa', A) be an approximate resolution con-
sisting of topologically complete spaces and let X* be its induced gauged appro-
ximate system.

(1) If 2% is induced by X via any cofinal A’S A and CoSCov(Xy), acA’,
and any increasing surjection s’: A*'—A’, then X* =x* in APRES.

(ii) If X is obtained by omittng the gauges of an X belonging to APRES,
then X=* in APRES.

(iii) If X* is obtained by omitting the gauges of X* and if X** is induced
by X*, then X**=x* in APRES.

4. The induced gauged approximate mapping

In this section we briefly sketch an extension of the *-construction X—X*
onto approximate mappings fiof*: X*—-q* First, we have to define a gene-
ralization of the notion of a gauged approximate mapping (1.7), suitable for the
nongauged case. A natural one is the following

(4.1) DEFINITION. An approximate mapping f from an approximate system
X=(X., paar, A) to an approximate system Y=(Y,, g, B), f: X—Y, is any
collection f={f, fs|b= B} consisting of a function f:B—A and of mappings
fo: X;—Ys, b= B, such that the following condition holds:

(AM)* (VbeB) (YW ECov (V) (Tby>b) (VO'>b) (Fa> f(by), f(b))
(Va'>a) (qosyfo,Prvg.as Goor forDrvry.a) <V .

The set of all approximate mappings from X to Y is denoted by AP(X, Y).
One can easily see that AP(¥, 4)SAP(X, Y), whenever X and Y are ob-
tained by omitting the meshes of X and 4 respectively.
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Secondly, as a natural generalization of (1.8) onto the nongauged case, we
define

4.2) f~f"={f’, filbB}: X—Y, provided the following condition is
satisfied :

EM)* (VbeB) (VVe&Cov(Ysy) (3bo>b) (Yb/>b) (Fa>f1), f/ (b))
Va'>a) (fobrw.as forDsrwn, a)<gow (V).

The relation ~ is indeed an equivalence relation on the set AP(X, Y).
The quotient set AP(X, Y)/~ is denoted by AP[X, Y], and the equivalence
class of f by [f].

Again an easy testing shows that, if X and Y are X and ¢ without the
meshes respectively, then f~f’:X—4 implies f~f’: X—Y. Moreover, if B
is cofinite, then the converse also holds.

(4.3) Let f={f, fs|b=B}: X—Y be an approximate mapping. Then the
formal composition

1 f 1x
x* X Y QJ*:(Yﬁy CV;I':! qflli,u'; M*) ’

where 1= {0, 1y |lac A}, 14 = {t, 1y’:(ﬂ)lﬂEM*}, g: A— A* is a section of
s: A*~A and t: M*-B comes from the construction of 4*, defines the collec-
tion 1fly={aft, felpsM*}. It is easy to see that Lfly: X*—Y* (meshes
forgotten) is an approximate mapping. Using appropriate terminal shifts (see
[7], (7.4) and (7.5)), one can obtain a gauged approximate mapping v,v,(1f1%)
=f*: x*-qy* Here, v,: M*>M* is defined by means of (A2) and (A3) of @*,
which v, : M*—M* is defined by means of (AM)* of .

This construction is natural and has functorial properties, i.e., f~f’ if and
only if F*~f’*, and 1¥~1lx« The proof of these facts is rather long, but not
complicated, and we omit it.

Furthermore, if f: 22X — 4 and g: Y — & are interpreted as f: X — Y and
g: Y—Z respectively (meshes forgotten), then

[((gf)*]=[g*]1[f*],

whenever gf: X—Z exists.

(4.4) The facts from the above allow to define the category APRES, with
the objects all cofinite approximate resolutions consisting of topologically com-
plete spaces, and with the sets of morphisms APRES(X, Y)=AP[X*, Y*]
(meshes forgotten). Moreover, if APRES is the category from [7], Theorem
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(8.12), then one can show that the meshes forgetting functor
F: APRES — APRES, F(X)=X and F([f])=[f],

is an equivalence of categories.
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