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STABILITY OF MINIMAL SUBMANIFOLDS
IN SYMMETRIC SPACES
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1. Introduction.

We determine the stability of totally geodesic submanifolds in a compact

symmetric space, which are called polars and meridians (see 2.1). These sub-
spaces were introduced by Chen and Nagano ([CN-1]) and we have many inter-
esting results after that ([CN-2], [N-1], [N-2], [NS-1], [NS-2] and [NS-3]).

Recently, several results have been obtained about the stability of totally geodesic
submanifolds in compact symmetric spaces. Ohnita gave the formula for the
index, the nullity and the Killing nullity of a totally geodesic submanifold in a
compact symmetric space in $[0]$ , in which he also proved that the Helgason
sphere in a compact symmetric space is stable. Tasaki proved that the Helgason
sphere in a compact Lie group is homologically volume-minimizing in its real
homology class in [Ts-l]. He used the calibration theory. And there are studies
about the stability of certain closed subgroups in a compact Lie group by

Mashimo and Tasaki ([MT-1] and [MT-2]). Mashimo determined all the un-
stable Cartan embeddings of compact symmetric spaces in [M]. And there is
a result about the stability of symmetric R-spaces in Hermitian symmetric spaces
and totally complex submanifolds in quaternionic K\"ahler symmetric spaces of
classical type by Takeuchi ([Tk-2]). Recently Nagano and the author have
obtained a result on a relationship between the stability of minimal submanifolds
and that of p-harmonic maps ([NS-3]). In the present paper we study the
stability of all the polars and meridians in every compact symmetric space by

using Ohnita’s method in Section 3. We will also study the stability of totally
complex totally geodesic submanifolds in quaternionic K\"ahler symmetric spaces
of exceptional type in Section 4.
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2. Preliminaries.

DEFINITION 2.1 ([CN-1]). Let $M$ be a compact symmetric space and $0$ a
point in $M$. Then we call a connected component of the fixed points set of $s_{0}$ ,

the symmetry at $0$ , in $M$ a polar of $0$ . We denote it by $M^{+}$ or by $M^{+}(p)$ if $M^{+}$

contains a point $p$ . We also call a connected component of the fixed point set
of $s_{p}\cdot s_{0}$ in $M$ through $p$ a meridian of $M^{+}(p)$ in $M$ and denote it by $M^{-}(p)$ or
simply by $M^{-}$ . When a polar consists of a single point, we call it a pole.

REMARK 2.2. The congruence class of $M^{-}(p)$ is independent of $p$ .

Polars and meridians are totally geodesic submanifolds in $M$ ; they are thus
symmetric spaces. And they were determined for every compact connected
irreducible symmetric space ([CN-1], [N-1] and [N-2]). One of the most im-
portant properties of these subspaces is that $M$ can be determined by any pair

of $(M^{+}(p), M^{-}(p))$ completely (1.15 in [N-2]). $M^{+}$ relates to $M$ in its topology

and on the other hand $M^{-}$ does in its local structure. For example, $M$ is
orientable if and only if each $M^{+}$ has an even dimension. And $M^{-}$ has the
same rank as $M$ (see [N-1]).

DEFINITION 2.3 ([CN-2]). Let $M$ be a compact symmetric space and $0$ a
point in $M$. And suppose there is a pole $p$ of $0$ in $M$ . Then we call a set
consisting of the midpoints of the geodesics from $0$ to $p$ a centrosome and denote
it by $C(0, p)$ or simply by $C$ .

A centrosome is also a totally geodesic submanifold of $M$ .

REMARK 2.4. When there is a pole $p$ of $0$ , there exists a double covering
map $\pi$ : $M\rightarrow M^{\prime\prime}$ from $M$ to another space $M^{\prime\prime}$ such that $\pi(0)=\pi(p)$ . And the
image of each connected component of $C(0, p)$ is a polar of $\pi(0)$ in $M$“.

DEFINITION 2.5. Let $(M, g)$ and $(N, h)$ be compact Riemannian manifolds
and $\phi:M\rightarrow N$ be a minimal immersion. Then we say $\phi$ (or $M$ ) is stable if the
second derivative of the volume function $V(M, \phi_{t}^{*}h)$ at $t=0$ is non-negative for
every smooth variation $\{\phi_{t}\}$ of $\phi$ with $\phi_{0}=\phi$ .

The second variation formula of $V(M, \phi_{t}^{*}h)$ reads as follows:

$\frac{d^{2}}{dt^{2}}V(M, \phi_{t}^{*}h)_{1_{t=0}}=\int_{M}\langle J(v), v\rangle d\nu$

where $v$ is an element of $\Gamma(T^{\perp}(M))$ , the space of all smooth sections of the
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normal bundle $T^{\perp}(M)$ of $M$ in $N$, and $ d\nu$ is the Riemannian measure of $(M, g)$ .
And $J$ is the Jacobi operator defined by

$J=-\Delta^{\perp}+A_{\phi}+R_{\phi}$ ,

where $\Delta^{\perp}$ is the Laplacian of the normal connection $\nabla^{\perp}$ of $T^{\perp}(M)$ , and $A_{\phi},$ $R_{\phi}$

are smooth sections of End $(T^{\perp}(M))$ (refer to $[0]$ ). $J$ is a self-adjoint strongly
elliptic linear differential operator and hence $J$ has discrete eigenvalues $\mu_{1}<\mu_{2}<$

$<\infty$ . The eigenspaces of $J$ have finite dimensions.

DEFINITION 2.6. The index of $\phi$ (or of $M$ ) is the sum of the multiplicities

of the negative eigenvalues of $J$ .

Obviously $\phi$ is stable if and only if the index of $\phi$ vanishes.

From now on we assume that $\phi:M=G/K\rightarrow N=U/L$ is a totally geodesic

isometric immersion between compact symmetric spaces. We choose $U$ so that
$G$ is a subgroup of $U$ . We denote the Lie algebra of $G$ and $U$ by $\mathfrak{g}$ and $u$

respectively. And let $\mathfrak{g}=f\oplus \mathfrak{m}$ and $1\downarrow=\mathfrak{l}\oplus \mathfrak{p}$ be the canonical decompositions. We
have the decomposition $u=\mathfrak{g}\oplus \mathfrak{g}^{\perp}$ as a G-module as well as the K-module decom-
positions $\mathfrak{l}=f\oplus f^{1}$ and $\mathfrak{p}=\mathfrak{m}\oplus \mathfrak{m}^{\perp}$ , where $\mathfrak{m}$ (resp. $\mathfrak{m}^{\perp}$ ) is isomorphic to $T_{0}M$ (resp.
$T_{0^{\perp}}M)$ as a K-module. Decompose $\mathfrak{g}^{\perp}$ into the sum of simple G-modules $\mathfrak{g}_{i^{1}}$

and denote by $\mu$ and $\mu_{i}$ the corresponding representations of $G(1\leqq i\leqq k)$ . We
have the decompositions $\mathfrak{g}_{i}^{\perp}=f_{i}^{\perp}\oplus \mathfrak{m}_{i}^{\perp}$ as K-modules where $f_{i^{1}}=f^{\perp}\cap \mathfrak{g}_{i}^{\perp}$ and
$\mathfrak{m}_{i}^{\perp}=\mathfrak{m}^{\perp}\cap \mathfrak{g}_{i^{1}}$ .

THEOREM 2.7 ([O]). Let $\phi:M=G/K\rightarrow N=U/L$ be a totally geodesic iso-
metric immersion from a compact symmetric space $M$ into another compact sym-
metric spave N. Then we haue

(2.7) index $(M)=\sum_{i=I}^{k}\lambda\in D(G),a>a_{i}\sum_{\lambda}\dim Hom_{K}(V_{\lambda}, (m_{i}^{L})^{C})\cdot\dim V_{\lambda}$

where $D(G)$ denotes all the equivalence classes of complex irreducible representa-
tions of $G$ and $V_{\lambda}$ denotes its representation space for an element $\lambda$ in $D(G)$ and
$a_{\lambda}$ denotes the eigenvalue of the Casimir operator of $\lambda$ . While $a_{i}$ denotes the
eigenvalue of the Casimir operator of $\mu_{i}$ . $Hom_{K}(V_{\lambda}, (\mathfrak{m}_{i}^{\perp})^{C})$ denotes the K-module
homomorphisms from $V_{\lambda}$ into the complexification $(\mathfrak{m}_{t^{1}})^{C}$ of $\mathfrak{m}_{i^{1}}$ .

Now we apply (2.7) to the inclusion maps $c^{+};$ $M^{+}\rightarrow M$ and $\iota^{-}:$ $M^{-}\rightarrow M$ of a
polar $M^{+}=G^{+}/K^{+}$ and the meridian $M^{-}=G^{-}/K^{-}$ in $M=G/K$ . Here we may
take $K^{+}=K^{-}$ ([N-1], [N-2]). We fix a point $0$ with $K(0)=0$ . We note that we
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may consider $M^{+}$ containing $0$ . Let $\mathfrak{g}^{+},$ $\mathfrak{g}^{-}$ and $\mathfrak{g}$ be the Lie algebras of $G^{+},$ $G^{-}$

respectively. And let $\mathfrak{g}^{+}=f^{+}\oplus \mathfrak{m}^{+},$ $\mathfrak{g}^{-}=f^{-}\oplus \mathfrak{m}^{-}$ and $\mathfrak{g}=f\oplus \mathfrak{m}$ be the canonical
decompositions, where $\mathfrak{m}^{+}$ and $\mathfrak{m}^{-}$ are isomorphic to $T_{0}M^{+}$ and $T_{0}M^{-}$ as $K^{+}-$

modules respectively. Since $\mathfrak{m}=\mathfrak{m}^{+}\oplus \mathfrak{m}^{-}$ , we have $(\mathfrak{m}^{+})^{\perp}=\mathfrak{m}^{-}$ and $(\mathfrak{m}^{-})^{\perp}=\mathfrak{m}^{+}$ .
$\mathfrak{m}^{+}=\mathfrak{m}_{1}^{+}\oplus\cdots\oplus \mathfrak{m}_{k}^{+}$ and $\mathfrak{m}^{-}=\mathfrak{m}_{1}^{-}\oplus\cdots\oplus \mathfrak{m}_{h}^{-}$ as $K^{+}$ -modules.

The next lemma is an immediate consequence of the theorem 2.7.

LEMMA 2.8. With the above notation, the indices of $M^{+}$ and $M^{-}$ are given
as follows:

(2.8.1) index $(M^{+})=\sum_{i=1}^{k}\sum_{\lambda\in D(G+a},\dim Hom_{K+}(V_{\lambda}, (m_{i}^{-})^{C})\cdot\dim V_{\lambda}$

(2.8.2) index $(M^{-})=\sum_{f=1}^{h}$
$\sum_{-,\nu\in D(G).a_{\nu}>a_{j}}\dim Hom_{K-}(V_{\nu}, (m_{J^{+}})^{C})\cdot\dim V_{\nu}$

where we follow the notation of Theorem 2.7.

3. Stability of polars and meridians in symmetric spaces.

In this section we determine the stability of all polars and meridians in
every compact connected irreducible symmetric space by using Lemma 2.8.

We denote by $M=G/K$ a compact connected irreducible symmetric space,
by $M^{+}=M^{+}(p)=G^{+}/K^{+}$ one of the polars of a point $0$ in $M$ and by $M^{-}=M^{-}(p)$

$=G^{-}/K^{-}$ its corresponding meridian, where $K^{-}=K^{+}$ as mentioned in Section 2.
We also denote by $\mathfrak{g},$

$\mathfrak{g}^{+}$ and $\mathfrak{g}^{-}$ the Lie algebras of $G,$ $G^{+}$ and $G^{-}$ respectively.

When $K$ or $K^{+}$ is not connected, we denote its identity component by $K_{0}$

or $K_{0^{+}}$ respectively. Since $M^{+}(p)$ is a $K_{o}$-orbit (see 1. $5a(ii)$ in [N-2]), we may
assume $G^{+}=K_{o}$ .

In order to apply (2.8.1) (resp. (2.8.2)) to study the stability of $M^{+}$ (resp.

$M^{-})$ in $M$, what we should do is the following (3.0.1) through (3.0.3):

(3.0.1) To determine every representation of $G^{+}$ on $\mathfrak{g}/\mathfrak{g}^{+}$ (resp. $G^{-}$ on $\mathfrak{g}/\mathfrak{g}^{-}$ )

which is denoted by $\mu$ (resp. $\rho$ ) and to decompose $\mu$ (resp. $\rho$ ) into the irre-
ducible representations.

Here $\mathfrak{g}/\mathfrak{g}^{+}$ is isomorphic to $T_{o}M$ as a $G^{+}$ -module, that is, $\mu$ is equivalent to
the isotropy representation of $K$. Hence $\mu$ is irreducible. On the other hand,
$G/G^{-}$ is another symmetric space and $\rho$ is the isotropy representation of $G^{-}$ . $\rho$

is irreducible or the sum of two irreducible representations which are equivalent
to each other. (One can check it case by case.) So even if $\rho$ is not irreducible,
we denote its irreducible component by the same $\rho$ .
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(3.0.2) To find every complex irreducible representation $\lambda$ of $G^{+}$ (resp. $\nu$

of $G^{-}$ ) which satisfies the condition $a_{\lambda}>a_{\mu}$ (resp. $a_{\nu}>a_{\rho}$ ) where $a_{\lambda}$ denotes the
eigenvalue of the Casimir operator of $\lambda$ and similarly for $a_{\mu},$ $a_{\nu}$ and $a_{\rho}$ . (We

can get the eigenvalue of the Casimir operator by Freudenthal’s formula.)

(3.0.3) To examine whether each representation $\lambda$ (resp. $\nu$) in (3.0.2) satisfies
the following condition or not: when we restrict $\lambda$ (resp. $\nu$ ) to $K^{+}$ , it includes
at least one of the simple $K^{+}$ -submodules of $(\mathfrak{m}^{-})^{c}$ (resp. $(\mathfrak{m}^{+})^{c}$ ).

If a representation satisfies both conditions in (3.0.2) and in (3.0.3), we say
that this representation is admissible. If there is no admissible representation

of $G^{+}$ (resp. $G^{-}$ ), we conclude that $M^{+}$ (resp. $M^{-}$ ) is stable.

NOTATION. We follow the notation of [B] concerning the numbering of
the fundamental weights and that of [N-1] concerning the symmetric spaces.

The isotropy representation of $K^{+}$ on the tangent space of $M^{+}$ is denoted
by $\mu^{+}$ and on that of $M^{-}$ by $\mu^{-}$ . (Refer to Appendix for the isotropy repre-
sentations.)

For two representations $\lambda^{\prime}$ and $\lambda^{\prime\prime}$ of some groups $G^{\prime}$ and $G^{\prime\prime}$ , the repre-
tation $\lambda^{\prime}+\lambda^{\prime\prime}$ denotes the representation of a group $G^{\prime}\times G^{\prime\prime}$ whose representa-

tion space is $V_{\lambda^{\prime}}\otimes V_{\lambda^{J/}}$ . Note that the eigenvalue of the Casimir operator satisfies
$a_{\lambda^{\prime}+\lambda^{\prime\prime}}=a_{\lambda^{\prime}}+a_{\lambda^{\prime;}}$ . We denote by $\lambda^{\prime}\oplus\lambda^{\prime\prime}$ the representation of a group $G^{\prime}\times G^{\prime\prime}$

whose representation space is $V_{\lambda^{\prime}}\oplus V_{\lambda},$, such that $G^{\prime\prime}$ acts trivially on $V_{\lambda^{\prime}}$ and
$G^{\prime}$ does on $V_{\lambda},,$ .

Though $T$ denotes $U(1)$ , we also denote its representation by $T$ .

LEMMA 3.1. If $M$ is a Hermitian symmetric space, all the polars and the
meridians of $M$ are stable.

PROOF. When $M$ is a Hermitian symmetric space, all the polars and the
meridians are hermitian (See 2.30 in [N-2]). As a Hermitian symmetric space
is K\"ahlerian, we get their stability from the well-known fact; the complex

submanifolds of a K\"ahlerian manifold are homologically volume-minimizing in
their real homology class. $q.e.d$ .

A $4n$-dimensional symmetric space $M$ is called a quaternionic Kahler sym-
metric space if $M$ has the following property: there is a point $x$ in $M$ such that,
through an identification of $T_{x}M$ with $H^{n}$ , the linear holonomy group of $M$ at
$x$ is contained in $sp(n)\cdot Sp(1)$ ,
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LEMMA 3.2. Suppose $M$ is a quaternionic Kahler symmetric space and one
of its polars is also quaternionic Kahler, then this polar and its corresponding

meridian are stable.

PROOF. We can check that when $M$ is a quaternionic Kahler symmetric
space and one of its polars is also quaternionic K\"ahler, its corresponding

meridian is also qaternionic K\"ahler. Since the quaternionic K\"ahler submani-
folds in a quaternionic K\"ahler manifold are homological volumeminimizing in
their homology class (see [Ts-2]), they are stable. $q.e.d$ .

LEMMA 3.3. Let $M^{+}=K_{o}/K^{+}$ be a polar in a compact connected symmetric
space $M=G/K$ and $M^{-}$ its meridian. If $K^{+}$ is connected and $M^{-}$ is a local
direct product of the circle $S^{1}$ and a semisimple symmetric space, then $M^{+}$ is
unstable.

PROOF. When $M^{-}$ is a local direct product of $S^{1}$ and a semisimple sym-
metric space, $(m^{-})^{C}$ includes one dimensional subspace as a $K^{+}$ -module. Because
of the connectedness of $K^{+}$ , a trivial representation is admissible. So $M^{+}$ is
unstable. $q.e.d$ .

LEMMA 3.4. Let $M^{\wedge}$ be a finite covering space of $M$ and $\pi;M^{\wedge}\rightarrow M$ the
projection such that $\pi(0^{\wedge})=0$ for a point $0^{\wedge}$ in $M^{\wedge}$ and $0$ in M. If a polar $M^{\wedge+}$

of $0^{\wedge}$ in $M^{\wedge}$ is stable, then the image $\pi(M^{\wedge+})$ is a stable polar of $0$ in M. And
similarly if a meridian $M^{\wedge-}$ of $0^{\wedge}$ in $M^{\wedge}$ is stable, then so is the image $\pi(M^{\wedge-})$ ,

a meridian in $M$.

PROOF. Suppose $M^{+}:=\pi(M^{\wedge+})$ is unstable, then there exist a normal vector
field $v$ on $M^{+}$ which contributes to the index of $M^{+}$ . When we consider the
lift of $v$ , it is a vector field on $M^{\wedge}$ which also contributes to the index of $M^{\wedge+}$

because $\pi$ is locally isometric. It contradicts the assumption. As for a meridian,
we can prove it in the same manner. $q.e.d$ .

LEMMA 3.5. Let $M^{\wedge}$ be a double covering space of $M$ and $\pi;M^{\wedge}\rightarrow M$ the
projection such that $\pi(0^{\wedge})=0$ for a point $0^{\wedge}$ in $M^{\wedge}$ and $0$ in $M$ and $\pi(0^{\wedge})=\pi(p)$

for a point $p$ in $M^{\wedge}$ . If a connected component $C:=C(0^{\wedge}, p)_{0}$ of the centrosome
$C(0^{\wedge}, p)$ in $M^{\wedge}$ is stable then the image $\pi(C)$ is a stable polar of $0$ in M. And
similarly if an orthogonal space $C^{\perp}of$ $C$ in $M^{\wedge}$ is stable, then the image $\pi(C^{\perp})$

is a stable meridian in $M$ .

PROOF. We can prove it similarly to Lemma 3.4.
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DEFINITION 3.6. We say a connected component of centrosome $C(0, p)$ is
of s-size when it meets one of the shortest geodesic segments joining $0$ to $p$

in $M$ .

LEMMA 3.7. Let $M$ be a compact connected irreducible symmetric space.
And suppose that there exists at least one pole $p$ of a point $0$ in M. If $C(0, p)_{0}$

is of s-size, then its orthogonal complement is the space of local direct product

of $S^{1}$ and a compact simply connected symmetric space.

PROOF. One can check this by using the classification in [CN-1] and [N-1].

For another proof, the shortest geodesic through $x\in C(0, p)_{0}$ is unique and hence
its tangent vector at $x$ is fixed by the isotropy subgroup. $q.e.d$ .

PROPOSITION 3.8. Let $M$ be a compact connected irreducible symmetric space.
And suppose that there exists at least one pole $p$ of a point $0$ in M. If $C(0, p)_{0}$

is of s-size, then it has a trivial line bundle as a subbundle of the normal bundle
in M. Hence, $C(0, p)_{0}$ is unstable.

PROOF. For all $M$ except for $AI(2n)$ and $EV$ , the isotropy subgroup of the
automorphism group of $C:=C(0, p)_{0}$ is connected. So we get their instability

by Lemma 3.3 and 3.7. As for $M=AI(2n)$ and $EV$ , we also get the instability

of $C$ in $M$ by examining the action of each component of the isotropy subgroup

of the automorphism group of C. $q.e.d$ .

LEMMA 3.9. Let $M^{\wedge}$ be a double covering space of a compact connected
symmetric space $M$ and $\pi:M^{\wedge}\rightarrow M$ the projection such that $\pi(0^{\wedge})=0$ for a point
$0^{\wedge}$ in $M^{\wedge}$ and $0$ in M. Where we assume that $M^{\wedge}$ is neither $SO(2n)$ with $n=odd$

nor $G_{n}(R^{2n})$ with $n=odd$ . And suppose that there exists a pole $p$ of $0^{\wedge}$ in $M^{\wedge}$

and $\pi(0^{\wedge})=\pi(p)$ . If $C(0^{\wedge}, p)_{0}$ is of s-size, the image $\pi(C(0^{\wedge}, p)_{0})$ never has a
trivial line bundle as a subbundle of a normal bundle in $M$.

PROOF. We can construct a totally geodesic sphere $S^{m}$ which contains $S^{1}$

in Lemma 3.7 except for the case in which $M^{\wedge}$ is $SO(2n)$ with $n=odd$ or
$G_{n}(R^{2n})$ with $n=odd$ , and which has the same dimension as the Helgason sphere

of $M^{\wedge}$ (refer to [NS-2]). Since this $S^{I}$ is a shortest geodesic through $0^{\wedge}$ and
$p,$ $S^{m}$ meets the s-sized $C(0^{\wedge}, p)_{0}$ in $S^{m-1}$ . The image is $\pi(S^{m})=RP^{m}$ with its
polar $RP^{m-1}$ which is contained in $M^{+}:=\pi(C(0^{s}, p)_{0})$ . Its meridian is $RP^{1}=S^{1}$ .
By the relationship between the orientations of $RP^{m}$ and of its hypersurface,

we can conclude that the normal bundle of $RP^{m-1}$ is not orientable, that is, $M^{+}$
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does not have a trivial line bundle as a subbundle of a normal bundle in $M$ .
$q.e.d$ .

Now we examine the stability of $M^{+}$ and $M^{-}$ of each $M$ case by case.
Here we arrange the spaces according to the root system of $M$ .

Type A
[1] $SU(n)/Z_{k}$ ( $Z_{k}$ is a subgroup of the center of $SU(n)$ )

CASE 1. $k$ is odd.

$(M^{+}, M^{-})=(G_{r}(C^{n}), \{T\cdot(SU(r)\times SU(n-r))\}/Z_{k})$ , $0<r=even\leqq n$ .
Every polar is unstable by Lemma 3.3 since $K^{+}=\{T\cdot(SU(r)\times SU(n-r))\}/Z_{k}$

is connected and $M^{-}$ is a local direct product of $S^{1}$ and the other space. On
the other hand, every meridian is stable. In fact, we have $ G^{-}=\{T\cdot(SU(r)\times$

$SU(n-r))\}/Z_{k}\times\{T\cdot(SU(r)\times SU(n-r))\}/Z_{k}$ with $\rho=\{(T^{\prime}+\omega_{1}(A_{r-1}^{\prime})+\omega_{1}(A_{n-r-1}^{\prime}))$

$+0\}\oplus\{0+(T‘‘ +\omega_{1}(A_{r-1}^{\prime\prime})+\omega_{1}(A_{n-r-1}^{\prime\prime}))\}$ and $\mu^{+}=T+\omega_{1}(A_{r-1})+\omega_{1}(A_{n-r-1})$ , where
$T^{\prime}$ (resp. $T^{\prime\prime}$ ), $A_{r-1}^{\prime}$ (resp. $A_{r-1}^{\prime\prime}$ ) and $A_{n-r-1}^{\prime}$ (resp. $A_{n-r-\iota}^{\prime\prime}$ ) denote $T$ , $SU(r)$

and $SU(n-r)$ which are subgroups of $G^{-}$ acting on $M^{-}$ to the left (resp. right)

side respectively and $T,$ $A_{r-1}$ and $A_{n-r-1}$ denote $T,$ $SU(r)$ and $SU(n-r)$ which
are subgroups of $K^{-}$ , the diagonal subgroup of $G^{\rightarrow}$ , respectively. If an element
$\nu\in D(\{T\cdot(SU(r)\times SU(n-r))\}/Z_{k}\times\{T\cdot(SU(r)\times SU(n-r))\}/Z_{k})$ satisfies $a_{\nu}>a_{\rho}$ ,

then $\nu=0+\sigma$ or $\sigma+0$ , where $\sigma\in D(\{T\cdot(SU(r)\times SU(n-r))\}/Z_{k})$ which satisfies
$a_{\sigma}>a_{\rho}$ , or $\nu=\omega_{1}(A_{r-1}^{\prime})+\omega_{1}(A_{r-1}^{\prime\prime})$ if $r<n-r$ and $\nu=\omega_{1}(A_{n-r-1}^{\prime})+\omega_{1}(A_{n-r-1}^{\prime\prime})if$

$r>n-r$ . As for $\nu=0+\sigma$ or $\sigma+0$ , we have $V_{0+\sigma}=W_{\sigma}$ and $V_{\sigma+0}=W_{\sigma}$ as $K^{+}-$

modules where $W_{\sigma}$ is the representation space of the representation $\sigma$ of $K^{+}$ .
As for $\nu=\omega_{1}(A_{r-1}^{\prime})+\omega_{1}(A_{r-1}^{\prime\prime})$ if $r<n-r$ and $\nu=\omega_{1}(A_{n-r-1}^{\prime})+\omega_{1}(A_{n-r-1}^{\prime\prime})$ if $r<$

$n-r,$ $A_{n-r-1}$ in $K^{+}$ is trivial in the former and non-trivial in $\mu^{+}$ . $A_{r-1}$ in $K^{+}$

is trivial in the latter and non-trivial in $\mu^{+}$ . So we conclude that any of the
above $\nu$ is not admissible.

CASE 2. $k$ is even and $n/k$ is odd.

$(M^{+}, M^{-})=(G_{r}(C^{n})^{*}, \{T\cdot(SU(r)\times SU(n-r))\}/Z_{k})$ , $0<r\leqq n/2$ .

When we consider the projection $\pi$ from $SU(n)/Z_{k/2}$ to $SU(n)/Z_{k}$ , the re-
striction of the projection to each polar is diffeomorphism if $r\neq n/2$ . So the
stability of $M^{+}=G_{r}(C^{n})^{*}=G_{r}(C^{n})$ with $r\neq n/2$ is reduced to the case 1, that is,
all polars $G_{r}(C^{n})^{*}$ with $r\neq n/2$ are unstable. But $G_{n/2}(C^{n})^{*}$ is stable. Since it
is the image of $G_{n/2}(C^{n})$ , one of the connected components of the centrosome
of s-size, by the above projection $\pi$ , the trivial representation is not admissible
by Lemma 3.9. And we can see that the other representations which satisfy
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the condition in (3.0.2) are not admissible either by restricting them to $K^{+}$ . On
the other hand, every meridian is stable from the result of the case 1 and by

Lemma 3.4.
CASE 3. $k$ and $n/k$ are even.

$(M^{+}, M^{-})=(G_{r}(C^{n})^{*}, \{T\cdot(SU(r)\times SU(n-r))\}/Z_{k})$ , $0<r=even\leqq n$ .
Every polar except for $G_{n/2}(C^{n})^{*}$ is unstable and every meridian is stable

as in case 2.

[2] $U(n)/Z_{h}$

We can get the following results in a similar way to [1].

CASE 1. $k$ is odd.

$(M^{+}, M^{-})=(G_{r}(C^{n}), (U(r)\times U(n-r))/Z_{k})$ , $0<r\leqq n$ .
Every polar is unstable but every meridian is stable.
CASE 2. $k$ is even and $n/k$ is odd.

$(M^{+}, M^{-})=(G_{r}(C^{n})^{*}, (U(r)\times U(n-r))Z_{k})$ , $0<r\leqq n/2$ .
Every polar except for $G_{n/2}(C^{n})^{*}$ is unstable and every meridian is stable.
CASE 3. $k$ and $n/k$ are even.

$(M^{+}, M^{-})=(G_{r}(C^{n})^{*}, (U(r)\times U(n-r))/Z_{k})$ , $0<r\leqq n$ .
Every polar except for $G_{n/2}(C^{n})^{*}$ is unstable and every meridian is stable.

[3] $AI(n)/Z_{k}$

CASE 1. $k$ is odd.

$(M^{+}, M^{-})=(G_{r}(R^{n}), \{T\cdot(AI(r)\times AI(n-r))\}/Z_{k})$ , $0<r=even\leqq n$ .
Every polar is unstable since the trivial representation of $K$ is admissible.

In fact, each connected component of $K^{+}$ acts on $T$ in $M^{-}$ trivially though $K^{+}$

is not connected. On the other hand, every meridian is stable. In fact, we
have $G^{-}=\{T\cdot(SU(r)\times SU(n-r))\}/Z_{k}$ with $\rho=T+\omega_{1}(A_{r-1})+\omega_{1}(A_{n-r-1})$ and $\mu^{+}=$

$\omega_{1}(SO(r))+\omega_{1}(SO(n-r))$ . If an element $\nu\in D(\{T\cdot(SU(r)\times SU(n-r))\}/Z_{k})$ satisfies
$a_{\nu}>a_{\rho}$ , then $\nu$ is a representation in which at least $SU(r)$ or $SU(n-r)$ acts
trivially. So when we restrict these representations to $K^{+}$ , at least $SO(r)$ or
$SO(n-r)$ acts trivially. But in $\mu^{+}$ both $SO(r)$ and $SO(n-r)$ act non-trivially.

So we conclude that none of such $\nu$ is admissible.

REMARK 3.10. By using homomorphisms between symmetric spaces, we can
also prove the instability of $M^{+}=G_{r}(R^{n})$ in $M=AI(n)/Z_{k}$ as follows. There
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exists an inclusion $c:M\rightarrow SU(n)/Z_{k}$ which carries a polar $G_{r}(R^{n})$ of $AI(n)/Z_{k}$

into a polar $G_{r}(C^{n})$ of $SU(n)/Z_{k}$ for each $r$ respectively. And $f$ also carries a
meridian $\{T\cdot(AI(r)\times AI(n-r))\}/Z_{k}$ into a meridian $\{T\cdot(SU(r)\times SU(n-r))\}/Z_{k}$

for each $\gamma$ respectively, where we note that the image of $T$ of $\{T\cdot(AI(r)\times$

$AI(n-r))\}/Z_{k}$ coincides with $T$ of $\{T\cdot(SU(r)\times SU(n-r))\}/Z_{k}$ , in particular it
is tangent to the image of $AI(n)/Z_{k}$ . Since $G_{r}(C^{n})$ has a trivial line bundle as
a subbundle of the normal bundle in $SU(n)$ by the result in [1], we can con-
clude that $G_{r}(R^{n})$ also has a trivial line bundle by restricting the trivial line
bundle to the image of a polar $G_{r}(R^{n})$ .

CASE 2. $k$ is even and $n/k$ is odd.

$(M^{+}, M^{-})=(G_{r}(R^{n})^{*}, \{T\cdot(AI(r)\times AI(n-r))\}/Z_{k})$ , $0<r\leqq n/2$ .
Every polar $G_{r}(R^{n})^{*}=G_{r}(R^{n})$ with $r\neq n/2$ is unstable but every meridian is

stable since the similar arguments work as the case 2 in [1]. And also we
get that $M^{+}=G_{n/2}(R^{n})^{*}$ is stable. In fact, we have $G=SU(n)/Z_{k},$ $K_{o}=SO(n)^{*}$

and $K_{o}^{+}=S(O(n/2)\cdot O(n/2))$ with $\mu=2\omega_{1}(SO(n))$ and $\mu^{-}=0\oplus 2\omega_{1}(SO(n/2))\oplus$

$2\omega_{1}(SO(n/2))$ . If $\lambda\in D(SO(n)^{*})$ satisfies $a_{\lambda}<a_{\mu}$ , then $\lambda=0$ or $\omega_{2}$ . And we have
the next decomposition of $\lambda=\omega_{2}$ as a $K^{+}$ -module.

$V_{\omega_{2}(S0tn))}=W_{\omega_{2}(S0tn/2))}\oplus W_{\omega_{2}(SO(n/2))}\oplus W_{\omega_{1}(S0(n/2))}\otimes W_{\omega_{1}(S0tn/2))}$ .
So $\lambda=\omega_{2}$ is not admissible. As for $\lambda=0$ , since $K^{+}$ acts on $T$ as $\pm 1$ times the
identity, we conclude that $\lambda=0$ is not admissible either.

CASE 3. $k$ and $n/k$ are even.

$(M^{+}, M^{-})=(G_{r}(R^{n})^{*}, \{T\cdot(AI(r)\times AI(n-r))\}/Z_{k})$ , $0<r=even\leqq n$ .
Every polar except for $G_{n/2}(R^{n})^{*}$ is unstable and every meridian is stable

similarly to the case 2.

[4] $UI(n)/Z_{k}$

We can get the following results similarly to [3].

CASE 1. $k$ is odd.

$(M^{+}, M^{-})=(G_{r}(R^{n}), (Ul(r)\times Ul(n-r))/Z_{k})$ , $0<r\leqq n$ .
Every polar is unstable but every meridian is stable.
CASE 2. $k$ is even and $n/k$ is odd.

$(M^{+}, M^{-})=(G_{r}(R^{n})^{*}, (UI(r)\times UI(n-r))/Z_{k})$ , $0<r\leqq n/2$ .
Every polar except for $G_{n/2}(R^{n})^{*}$ is unstable and every meridian is stable
CASE 3. $k$ and $n/k$ are even.
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$(M^{+}, M^{-})=(G_{r}(R^{n})^{*}, (UI(r)\times UI(n-r))/Z_{k})$ , $0<r\leqq n$ .
Every polar except for $G_{n/2}(R^{n})^{*}$ is unstable and every meridian is stable.

[5] $AII(n)/Z_{k}$

CASE 1. $k$ is odd.

$(M^{+}, M^{-})=(G_{r}(H^{n}), \{T\cdot(AII(r)\times AII(n-r))\}/Z_{k})$ , $0<r=even\leqq n$ .
Every polar is unstable since we can conclude that it has a trivial line

bundle as in Remark 3.10. In this case the inclusion map: $M\rightarrow SU(2n)/Z_{k}$

carries a polar $G_{r}(H^{n})$ of $AII(n)/Z_{k}$ into a polar $G_{2r}(C^{2n})$ of $SU(2n)/Z_{k}$ for
each $r$ . On the other hand, every meridian is stable as in [1].

CASE 2. $k$ is even and $n/k$ is odd.

$(M^{+}, M^{-})=(G_{r}(H^{n})^{*}, \{T\cdot(AII(r)\times AII(n-r))\}/Z_{k})$ , $0<r\leqq n/2$ .
Every polar except for $G_{n/2}(H^{n})^{*}$ is unstable and every meridian is stable

as in case 2 of [1].

CASE 3. $k$ and $n/k$ are even.

$(M^{+}, M^{-})=(G_{r}(H^{n})^{*}, \{T\cdot(AII(r)\times AII(n-r))\}/Z_{k})$ , $0<r=even\leqq n$ .
Every polar except for $G_{n/2}(H^{n})^{*}$ is unstable and every meridian is stable

as in case 2.

[6] $UlI(n)/Z_{k}$

We can get the following results as in [5].

CASE 1. $k$ is odd.

$(M^{+}, M^{-})=(G_{r}(H^{n}), (UII(r)\times UII(n-r))/Z_{k})$ . $0<r\leqq n$ .

Every polar is unstable but every meridian is stable.
CASE 2. $k$ is even and $n/k$ is odd.

$(M^{+}, M^{-})=(G_{r}(H^{n})^{*}, (UII(r)\times UII(n-r))/Z_{k})$ , $0<r\leqq n/2$ .
Every polar except for $G./2(H^{n})^{*}$ is unstable and every meridian is stable.
CASE 3. $k$ and $n/k$ are even.

$(M^{+}, M^{-})=(G_{r}(H^{n})^{*}, (UII(r)\times UII(n-r))/Z_{k})$ , $0<r\leqq n$ .
Every polar except for $G_{n/2}(H^{n})^{*}$ is unstable and every meridian is stable.

[7] $EIV$

$(M^{+}, M^{-})=(FII, T\cdot S^{9})$ .
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$M^{+}=FII$ is unstable by Lemma 3.3 since $K^{+}=SO(9)^{\sim}$ is connected and $M^{-}$

is the local direct product of $T$ and $S^{9}$ . On the other hand, $M^{-}=T\cdot S^{9}$ is stable.
In fact, we have $G^{-}=T\cdot SO(10)^{\sim}$ with $\rho=T+\omega_{6}(D_{6})$ and $\mu^{+}=\omega_{4}(B_{4})$ . And if
$\nu\in D(T\cdot SO(10)^{\sim})$ satisfies $a_{\nu}<a_{\rho}$ , then $\nu=0$ or $T+\omega_{1}$ . Then we can conclude
that neither one is admissible.

Type $B$ or $D$

[8.1] $SO(n)^{\sim}$

$(M^{+}, M^{-})=(G_{2r^{o}}(R^{n}), SO(2r)^{\sim}\cdot SO(n-2r)^{\sim})$ , $0<r=even\leqq n/2$ .
The polar $G_{2r^{O}}(R^{n})$ is stable unless $n=4m+3$ with $r=2m$ or $n=2r+2$ .

When $n=4m+3$ with $r=2m$ , the polar is unstable since $\lambda=\omega_{1}(B_{2m+1})$ is admis-
sible. (Note that $\omega_{1}$ has the smallest eigenvalue of the Casimir operator among
the fundamental weights of $B_{2m+1}$ if $m\geqq 2$). When $n=2r+2$ , we have the in-
stability of the polar by Lemma 3.3 since $K^{+}$ is connected and its corresponding
meridian is $SO(2)\cdot SO(2r)^{\sim}$ . In general, we have $G=SO(n)^{\sim}\times SO(n)^{\sim},$ $K=SO(n)^{\sim}$ ,

$K^{+}=SO(2r)^{\sim}\cdot SO(n-2r)^{\sim},$ $\mu=\omega_{2}(SO(n)^{\sim})$ and $\mu^{-}=\omega_{2}(SO(2r)^{\sim})\oplus\omega_{2}(SO(n-2r)^{\sim})$ .
If $\lambda\in D(SO(n)^{\sim})$ satisfies $a_{\lambda}<a_{\mu}$ , then $\lambda=0$ or $\omega_{1}$ if $n\geqq 16$ . Since we have the
next decomposition as a $K^{+}$ -module

$ V\sim=W\sim\oplus W\sim$ ,

we conclude that $\lambda=\omega_{1}$ is not admissible when $2r$ and $n-2r$ are sufficiently
large. If $n<16$ , the spin (or the half spin) representation of $SO(n)^{\sim}$ satisfies
the condition $a_{\lambda}<a_{\mu}$ , but we can see that it is not admissible. Obviously $\lambda=0$

is not admissible either. On the other hand, each meridian $M^{-}=SO(2r)^{\sim}$ .
$SO(n-2r)^{\sim}$ is stable. In fact, we have $G^{-}=SO(2r)^{\sim}\cdot SO(n-2r)^{\sim}\times SO(2r)^{\sim}$ .
$SO(n-2r)^{\sim}$ with $\rho=\{(\omega_{1}(SO^{\prime}(2r)^{\sim})+\omega_{1}(SO^{\prime}(n-2r)^{\sim}))+0\}\oplus\{0+(\omega_{1}(SO^{\prime\prime}(2r)^{\sim})+$

$\omega_{1}(SO^{\prime\prime}(n-2r)^{\sim}))\}$ and $\mu^{+}=\omega_{1}(SO(2r)^{\sim})+\omega_{1}(SO(n-2r)^{\sim})$ , where we refer to [1]

for the notations SO and $SO^{\prime}$ . If $\nu\in D(SO^{\prime}(2r)^{\sim}\cdot SO^{\prime}(n-2r)^{\sim}\times SO^{\prime\prime}(2r)^{\sim}\cdot$

$SO^{\prime\prime}(n-2r)^{\sim})$ satisfies $a_{\nu}<a_{\rho}$ , then $\nu=0+\sigma$ or $\sigma+0$ , where $\sigma\in D(SO(2r)^{\sim}\cdot$

$SO(n-2r)^{\sim})$ which satisfies $a_{\sigma}>a_{\rho}$ or $\nu=\omega_{1}(SO^{\prime}(2r)^{\sim})+\omega_{1}(SO^{\prime\prime}(2r)^{\sim})$ if $2r<n-2r$

and $\nu=\omega_{1}(SO^{\prime}(n-2r)^{\sim})+\omega_{1}(SO^{\prime\prime}(n-2r)^{\sim})$ if $2r>n-2r$ . We can conclude that
none of these representations is admissible as in [1].

[8.2] $SO(4n)^{\#}$

[8.2-1] $(M^{+}, M^{-})=(G_{2r^{O}}(R^{4n}), (SO(2r)^{\sim}\cdot SO(4n-2r)^{\sim})/\{1, \delta\}),$ $0<r=even\leqq n$ .
[8.2-2] $(M^{+}, M^{-})=(G_{2n}(R^{4n})^{*}, SO(2n)^{\sim}\cdot SO(2n)^{\sim})/\{1, \delta\})$ .

These polars and meridians are stable from the result in [8.1] and by
Lemma 3.4.
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[8.2-3] $(M^{+}, M^{-})=(DIII(2n)^{*}, U^{\wedge}(2n)/Z_{2})$ where $U^{\wedge}(2n)$ is the connected
subgroup of $SO(4n)^{\sim}$ which doubly covers $U(2n)$ in $SO(4n)$ .

The polar is stable by Lemma 3.9. And so is the meridian. In fact, we
have $G=SO(4n)^{\#}\times SO(4n)^{\#}$ , $G^{-}=U^{\wedge}(2n)/Z_{2}\times U^{\wedge}(2n)/Z_{2}$ , $K^{+}=U^{\wedge}(2n)/Z_{2}$ , $\rho=$

$(T^{\prime}+\omega_{2}(A_{2n-1}^{\prime})+0)\oplus(0+T‘‘ +\omega_{2}(A_{2n-1}^{\prime\prime}))$ and $\mu^{+}=T+\omega_{2}(A_{2n-1})$ . If $\nu\in D(U^{\wedge}(2n)/$

$Z_{2}\times U^{\wedge}(2n)/Z_{2}$ satisfies $a_{\nu}<a_{\rho}$ , then $\nu$ is a trivial representation since $T+\omega_{1}$

cannot be a representation of $U^{\wedge}(2n)/Z_{2}$ . Clearly the trivial representation is
not admissible.

[8.3] $SO(n)$

$(M^{+}, M^{-})=(G_{r}(R^{n}), SO(r)\times SO(n-r))$ , $0<r=even\leqq n$ .
All polars and all meridians are stable. In fact, when $r\equiv 0(mod 4)$ , we can

conclude that all polars and all meridians except for some cases are stable from
the results in [8.1] and by Lemma 3.4. So we may consider the following
three cases only: (1) $r\equiv 2(mod 4),$ (2) $n=4m+3$ with $r=4m$ , and (3) $n\equiv 2(mod 4)$

with $r=n-2$ . As for the cases (2) and (3), the representations which are admis-
sible in [8.1] can not be admissible in this case because of the disconnectedness
of $K^{+}$ . And as for the case (1), the similar arguments work as in [8.1].

[8.4] $SO(2n)^{*}$

[8.4-1] $(M^{+}, M^{-})=(G_{r}(R^{2n})^{*}, SO(r)\cdot SO(2n-r))$ , $0<r\leqq n$ .
We can conclude that these polars and meridians are stable by the results

in [8.3] and Lemma 3.4.

[8.4-2] $(M^{+}, M^{-})=(DIII(n)^{*}, U(n)/Z_{2})$ .
When $n$ is even, the polar is stable by Lemma 3.9. And when $n$ is odd,

the polar is unstable by Lemma 3.3 since the isotropy subgroup of DIII$(n)^{*}=$

$DIII(n)$ is connected. On the other hand, the meridian is stable by the results
in [8.2-3] and Lemma 3.4 if $n$ is even and the similar argument works if $n$

is odd.

[9.1] $G^{o_{r}}(R^{n})$

$(M^{+}, M^{-})=(G_{a^{O}}(R^{r})\cdot G_{b^{O}}(R^{n-r}), G_{a^{O}}(R^{n-2b})\cdot G_{b^{O}}(R^{2b}))$ , $a+b=r,$ $b=even$ .

The polar and the meridian are stable unless $r=2m+1$ with $a=1$ . In fact,

we have $G=SO(n)^{\sim},$ $K=SO(r)^{\sim}\times SO(n-r)^{\sim},$ $G^{-}=SO(n-2b)^{\sim}\times SO(2b)^{\sim},$ $K^{+}=$

$SO(a)^{\sim}\times SO(b)^{\sim}\times SO(b)^{\sim}\times SO(n-r-b)^{\sim}$ , $\mu=\omega_{1}(SO(r)^{\sim})+\omega_{1}(SO(n-r)^{\sim})$ , $\rho=$

$\omega_{1}(SO(n-2b)^{\sim})+\omega_{1}(SO(2b)^{\sim})$ , $\mu^{+}=\{\omega_{1}(SO(a)^{\sim})+\omega_{1}(SO(b)^{\sim})\}\oplus\{\omega_{1}(SO(b)^{\sim})+$

$\omega_{1}(SO(n-r-b)^{\sim})\}$ and $\mu^{-}=\{\omega_{1}(SO(a)^{\sim})+\omega_{1}(SO(n-r-b)^{\sim})\}\oplus\{\omega_{1}(SO(b)^{\sim})+\omega_{1}(SO(b)^{\sim})\}$ .
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When $r=2m+1$ with $a=1$ , the polar is $S^{2m}\cdot G_{2m^{O}}(R^{n-2m-1})$ and we can see that
$\omega_{1}(SO(r)^{\sim})$ is admissible. And in that case the meridian is $S^{n-4m-1}\cdot G_{2m^{O}}(R^{4m})$

and $\omega_{1}(SO(n-2b)^{\sim})$ is also admissible.
[9.2] $G_{r}(R^{n})^{\#}$

[9.2-1] $(M^{+}, M^{-})=(G_{a^{O}}(R^{n})\cdot G_{b}(R^{n}), (G_{a^{O}}(R^{2a})\cdot G_{b^{O}}(R^{2b}))/\{1, \delta\})$ ,

$a+b=n,$ $0<b=even<n/2$ .

[9.2-2] $(M^{+}, M^{-})=(G_{b}(R^{n})^{\#}\cdot G_{b}(R^{n})^{*}, G_{b}(R^{n})^{*}\cdot G_{b}(R^{n})^{\#})$ .

[9.2-3] $(M^{+}, M^{-})=(SO(n)^{*}, UI^{\wedge}(n)/\{1, \delta\})$ where $UI^{\wedge}(n)=U^{\wedge}(n)/SO(n)$ and
see [8.2-3] for $U^{\wedge}(n)$ .

We can conclude that these polars and meridians are stable similarly to the
case [8.2].

[9.3] $G_{r}(R^{n})$

$(M^{+}, M^{-})=$ ( $G_{a}$ ($R$ ‘) X $G_{b}(R^{n-r}),$ $G_{a}(R^{n-2b})\times G_{b}(R^{2b})$), $a+b=r$ .
All polars and all meridians are stable. In fact, when $b$ is even, we can

conclude that all polars and all meridians except for some cases are stable from
the results in [9.1] and by Lemma 3.4. So we may consider the following two
cases only: (1) $b$ is odd and (2) $r=2m+1$ with $a=1$ . As for the case (1), the
similar arguments work as in [9.1]. As for the case (2), the representations
which are admissible in [9.1] cannot be admissible in this case because of the
disconnectedness of $K^{+}$ .

[9.4] $G_{r}(R^{n})^{*}$

[9.4-1] $(M^{+}, M^{-})=(G_{a}(R^{n})\times G_{b}(R^{n}), G_{a}(R^{2a})\cdot G_{b}(R^{2b}))$ , $a+b=n,$ $0<a<n/2$ .
[9.4-2] $(M^{+}, M^{-})=(G_{a}(R^{n})\cdot G_{a}(R^{n}), G_{a}(R^{n})\cdot G_{a}(R^{n}))$ .

We can conclude that these polars and meridians are stable from the results
in [9.3] and by Lemma 3.4.

[9.4-3] $(M^{+}, M^{-})=(SO(n)^{*}, UI(n)/Z_{2})$ .

The polar is stable if $n$ is even by Lemma 3.9. And when $n$ is odd, the
polar is unstable by Lemma 3.3 since the isotropy subgroup of $SO(n)^{*}=SO(n)$

is connected. On the other hand, the meridian is stable from the results in
[9.2-3] and by Lemma 3.4 if $n$ is even and the similar argument works if $n$

is odd.

Type $C$ or BC
[10.1] $Sp(n)$
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$(M^{+}, M^{-})=(G_{r}(H^{n}), Sp(r)\times Sp(n-r))$ , $0<r\leqq n$ .
Every polar is stable. In fact, we have $G=Sp(n)\times Sp(n),$ $K=Sp(n),$ $K^{+}=$

$sp(r)\times Sp(n-r),$ $\mu=2\omega_{1}(C_{n})$ and $\mu^{-}=2\omega_{1}(C_{r})\oplus 2\omega_{1}(C_{n-r})$ . If $\lambda\in D(Sp(n))$ satisfies
$a_{\lambda}<a_{\mu}$ , then $\lambda=0,$ $\omega_{1}$ or $\omega_{2}$ and if $n=3,$ $\omega_{3}$ . We have the next decompositions

as $K^{+}$ -modules.

$V_{\omega_{1}(C_{n})}=W_{\omega_{1}(C_{r})}\oplus W_{\omega_{1}(C_{n-r})}$ .
$V_{\omega_{2}(c_{n})}=W_{\omega_{2}(c_{r})}\oplus W_{\omega_{2}(c_{n-r})}\oplus W_{\omega_{1}(C_{r})}\otimes W_{\omega_{1}(c_{n-r})}\oplus C$

$V_{\omega_{3}(C_{3})}=W_{\omega_{1}(A_{1})}\otimes W_{\omega_{2}(C_{2})}\oplus W_{\omega_{1}(C_{2})}$ .

So we can conclude that each $\lambda$ is not admissible. Every meridian is also stable.
In fact, we have $G^{-}=Sp(r)\times Sp(n-r)\times Sp(r)\times Sp(n-r)$ with $\rho=\{(\omega_{1}(C_{r}^{\prime})+$

$\omega_{1}(C_{n-r}^{\prime}))+0\}\oplus\{0+(\omega_{1}(C_{r}^{\prime\prime})+\omega_{1}(C_{n-r}^{\prime\prime}))\}$ and $\mu^{+}=\omega_{1}(C_{r})+\omega_{I}(C_{n-r})$ . If $\nu\in$

$D(Sp(r)\times Sp(n-r)\times Sp(r)\times Sp(n-r))$ satisfies $a_{\nu}<a_{\rho}$ , then $\nu=0+\sigma$ or $\sigma+0$

where $\sigma\in D(Sp(r)\times Sp(n-r))$ which satisfies $a_{\sigma}<a_{\rho},$
$\nu=\omega_{1}(C_{r}^{\prime})+\omega_{1}(C_{r}^{\prime\prime})$ if $r<$

$n-r$ , or $\nu=\omega_{1}(C_{n-r}^{\prime})+\omega_{1}(C_{n-r}^{\prime\prime})$ if $r>n-r$ . Then we can conclude that these
representations are not admissible as in [1].

[10.2] $Sp(n)^{*}$

[10.2-1] $(M^{+}, M^{-})=(G_{r}(H^{n})^{*}, Sp(r)\cdot Sp(n-r))$ , $0<r\leqq n/2$ .

Both the polar and the meridian are stable from the results of [10.1] and
by Lemma 3.5.

[10.2-2] $(M^{+}, M^{-})=(CI(n)^{*}, U(n)/Z_{2})$ .
The polar is stable. In fact, we have $G=Sp(n)^{*}\times Sp(n)^{*},$ $K_{0}=Sp(n)^{*},$ $K_{o}^{+}$

$=U(n)/Z_{2},$ $\mu=2\omega_{1}(C_{n})$ and $\mu^{-}=0\oplus(\omega_{1}+\omega_{n-1})(A_{n-1})$ . If $\lambda\in D(Sp(n)^{*})$ satisfies
$a_{\lambda}<a_{\mu}$ , then $\lambda=0$ or $\omega_{2}$ . We have the next decomposition as a $K_{o}^{+}$-module.

$V_{\omega_{2}(C_{n})}=W_{\omega_{2}(A_{n-1})}\oplus W_{\omega_{n-2}(A_{n-I})}\oplus W_{(\omega_{1}+\omega_{n-1})(A_{n-1})}$ .

Because CI$(n)$ is the centrosome of s-size in $Sp(n)$ , we can conclude that $\lambda=0$

is not admissible by Lemma 3.10. And $\lambda=\omega_{2}$ is not admissible either by the
disconnectedness of $K^{+}$ despite of the above decomposition. The meridian is
also stable. In fact, we have $G^{-}=U(n)/Z_{2}\times U(n)/Z_{2}$ with $\rho=\{(T^{\prime}+2\omega_{1}(A_{n-1}^{\prime}))$

$+0\}\oplus\{0+(T‘‘ +2\omega_{1}(A_{n-1}^{\prime\prime}))\}$ and $\mu^{+}=T+2\omega_{1}(A_{n-1})$ . If $\nu\in D(U(n)/Z_{2}\times U(n)/Z_{2})$

satisfies $a_{\nu}<a_{\rho}$ , then $\nu=0+\sigma$ or $\sigma+0$ where $\sigma\in D(U(n)/Z_{2})$ which satisfies
$a_{\sigma}<a_{\rho}$ . These representations are not admissible as in [1].

[11.1] $G_{r}(H^{n})$

$(M^{+}, M^{-})=(G_{a}(H^{r})\times G_{b}(H^{n-r}), G_{a}(H^{n-2b})\times G_{b}(H^{2b}))$ , $a+b=r$ .
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Every polar is stable. In fact, we have $G=Sp(n),$ $K=Sp(r)\times Sp(n-r)$ ,
$K^{+}=Sp(a)\times Sp(b)\times Sp(b)\chi Sp(n-r-b),$ $\mu=\omega_{1}(C_{r})+\omega_{1}(C_{n-r})$ and $\mu^{-}=(\omega_{1}(C_{a})+$

$\omega_{1}(C_{n-2b- a}))\oplus(\omega_{1}(C_{b})+\omega_{1}(C_{b}))$ . If $\lambda\in D(Sp(r)\times Sp(n-r))$ satisfies $a_{\lambda}<a_{\mu}$ , then
$\lambda=0+0,$ $\sigma+0$ or $0+\sigma^{\prime}$ , where $\sigma\in D(Sp(r))$ and $\sigma^{\prime}\in D(Sp(n-r))$ which satisfy
$a_{\sigma}<a_{\mu}$ and $a_{\sigma^{\prime}}<a_{\mu}$ . Because at least $Sp(r)$ or $Sp(n-r)$ acts trivlally in these
representations and non-trivially in $\mu^{-}$ , we can conclude that these representa-

tions are not admissible. Every meridian is also stable. In fact, we have $G^{\prime}=$

$Sp(2b)\times Sp(n-2b)$ with $\rho=\omega_{1}(C_{2b})+\omega_{1}(C_{n-2b})$ and $\mu^{+}=(\omega_{1}(C_{a})+\omega_{1}((C_{b}))\oplus(\omega_{1}(C_{b})$

$+\omega_{1}(C_{n-r-b}))$ . If $\nu\in D(Sp(2b)\times Sp(n-2b))$ satisfies $a_{\nu}<a_{\rho}$ , then $\nu=0+0,$ $\sigma+0$

or $0+\sigma^{\prime}$ , where $\sigma\in D(Sp(2b))$ and $\sigma^{\prime}\in D(Sp(n-2b))$ which satisfy $a_{\sigma}<a_{\mu}$ and
$a_{\sigma^{\prime}}<a_{\mu}$ . Because at least $Sp(2b)$ or $Sp(n-2b)$ acts trivially in these representa-

tions and non-trivially in $\mu^{+}$ , we can conclude that these representat‘lons are
not admissible.

[11.2] $G_{n}(H^{2n})^{*}$

[11.2-1] $(M^{+}, M^{-})=(G_{a}(H^{n})\times G_{b}(H^{n}), G_{a}(H^{2a})\cdot G_{b}(H^{2b})),$ $a+b=n,$ $0<a<n/2$ .
[11.2-2] $(M^{+}, M^{-})=(G_{a}(H^{n})\cdot G_{a}(H^{n}), G_{a}(H^{n})\cdot G_{a}(H^{n}))$ .

Both the polars and the meridians are stable from the results of [11.1] and
by Lemma 3.5.

[11.2-3] $(M^{+}, M^{-})=(Sp(n)^{*}, UII(n)/Z_{2})$ .
The meridian is stable. In fact, we have $G=Sp(2n)^{*},$ $K_{o}=Sp(n)^{*}\times Sp(n)^{*}$ ,

$K_{o}^{+}=Sp(n)^{*},$ $\mu=\omega_{1}(C_{n}^{\prime})+\omega_{1}(C_{n}^{\prime\prime})$ and $\mu^{-}=0\oplus\omega_{2}(C_{n})$ . If $\lambda\in D(Sp(n)^{*}\times Sp(n)^{*})$

satisfies $a_{\lambda}<a_{\mu}$ , then $\lambda=0+0,$ $\omega_{2}+0$ or $0+\omega_{2}$ . And we can see that these
representations are not admissible by the disconnectedness of $K^{+}$ . And the
meridian is also stable. In fact, we have $G^{-}=U(n)/Z_{2}$ with $\rho=T+2\omega_{1}(A_{n-1})$

and $\mu^{+}=2\omega_{1}(C_{n})$ . If $\nu\in D(U(n)/Z_{2})$ satisfies $a_{\nu}<a_{\rho}$ , then $\nu=0$ or $T+\omega_{2}(A_{n/2-1})$ .
We can see that neither one is admissible.

[12.1] $G_{r}(C^{n})$

$(M^{+}, M^{-})=(G_{a}(C^{r})\times G_{b}(C^{n-r}), G_{a}(C^{n-2b})\times G_{b}(C^{2b}))$ , $a+b=r$ .
[12.2] $G_{r}(C^{n})^{*}$

[12.2-1] $(M^{+}, M^{-})=(G_{a}(C^{n})\times G_{b}(C^{n}), G_{a}(C^{2a})\cdot G_{b}(C^{2b})),$ $a+b=n,$ $0<a<n/2$ .
[12.2-2] $(M^{+}, M^{-})=(G_{a}(C^{n})\cdot G_{a}(C^{n}), G_{a}(C^{n})\cdot G_{a}(C^{n}))$ .
[12.2-3] $(M^{+}, M^{-})=(U(n)/Z_{2}, U(n)/Z_{2})$ .
[13.1] CI$(n)$
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$(M^{+}, M^{-})=(G_{r}(C^{n}), CI(r)\times CI(n-r))$ , $0<r\leqq n$ .

[13.2] CI$(n)^{*}$

[13.2-1] $(M^{+}, M^{-})=(G_{r}(C^{n})^{*}, CI(r)\cdot CI(n-r))$ , $0<r\leqq n/2$ .
[13.2-2] $(M^{+}, M^{-})=(UI(n)/Z_{2}, UI(n)Z_{2})$ .

[14.1] DIII$(n)$

$(M^{+}, M^{-})=(G_{r}(C^{n}), DIII(r)\times DIII(n-r))$ , $0<r=even\leqq n$ .
[14.2] DIII$(2n)^{*}$

[14.2-1] $(M^{+}, M^{-})=(G_{r}(C^{2n})^{*}, DllJ(r)\cdot DIIl(2n-r))$ , $0<r=even\leqq n$ .

[14.2-2] $(M^{+}, M^{-})=(UII(n)/Z_{2}, UII(n)/Z_{2})$ .

[15.1] EVII
$(M^{+}, M^{-})=(EIII, S^{2}\times G_{2^{0}}(R^{12}))$ .

[15.2] $EVIl^{*}$

[15.2-1] $(M^{+}, M^{-})=(EIII, S^{2}\cdot G_{2^{O}}(R^{12}))$ .
[15.2-2] $(M^{+}, M^{-})=((T\cdot EIV)/Z_{2}, (T\cdot EIV)/Z_{2})$ .

[16] EIII

[16-1] $(M^{+}, M^{-})=(G_{2^{O}}(R^{10}), G_{2^{0}}(R^{10}))$ .
[16-2] $(M^{+}, M^{-})=(DIII(5), S^{2}\times G_{1}(C^{6}))$ .

Because [12.1], [13.1], [14.1], [15.1] and [16] are Hermitian symmetric
spaces, we can conclude that both their every polar and meridian are stable by

Lemma 3.1. As for [12.2], [13.2], [14.2] and [15.2], their polars and meridians
of [12.2-1], [12.2-2], [13.2-1], [14.2-1] and [15.2-1] are stable by Lemma 3.5.
And their polars of [12.2-3], [13.2-2], [14.2-2] and [15.2-2] which are con-
gruent to their meridians corresponds to the connected centrosomes of the
spaces [12.1], [13.1], [14.1] and [15.1] respectively and we can see that the
indices of these centrosomes are equal to one. So we conclude that both polars

and meridians of these spaces are stable by Lemma 3.10.

[17] $FII$

$(M^{+}, M^{-})=(S^{8}, S^{8})$ .

The polar which is congruent to the meridian is stable. In fact, we have
$G=F_{4},$ $K=SO(9)^{\sim},$ $K^{+}=SO(8)^{\sim},$ $\mu=\omega_{4}(B_{4})$ and $\mu^{-}=\omega_{3}(D_{4})$ or $\omega_{4}(D_{4})$ . If $\lambda\in$

$D(SO(9)^{\sim})$ satisfies $a_{\lambda}<a_{\mu}$ , then $\lambda=0$ or $\omega_{1}$ . As for $\lambda=\omega_{1}$ , we have the next
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decomposition as a $K^{+}$ -module.

$V_{\omega_{1}(B_{4})}=W_{\omega_{1}(D_{4})}\oplus C$ .

So we can conclude that $\omega_{1}$ is not admissible. Clearly the trivial representation
is not admissible either.

REMARK 3.12. These $S^{8}$ are congruent with the Helgason sphere of $FII$ .
Ohnita studied the stability of Helgason spheres of compact symmetric spaces
in $[0]$ and got the result that they are all stable minimal submanifolds.

Type $E_{6}$

[18] $E_{6}$

[18-1] $(M^{+}, M^{-})=(EII, Sp(1)\cdot SU(6))$ .
The polar is stable. Since we have $G=E_{6}\times E_{6},$ $K=E_{6},$ $K^{+}=Sp(1)\cdot SU(6)$ ,

$\mu=\omega_{2}(E_{6})$ and $\mu^{-}=2\omega_{1}(A_{1})\oplus(\omega_{1}+\omega_{6})(A_{5})$ . If $\lambda\in D(E_{6})$ satisfies $a_{\lambda}<a_{\mu}$ , then
$\lambda=0,$

$\omega_{1}$ or $\omega$ . And we have the next decompositions as $K^{+}$ -modules.

$V_{\omega_{1}(E_{6})}=W_{\omega_{1}(A_{1})}\otimes W_{\omega_{1}(A_{5})}\oplus W_{\omega_{4}(A_{5})}$

$V_{\omega_{6}(E_{6})}=W_{\omega_{1}(A_{1})}\otimes W_{\omega_{5}(A_{5})}\oplus W_{\omega_{2}(A_{5})}$ .
So we can conclude that each $\lambda$ is not admissible. The meridian is also stable.
Since we have $G^{-}=Sp(1)\cdot SU(6)\times Sp(1)\cdot SU(6)$ with $\rho=\{(\omega_{1}(A_{1}^{\prime})+\omega_{3}(A_{5}^{\prime}))+0\}\oplus$

$\{0+(\omega_{1}(A_{1}^{\prime\prime})+\omega_{3}(A_{5}^{\prime\prime}))\}$ and $\mu^{+}=\omega_{1}(A_{1})+\omega_{3}(A_{5})$ . If $\nu\in D(Sp(1)\cdot SU(6)\times Sp(1)\cdot$

$SU(6))$ satisfies $a_{\nu}<a_{\rho}$ , then $\nu=\sigma+0$ or $ 0+\sigma$ where $\sigma\in D(Sp(1)\cdot SU(6))$ such
that $a_{\sigma}<a_{\rho},$ $\nu=2\omega_{1}(A_{1}^{\prime})+2\omega_{1}(A_{1}^{\prime\prime}),$ $\nu=2\omega_{1}(A_{1}^{\prime})+(\omega_{1}(A_{1}^{\prime\prime})+\omega_{1}(A_{6}^{\prime\prime}))$ or $\nu=2\omega_{1}(A_{1}^{\prime})$

$+(\omega_{1}(A_{1}^{\prime\prime})+\omega_{5}(A_{5}^{\prime\prime}))$ . We can see $\nu=\sigma+0$ or $ 0+\sigma$ is not admissible and $\nu=$

$2\omega_{1}(A_{1}^{\prime})+2\omega_{1}(A_{1}^{\prime\prime})1S$ not admissible either because $SU(6)$ acts trivially in this
representation and non-trivially in $\mu^{+}$ By the following decompositions:

$V_{2\omega_{1}(A_{1})}\otimes(V_{\omega_{1^{(A}:)}}\otimes V_{\omega_{1}(A_{f}^{\prime})})=W_{3\omega_{1}(A_{1})}\otimes W_{\omega_{1}(A_{5})}\oplus W$

$V_{2\omega_{1}(A_{1})}\otimes(V_{\omega_{1}(A_{1}^{\prime})}\otimes V_{\omega_{5}(A^{\prime}\epsilon^{)}})=W_{3\omega_{1}(A_{1})}\otimes W_{\omega_{5}(A_{5})}\oplus W^{\prime}$

where $\dim W=\dim W^{\prime}=12$ , we can conclude that $\nu=2\omega_{1}(A_{1}^{\prime})+(\omega_{1}(A_{1}^{\prime\prime})+\omega_{1}(A_{5}^{\prime\prime}))$

or $\nu=2\omega_{1}(A^{r_{1}})+(\omega_{1}(A_{1}^{\prime\prime})+\omega_{5}(A^{\nu_{5}}))$ is not admissible because of $\dim M^{+}=40$ .
[18-2] $(M^{+}, M^{-})=(EIII, T\cdot SO(10)^{\sim})$ .

The polar is unstable by Lemma 3.4 since $K^{+}=T\cdot SO(10)^{\sim}$ is connected. On
the other hand, the meridian is stable. Since we have $G^{-}=T^{\prime}\cdot SO^{\prime}(10)^{\sim}\times T^{\prime\prime}$ .
$SO^{\prime\prime}(10)^{\sim}$ with $\rho=\{(T^{\prime}+\omega_{5}(D_{5}^{\prime}))+0\}\oplus\{0+(T‘‘ +\omega_{5}(D_{5}^{\prime\prime}))\}$ and $\mu^{+}=T+\omega_{5}(D_{5})$ . If
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$\nu\in D(T^{\prime}\cdot SO^{\prime}(10)^{\sim}\times T^{\prime\prime}\cdot SO^{k^{\prime}}(10)^{\sim})$ satisfies $a_{\nu}<a_{\rho}$ , then $\nu=0+0,$ $(T^{\prime}+\omega_{1}(D_{5}^{\prime}))+0$ ,

or $0+(T‘‘+\omega_{1}(D_{5}^{\prime\prime}))$ . But we can see easily that these representations are not
admissible.

[19] $EI$

[19-1] $(M^{+}, M^{-})=(CI(4)^{*}, S^{2}\cdot Al(6))$ .

The polar is stable. Since we have $G=E_{6},$ $K=Sp(4)^{*},$ $K_{0}^{+}=U(4)/Z_{2},$ $\mu=$

$\omega_{4}(C_{4})$ and $\mu^{-}=T\oplus 2\omega_{2}(A_{3})$ . If $\lambda\in D(Sp(4)^{*})$ satisfies $a_{\lambda}<a_{\mu}$ , then $\lambda=0,$ $\omega_{2}$ or
$2\omega_{1}$ . And we have the next decompositions as $K_{o}^{+}$-modules.

$V_{\omega_{4}(C_{4})}=W_{(\omega_{1}+\omega_{3})(A_{3})}\oplus W_{\omega_{2}(A_{3})}\oplus W_{\omega_{2}(A_{3})}$ .
$V_{2\omega_{1}(C_{4})}=W_{2\omega_{1}(A_{3})}\oplus W_{2\omega_{3}(A_{3})}\oplus W_{(\omega_{1}+\omega_{3})(A_{3})}\oplus C$ .

So we can conclude that there is no admissible representation. The meridian
is also stable. Since we have $G^{-}=Sp(1)\cdot SU(6)$ with $\rho=\omega_{1}(A_{1})+\omega_{3}(A_{6})$ and $\mu^{+}=$

$T+2\omega_{1}(A_{3})$ . If $\nu\in D(Sp(1)\cdot SU(6))$ satisfies $a_{\nu}<a_{\rho}$ , then $\nu=\sigma+0$ or $0+\sigma^{\prime}$ , where
$\sigma\in D(Sp(1))$ and $\sigma^{\prime}\in D(SU(6))$ which satisfies $a_{\sigma}<a_{\rho}$ and $a_{\sigma^{\prime}}<a_{\rho},$ $\nu=\omega_{1}+\omega_{1}$ ,
$\nu=\omega_{1}+\omega_{6},$ $\nu=3\omega_{1}+\omega_{1}$ , or $\nu=3\omega_{1}+\omega_{5}$ . Because both $T$ and $A_{3}$ act non-trivially
in $\mu^{+}$ , we may consider only $\nu=\omega_{1}+\omega_{1}$ and $\nu=3\omega_{1}+\omega_{1}$ since $\omega_{1}(A_{3})$ and $\omega_{3}(A_{3})$

are equivalent under the outer automorphism of $A_{3}$ . We have the next decom-
positions as $K_{0}^{+}$-modules.

$V_{\omega_{1}(A_{1})}\otimes V_{\omega_{1}(A_{5})}=(V(\omega_{1}(A_{1}))\oplus V(-\omega_{1}(A_{1})))\otimes(W_{\omega_{I}(A_{3})}\oplus C\oplus C)$ ,

$V_{3\omega_{I}(A_{1})}\otimes V_{\omega_{1}(A_{5})}=(V(3\omega_{1}(A_{1}))\oplus V(\omega_{1}(A_{1}))$

$\oplus V(-\omega_{1}(A_{1}))\oplus V(-3\omega_{1}(A_{1})))\otimes(W_{\omega_{1}(A_{3})}\oplus C\oplus C)$

where $V(a)$ denotes a weight space of a weight $a$ . So we conclude that there
is no admissible representation.

[19-2] $(M^{+}, M^{-})=(G_{2}(H^{4})^{*}, T\cdot G_{6^{O}}(R^{10}))$ .

The polar is unstable. Since we have the inclusion $\iota;EI\rightarrow E_{\epsilon}$ which carries
the polar $G_{2}(H^{4})^{*}$ of $EI$ into the polar EIII of $E_{6}$ and the corresponding meri-
dian $T\cdot G_{5^{O}}(R^{10})$ of $EI$ into the corresponding meridian $T\cdot SO(10)^{\sim}$ of $E_{\iota}$ . We
can conclude that $M^{+}=G_{2}(H^{4})^{*}$ has a trivial line bundle as in Remark 3.11. On
the other hand, the meridian is stable. Since we have $G=E_{6},$ $G^{-}=T\cdot SO(10)^{\sim}$ ,
$K^{+}=SO(5)^{\sim}\cdot SO(5)^{\sim},$ $\rho=T+\omega_{6}(D_{5})$ and $\mu^{+}=\omega_{1}(C_{2})+\omega_{1}(C_{2}^{\prime\prime})$ . If $\nu\in D(T\cdot SO(10)^{\sim})$

satisfies $a_{\nu}<a_{\rho}$ , then $\nu=0$ or $T+\omega_{1}$ . And we have the next decomposition as
a $K^{+}$-module.

$V_{\omega_{1}tD_{5})}=W_{\omega_{1}(B_{2})}\oplus W_{\omega_{1}(B_{2}^{\prime})}$ .
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Because $\omega_{1}(B_{2})=\omega_{2}(C_{2})$ and $\omega_{1}(B_{2}^{\prime})=\omega_{2}(C_{2}^{\prime}),$ $\nu=T+\omega_{1}$ is not admissible.

Type $E_{7}$

[20.1] $E_{7}$

$(M^{+}, M^{-})=(EVI, Sp(1)\cdot SO(12)^{\sim})$ .

The polar is stable. Since we have $G=E_{7}\times E_{7},$ $K=E_{7},$ $K^{+}=Sp(1)\cdot SO(12)^{\sim}$ ,

$\mu=\omega_{1}(E_{7})$ and $\mu=2\omega_{1}(A_{1})\oplus\omega_{2}(D_{\epsilon})$ . If $\lambda\in D(E_{7})$ satisfies $a_{\lambda}<a_{\mu}$ , then $\lambda=0$ or
$\omega_{7}$ . And we have the next decomposition as a $K^{+}$-module.

$V_{\omega_{7}(E_{7})}=W_{\omega_{1}(A_{1})}\otimes W_{\omega_{1}(D_{6})}\oplus W_{\omega_{6}(D_{6})}$ .
So we can conclude that $\lambda=\omega_{7}$ is not admissible. The meridian is also stable.
Since we have $G^{-}=Sp(1)\cdot SO(12)^{\sim}\times Sp(1)\cdot SO(12)^{\sim}$ with $\rho=\{(\omega_{1}(A_{1}^{\prime})+\omega_{6}(D_{6}^{\prime}))+0\}$

$\oplus\{0+(\omega_{1}(A_{1}^{\prime\prime})+\omega_{6}(D_{6}^{\prime\prime}))\}$ and $\mu^{+}=\omega_{1}(A_{1})+\omega_{6}(D_{6})$ . If $\nu\in D(Sp(1)\cdot SO(12)^{\sim}\times Sp(1)\cdot$

$SO(12)^{\sim})$ satisfies $a_{\nu}<a_{\rho}$ , then $\nu=\sigma+0$ or $ 0+\sigma$ where $\sigma\in D(Sp(1)\cdot SO(12)^{\sim})$ such
that $a_{\sigma}<a_{\rho}$ , or $\nu=2\omega_{1}(A_{1})+2\omega_{1}(A_{1}^{\prime})$ . As for $\nu=\sigma+0$ or $ 0+\sigma$ , we can see that
these representations are not admissible. And $\nu=2\omega_{1}(A_{1})+2\omega_{1}(A_{1}^{\prime})$ is not admis-
sible either because $SO(12)^{\sim}$ acts trivially in the representation and non-trivially
in $\mu^{+}$ .

[20.2] $E_{7^{*}}$

[20.2-1] $(M^{+}, M^{-})=(EVI, Sp(1)\cdot SO(12)$“).

Both $M^{+}$ and $M^{-}$ are stable from the result of [20.1] and by Lemma 3.5.

[20.2-2] $(M^{\star}, M^{-})=(EV^{*}, SU(8)/Z_{4})$ .
The polar is stable. Since we have $G=E_{7^{*}}\times E_{\tau^{*}},$ $K=E_{7}^{*},$ $K^{+}=SU(8)/Z_{4}$ ,

$\mu=\omega_{1}(E_{7}^{*})$ and $\mu^{-}=(\omega_{1}+\omega_{7})(A_{7})$ . If $\lambda\in D(E_{7^{*}})$ satisfies $a_{\lambda}<a_{\mu}$ , then $\lambda=0$ be-
cause $\omega_{7}$ is not a representation of $E_{7}^{*}$ . As $\mu^{-}$ does not include a trivial re-
presentation, $\lambda=0$ is not admissible. The meridian is also stable. Since we
have $G^{-}=SU(8)/Z_{4}\chi SU(8)/Z_{4}$ with $\rho=(\omega_{4}(A_{7}^{\prime})+0)\oplus(0+\omega_{4}(A_{7}^{\prime\prime}))$ and $\mu^{+}=\omega_{4}(A_{7})$ .
If $\nu\in D(SU(8)/Z_{4}\times SU(8)/Z_{4})$ satisfies $a_{\nu}<a_{\rho}$ , then $\nu=0+0$ because $\omega_{j}(1\leqq j\leqq$

$n-1,$ $j\neq 4$ ) is not a representation of $SU(8)/Z_{4}$ . As $\mu^{+}$ does not include a trivial
representation, $\nu=0+0$ is not admissible.

[20.2-3] $(M^{+}, M^{-})=(EVII^{*}, T\cdot E_{6})$ .

Because EVII is the centrosome of s-size in $E_{7}$ whose index $=1$ , the polar

EVII* is stable by Lemma 3.10. The merldian is also stable. Since we have
$G^{-}=T\cdot E_{6}\times T\cdot E_{6}$ with $\rho=\{(T^{\prime}+\omega_{1}(E_{6}^{\prime}))+0\}\oplus\{0+(T‘‘ +\omega_{1}(E‘‘ 6))$ and $\mu^{+}=$

$T+\omega_{1}(E_{6})$ . If $\nu\in D(T\cdot E_{6}\times T\cdot E_{6})$ satisfies $a_{\nu}<a_{\rho}$ , then $\nu=0+0$ . Because $\mu^{+}$
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does not include a trivial representation, $\nu=0+0$ is not admissible.

[21.1] $EV$

$(M^{+}, M^{-})=(G_{4}(C^{8})^{*}, S^{2}\cdot G_{6^{O}}(R^{12}))$ .

The polar is stable. Since we have $G=E_{7}^{*},$ $K=SU(8)/Z_{4},$ $ K_{0}^{+}=S(U(4)/Z_{2}\cdot$

$U(4)/Z_{2}),$ $\mu=\omega_{4}(A_{7})$ and $\mu^{-}=T\oplus(\omega_{2}(A_{3})+\omega_{2}(A_{3}^{\prime}))$ . If $\lambda\in D(SU(8)/Z_{4})$ satisfies
$a_{\lambda}<a_{\mu}$ , then $\lambda=0$ or $\omega_{1}+\omega_{7}$ . And we have the next decomposition of $\lambda=\omega_{1}+\omega_{7}$

as a $K_{o}^{+}$-module.

$V_{(\omega_{1}+\omega_{7})(A_{7})}=W_{(\omega_{1}+\omega_{3})(A_{3})}\oplus W_{(\omega+\omega)(A^{\prime})}\oplus W_{\omega_{1}(A_{3})}13_{S}$

$\otimes W_{\omega_{1}(A_{3}^{\prime})}\oplus W_{\omega_{3}(A_{3})}\otimes W_{\omega_{3}(A_{3}^{\prime})}\oplus C$ .

So $\lambda=\omega_{1}+\omega_{7}$ is not admissible. The meridian is also stable. Since we have
$G^{-}=Sp(1)\cdot SO(12)^{\sim}$ with $\rho=\omega_{1}(A_{1})+\omega_{6}(D_{6})$ and $\mu^{+}=T+(\omega_{2}(A_{3})+\omega_{2}(A_{3}^{\prime}))$ . If $\nu\in$

$D(Sp(1)\cdot SO(12)^{\sim})$ satisfies $a_{\nu}<a_{\rho}$ , then $\nu=0+0$ , $\omega_{1}+\omega_{1},2\omega_{1}+0$ , $3\omega_{1}+\omega_{1}$ or
$4\omega_{1}+0$ . Because $SU(4)/Z_{2}\cdot SU(4)/Z_{2}$ acts trivially if $\nu=0+0,2\omega_{1}+0$ or $4\omega_{1}+0$

and non-trivially in $\mu^{+}$ , these representations are not admissible. And we have
the next decompositions of $\nu=\omega_{1}+\omega_{1}$ and $\nu=3\omega_{1}+\omega_{1}$ as $K_{o}^{+}$-modules.

$V_{\omega_{1}(A_{1})}\otimes V_{\omega_{1}(D_{6})}=(V(\omega_{1})\oplus V(-\omega_{1}))\otimes(W_{\omega_{1}(D_{3})}\oplus W_{\omega_{1}(D_{8}^{\prime})})$ .

$V_{3\omega_{1}(A_{I})}\otimes V_{\omega_{1}(D_{6})}=(V(3\omega_{1})\oplus V(\omega_{1})\oplus V(-\omega_{1})\oplus V(-3\omega_{1}))\otimes(W_{\omega_{1}(D_{3})}\oplus W_{\omega_{1}(D_{3}^{\prime})})$

where $V(\alpha)$ denotes a weight space of a weight $\alpha$ . So both $\nu=\omega_{1}+\omega_{1}$ and $\nu=$

$3\omega_{1}+\omega_{1}$ are not admissible.
[21.2] $EV^{*}$

[21.2-1] $(M^{+}, M^{-})=(G_{4}(C^{8})^{*}, S^{2}\cdot G_{6}(R^{I2})^{*})$ .

We can conclude that both $M^{+}$ and $M^{-}$ are stable by the result of [21.1]

and Lemma 3.5.

[21.2-2] $(M^{+}, M^{-})=(AI(8)/Z_{4}, AI(8)/Z_{4})$ .

The polar which is congruent to the meridian is stable. Since we have
$G=E_{7^{*}}$ , $K=SU(8)/Z_{4}$ , $K_{o}^{+}=SO(8)^{*}$ , $\mu=\omega_{4}(A_{7})$ and $\mu^{-}=2\omega_{3}(D_{4})$ or $2\omega_{4}(D_{4})$ . If
$\lambda\in D(SU(8)/Z_{4})$ satisfies $a_{\lambda}<a_{\mu}$ , then $\lambda=0$ or $\omega_{1}+\omega_{7}$ . And we have the next
decomposition of $\lambda=\omega_{1}+\omega_{7}$ as a $K_{0}^{+}$-module.

$V_{(\omega_{1}+\omega_{7})(A_{7})}=W_{\omega_{2}(D_{4})}\oplus W_{2\omega_{1}(D_{4})}$ .
So $\lambda=\omega_{1}+\omega_{7}$ is not admissible.

[21.2-3] $(M^{+}, M^{-})=(AII(4)^{*}, T\cdot EI)$ .
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The polar is stable by Lemma 3.10, since $AII(4)$ is one of the connected
components of the centrosome of $EV$ which is of s-size and whose index $=1$ .
The meridian is also stable. Since we have $G=E_{7}^{*},$ $G^{-}=T\cdot E_{6},$ $K_{o}^{+}=Sp(4)^{*}$ ,

$\rho=T+\omega_{1}(E_{6})$ and $\mu^{+}=\omega_{2}(C_{4})$ . If $\nu\in D(T\cdot E_{6})$ satisfies $a_{\nu}<a_{\rho}$ , then $\nu$ is a trivial
representation or a representation in which only $T$ acts non-trivially. We can
see these representations are not adm’lssible because $K_{0}^{+}$ acts trivially in these
representations and non-trivially in $\mu^{+}$

Type $E_{8}$

[22] $E_{8}$

[22-1] $(M^{+}, M^{-})=(EVIII, SO(16)$“).

The polar is stable. Since we have $G=E_{8}\times E_{8},$ $K=E_{8},$ $K^{+}=SO(16)^{*},$ $\mu=$

$\omega_{8}(E_{8})$ and $\mu^{-}=\omega_{2}(D_{8})$ . If $\lambda\in D(E_{8})$ satisfies $a_{\lambda}<a_{\mu}$ , then $\lambda=0$ . But we can
easily see that the trivial representation is not admissible. The meridian is
also stable. Since we have $ G^{-}=SO(16)^{*}\times SO(16)\$ $ with $\rho=\omega_{7}(D_{8}^{\prime})\oplus\omega_{8}(D_{8}^{\prime\prime})$ and
$\mu^{+}=\omega_{7}(D_{8})$ . If $\nu\in D(SO(16)^{*}\times SO(16)^{*})$ satisfies $a_{\nu}<a_{\rho}$ , then $\nu=\sigma+0$ or $ 0+\sigma$

where $\sigma\in D(SO(16)^{\#})$ is $\omega_{1}$ or $\omega_{2}$ . We can see each $\nu$ is not admissible, since
at least one simple factor of $G^{-}$ acts trivially in $\nu$ and both simple factors act
non-trivially in $\mu^{+}$

[22-1] $(M^{+}, M^{-})=(EIX, Sp(1)\cdot E_{7})$ .
The polar is stable. Since we have $G=E_{8}\times E_{8},$ $K=E_{8},$ $K^{+}=Sp(1)\cdot E_{7},$ $\mu=$

$\omega_{8}(E_{8})$ and $\mu^{-}=2\omega_{1}(A_{1})\oplus\omega_{1}(E_{7})$ . If $\lambda\in D(E_{8})$ satisfies $a_{\lambda}<a_{\mu}$ , then $\lambda=0$ . Be-
cause $\mu^{-}$ does not include a trivial representation, $\lambda=0$ is not admissible. The
meridian is also stable. Since we have $G^{-}=Sp(1)\cdot E_{7}\times Sp(1)\cdot E_{7}$ with $\rho=$

$\{(\omega_{1}(A_{1}^{\prime})+\omega_{7}(E_{7}^{\prime}))+0\}\oplus\{0+(\omega_{1}(A_{1}^{\prime\prime})+\omega_{7}(E_{7}^{\prime\prime}))\}$ and $\mu^{+}=\omega_{1}(A_{1})+\omega_{7}(E_{7})$ . If $\nu\in$

$D(Sp(1)\cdot E_{7}\times Sp(1)\cdot E_{7})$ satisfies $a_{\nu}<a_{\rho}$ , then $\nu=\sigma+0$ or $ 0+\sigma$ where $\sigma\in D(Sp(1)\cdot$

$E_{7})$ is $0+0,0+\omega_{1}$ or $0+\omega_{6}$ . We can see these representations are not admis-
sible, since $Sp(1)$ acts trivially in each $\nu$ and non-trivially in $\mu^{+}$

[23] EVIII

[23-1] $(M^{+}, M^{-})=(G_{8}(R^{16})‘‘, G_{8}(R^{16})^{*})$ .

The polar which is congruent to the meridian is stable. Since we have
$G=E_{8},$ $K=SO(16)^{\#},$ $K^{+}=SO^{\sim}(8)\cdot SO^{\sim}(8)$ , $\mu=\omega_{8}(D_{8})$ and $\mu^{-}=\omega_{3}(D_{4})+\omega_{S}(D_{4}^{\prime})$ or
$\omega_{4}(D_{4})+\omega_{4}(D_{4}^{\prime})$ . If $\lambda\in D(SO(16)^{*})$ satisfies $a_{\lambda}<a_{\mu}$ , then $\lambda=0,$ $\omega_{1}or\omega_{2}$ . And we
have the next decompositions of $\lambda=\omega_{1}$ and $\lambda=\omega_{2}$ as $K^{+}$-modules.
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$V_{\omega_{1}(D_{8})}=W_{\omega_{1}(D_{4})}\oplus W_{\omega_{1}(D_{4}^{\prime})}$ .

$V_{\omega_{2}(D_{8})}=W_{\omega_{2}(D_{4})}\oplus W_{\omega_{2}(D_{4}^{\prime})}\oplus(W_{\omega_{1}(D_{4})}\otimes W_{\omega_{1}(D_{4^{\prime}})})$ .

Since $\omega_{I}(D_{4}),$ $\omega_{3}(D_{4})$ and $\omega_{4}(D_{4})$ are not equivalent to each other (they are equi-
valent under the outer automorphism of $D_{4}$), we can conclude that there is no
admissible representation.

[23-2] $(M^{+}, M^{-})=(DIII(8)^{*}, S^{2}\cdot EV)$ .

The polar is stable. Since we have $G=E_{8},$ $K=SO(16)^{*},$ $K_{o}^{+}=U(8)/Z_{2},$ $\mu=$

$\omega_{8}(D_{8})$ and $\mu^{-}=T\oplus\omega_{4}(A_{7}),$ $\lambda\in D(SO(16)^{*})$ which satisfies the condition $a_{\lambda}<a_{\mu}$

is same as in [23-1]. And we have the next decompositions of $\lambda=\omega_{1}$ and $\lambda=\omega_{2}$

as $K_{o}^{+}$-modules.

$V_{\omega_{1}(D_{8})}=W_{\omega_{1}(A_{7})}\oplus W_{\omega_{7}(A_{7})}$ .
$V_{\omega_{2}\langle D_{8})}=W_{\omega_{2}(A_{7})}\oplus W_{\omega_{6}(A_{7})}\oplus W_{(\omega_{1}+\omega_{7})(A_{7})}\oplus C$ .

So we conclude that each $\lambda$ is not admissible. The meridian is also stable.
Since we have $G^{-}=Sp(1)\cdot E_{7}$ with $\rho=\omega_{1}(A_{1})+\omega_{7}(E_{7})$ and $\mu^{+}=T+\omega_{2}(A_{7})$ . If $\nu\in$

$D(Sp(1)\cdot E_{7})$ satisfies $a_{\nu}<a_{\rho}$ , then $\nu=\sigma+0$ or $0+\sigma^{\prime}$ where $\sigma\in D(Sp(1))$ and $\sigma^{\prime}\in$

$D(E_{7})$ such that $a_{\sigma}<a_{\rho}$ and $a_{\sigma}^{\prime}<a_{\rho}$ . Since at least one of simple factor of $G^{-}$

acts trivially in each $\nu$ and both simple factors act non-trivially in $\mu^{+}$ , neither
one is admissible.

Type $F_{4}$

[24] $F_{4}$

[24-1] $(M^{+}, M^{-})=(FI, Sp(1)\cdot Sp(3))$ .
The polar is stable. Since we have $G=F_{4}\times F_{4}$ , $K=F_{4},$ $K^{+}=Sp(1)\cdot Sp(3)$ ,

$\mu=\omega_{1}(F_{4})$ and $\mu^{-}=2\omega_{1}(A_{1})\oplus 2\omega_{1}(C_{3})$ . If $\lambda\in D(F_{4})$ satisfies $a_{\lambda}<a_{\mu}$ , then $\lambda=0$ or
$\omega_{4}$ . And we have the next decomposition as a $K^{+}$ -module.

$V_{\omega_{4}(F_{4})}=W_{\omega_{1}(A_{1})}\otimes W_{\omega_{1}(C_{3})}\oplus W_{\omega_{B}(C_{3})}$ .

So we conclude that there is no admissible representation. The meridian is also
stable. Since we have $G^{-}=Sp(1)\cdot Sp(3)\times Sp(1)\cdot Sp(3)$ with $\rho=\{(\omega_{1}(A_{1}^{\prime})+\omega_{3}(C_{3}^{\prime}))$

$+0\}\oplus\{0+(\omega_{1}(A_{1}^{\prime\prime})+\omega_{3}(C_{3}^{\parallel}))\}$ and $\mu^{+}=\omega_{1}(A_{1})+\omega_{3}(C_{3})$ . If $\nu\in D(Sp(1)\cdot Sp(3)\times Sp(1)$

$Sp(3))$ satisfies $a_{\nu}<a_{\rho}$ , then $\nu=\sigma+0$ or $ 0+\sigma$ where $\sigma\in D(Sp(1)\cdot Sp(3))$ such
that $a_{\sigma}<a_{\rho}$ , or $\nu=2\omega_{1}(A_{1}^{\prime})+2\omega_{1}(A_{1}^{\prime\prime})$ . As for $\nu=\sigma+0$ or $ 0+\sigma$ , we can see that
it is not admissible as in [1]. $\nu=2\omega_{1}(A^{r_{1}})+2\omega_{1}(A^{x_{1}})$ , is not admissible either
because $Sp(3)$ acts trivially in the representation and non-trivially in $\mu^{+}$ .



50 Makiko Sumi TANAKA

[24-2] $(M^{+}, M^{-})=(FII, SO(9)^{\sim})$ .

The polar is stable. Since we have $G=F_{4}\times F_{4},$ $K=F_{4},$ $K^{+}=SO(9)^{\sim},$ $\mu=$

$\omega_{1}(F_{4})$ and $\mu^{-}=\omega_{2}(B_{4})$ . If $\lambda\in D(F_{4})$ which satisfies $a_{\lambda}<a_{\mu}$ is same as in [24-1].

We can see that $\lambda=\omega_{4}$ is not admissible because $\dim V_{\lambda}=26$ and $\dim M^{-}=36$ .
The meridian is also stable. Since we have $G^{-}=SO(9)^{\sim}\times SO(9)^{\sim}$ with $\rho=$

$(\omega_{4}(B_{4}^{\prime})+0)\oplus(0+\omega_{4}(B_{4}^{\prime\prime}))$ and $\mu^{+}=\omega_{4}(B_{4})$ . If $\nu\in D(SO(9)^{\sim}\times SO(9)^{\sim})$ satisfies
$a_{\nu}<a_{\rho}$ , then $\nu=0+0,$ $\omega_{1}(B_{4}^{\prime})+0$ or $0+\omega_{1}(B_{4}^{\parallel})$ . We can see these representations
are not admissible as in [1].

[25] $FI$

[25-1] $(M^{+}, M^{-})=(G_{1}(H^{3}), G_{4^{O}}(R^{9}))$ .
[25-2] $(M^{+}, M^{-})=(S^{2}\cdot CI(3), S^{2}\cdot CI(3))$ .
[26] $EII$

[26-1] $(M^{+}, M^{-})=(G_{2}(C^{6}), G_{4^{O}}(R^{10}))$ .
[26-2] $(M^{+}, M^{-})=(S^{2}\cdot G_{3}(C^{6}), S^{2}\cdot G_{3}(C^{6}))$ .
[27] $EVI$

[27-1] $(M^{+}, M^{-})=(G_{4^{O}}(R^{12}), G_{4^{O}}(R^{12}))$ .
[27-2] $(M^{+}, M^{-})=(S^{2}\cdot DIII(6), S^{2}\cdot DIII(6))$ .
[28] $EIX$

[28-1] $(M^{+}, M^{-})=(EVI, G_{4^{O}}(R^{16}))$ .
[28-2] $(M^{+}, M^{-})=$ ( $ S^{2}\cdot$ EVII, $S^{2}$ . EVII).

Type $G_{2}$

[29] $GI$

$(M^{+}, M^{-})=(S^{2}\cdot S^{2}, S^{2}\cdot S^{2})$ .
The spaces [25], [26], [27], [28] and [29] are quaternionic Kahler sym-

metric spaces. Since both the polars and meridians of [25-1], [26-1], [27-1]

and [28-1] are quaternionic K\"ahler, we conclude that these spaces are stable
by Lemma 3.2. And we can conclude that among the polars in [25-2], [26-2],
[27-2], [28-2] and [29] which are totally complex subspaces (see Section 4)
only the polar and the meridian in [29] are unstable. Since in the case of
[25-2], [26-2], [27-2] or [28-2], $\mathfrak{m}^{+}$ and $\mathfrak{m}^{-}$ are not isomorphic to each other
as $K^{+}$-modules, we can see that there is no admissible representation. And in
[29], $2\omega_{1}(A_{1})$ is admissible.
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[30] $G_{2}$

$(M^{+}, M^{-})=(GI, SO(4))$ .

The polar is unstable. Since we have $G=G_{2}\times G_{2},$ $K=G_{2},$ $K^{+}=SO(4),$ $\mu=$

$\omega_{2}(G_{2})$ and $\mu^{-}=2\omega_{1}(A_{1}^{\prime})\oplus 2\omega_{1}(A_{1}^{\prime\prime})$ . If $\lambda\in D(G_{2})$ satisfies $a_{\lambda}<a_{\mu}$ , then $\lambda=0$ or
$\omega_{1}$ . And we have the next decomposition as a $K^{+}$-module.

$V_{\omega_{1}(G_{2})}=W_{\omega_{1}(A_{1})}\otimes W_{\omega_{1}(A_{1}^{\prime})}\oplus W_{2\omega_{1}(A_{1}^{l})}$ .
So we can see $\lambda=\omega_{1}$ is admissible. The meridian is also unstable. Since we
have $G^{-}=SO(4)\times SO(4)$ with $\rho=\{(\omega_{1}(A_{1}^{L})+3\omega_{1}(A_{1}^{\prime L}))+0\}\oplus\{0+(\omega_{1}(A^{R_{1}})+3\omega_{1}(A^{\prime R_{1}}))$

and $\mu^{+}=\omega_{1}(A_{1})+3\omega_{1}(A_{1}^{\prime})$ . We can choose $\nu=(\omega_{1}(A_{1}^{L})+\omega_{1}(A_{1}^{\prime L}))+(2\omega_{1}(A^{R_{1}})+0)$

as $\nu\in D(SO(4)\times SO(4))$ which satisfies $a_{\nu}<a_{\rho}$ . And we have the next decom-
position as a $K^{+}$ -module.

$V_{\omega_{1}(A^{L_{1}})}\otimes V_{\omega_{1}(A^{l})}L_{1}\otimes V_{2\omega_{1}(A^{R_{1}})}=W_{\omega_{1}(A_{1})}\otimes W_{3\omega_{1}(A_{1}^{\prime})}\oplus W$,

where $W$ is certain $K^{+}$-module. So we conclude that $\nu$ is admissible.

Now we have the next theorem:

THEOREM 3.12. Let $M$ be a compact connected irreducible symmetric space
and $N$ a polar or a meridian of M. If $N$ is unstable, then it falls into one of
the following five cases:

Case 1. $M=G_{2}$ and $N=GI$ or $SO(4)$ .
Case 2. $M=SO^{\sim}(4n+3)$ and $N=G_{4n^{O}}(R^{4n+3})$ .
Case 3. $M=G_{2m+I^{O}}(R^{n})$ and $N=S^{2m}\cdot G_{2m^{o}}(R^{n-2m-1})$ or $S^{n-4m-1}\cdot G_{2m^{O}}(R^{4m})$ .
Case 4. $M=GI$ and $N=S^{2}\cdot S^{2}$ .
Case 5. $N$ has a trivial line bundle as a subbundle of the normal bundle

in $M$.

4. Some other results.

We have next proposition.

PROPOSITION 4.1. Let $M=G/K$ be a compact irreducible quatermonic Kahler
symmetric space. Assume that a meridian $M^{-}(p)$ is not quatermonic Kahler.
Then $M^{-}(p)$ is congruent with $M^{+}(p)$ .

PROOF. Let $Q(p)$ denote $s_{p}\cdot s_{0}$ . Then $adQ(p)$ does not trivially act on the
normal subgroup, $Sp(1)$ of $K$ . In fact, if $adQ(p)$ does, $Sp(1)$ can act on $M^{-}(p)$

because $Q(p)(kx)=Q(p)kQ(p)^{-1}Q(p)x=adQ(p)(k)(Q(p)x)=kx$ for any $k$ in $Sp(1)$

and $x$ in $\mathfrak{m}^{-}$ . This is contrary to the assumption. Thus $ad(s_{p})$ does not act
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on $Sp(1)$ as identity because $ad(s_{0})$ does. Then there exists an one-parameter

subgroup $S_{1}$ of $Sp(1)$ such that the restriction of $ad(s_{p})$ to $S_{1}$ is $s_{1}$ , the point

symmetry at the unit element of $S_{1}$ . Take $J$ in $S_{1}$ with $J^{2}=-1$ , then we have
$s_{p}(Jx)=s_{p}Js_{p}s_{p}x=ad(s_{p})(J)(s_{p}x)=J^{-1}(-x)=(-J)(-x)=Jx$ for any $x$ in $\mathfrak{m}^{-}$ .
That is $Jx\in \mathfrak{m}^{+}$ and so $J\mathfrak{m}^{-}$ is contained in $\mathfrak{m}^{+}$ . On the other hand, for any
$y$ in $\mathfrak{m}^{\neq}$ , we have $s_{p}(Jy)=(-J)y=-Jy$ , that is, $Jy\in \mathfrak{m}^{-}$ . Here $J\mathfrak{m}^{+}$ is con-
tained in $\mathfrak{m}^{-}$ and $\mathfrak{m}^{+}$ in $J\mathfrak{m}^{-}$ . Now we have $\mathfrak{m}^{+}=J\mathfrak{m}^{-}$ and we conclude that
$M^{-}(p)$ is congruent with $M^{+}(p)$ by $J$ because of their connectedness. $q.e.d$ .

REMARK 4.1.1. We have a similar fact in case of a symmetric R-space of
a Hermitian symmetric space (see 2.23 in [N-2]).

In the above proposition, $M^{+}(p)$ or $M^{-}(p)$ is a totally complex submanifold
in $M$. Let $M$ be a compact irreducible quaternionic symmetric space with
$\dim M=m$ and $N$ its totally complex totally geodesic submanifolds with $\dim N=$

$m/2$ (see [Tk-2] for the definition of “totally complex”). We call such $N$ totally
complex subspace for brevity. In [Tk-2] Takeuchi classified the totally com-
plex subspaces in each compact irreducible quaternionic symmetric space and
studied their stability when $M$ is of classical type. Here we have the result
for the case when $M$ is of exceptional type.

THEOREM 4.2. Let $M$ be a compact irreducible quatermonic symmetric space
of exceptional type and $N$ its totally complex subspace. Then the stability of $N$

in $M$ is the following:

(1.1) $N=S^{2}\cdot G_{3}(C^{6})$ in $M=EII$ is stable.
(1.2) $N=DIII(5)$ in $M=EII$ is stable.
(1.3) $N=CI(4)^{*}$ in $M=EII$ is stable.

(2.1) $N=S^{2}\cdot DIII(6)$ in $M=EVI$ is stable.
(2.2) $N=EIII$ in $M=EVI$ is stable.
(2.3) $N=G_{4}(C^{8})^{*}$ in $M=EVI$ is stable.

(3.1) $N=S^{2}\cdot EVII$ in $M=EIX$ is stable.
(3.2) $N=DIII(8)^{*}$ in $M=EIX$ is stable.

(4) $N=S^{2}\cdot CI(3)$ in $M=FI$ is stable.
(5) $N=S^{2}\cdot S^{2}$ in $M=GI$ is unstable.

PROOF. We can find that these spaces are totally complex subspaces in
each irreducible quaternionic symmetric space of exceptional type by [Tk-2].
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Refer to the results in the previous section for the cases (1.1), (2.1), (3.1), (4)

and (5) since $N$ is a polar of $M$ in these cases.

CASE (1.2). The automorphism group of $N,$ $G_{N}$ is Spin (10) and that of $M$,
$G_{M}$ is $E_{6}$ . Then we can see the representation of $G_{N}$ on $\mathfrak{g}^{\perp}$ is equivalent to
the restriction of the isotropy representation, that is, $\omega_{4}\oplus\omega_{5}$ where $\mathfrak{g}^{\perp}$ is the
orthogonal complement of $\mathfrak{g}_{N}$ in $\mathfrak{g}_{M}$ which are the Lie algebras of $G_{N}$ and $G_{M}$

respectively. If $\lambda\in D(Spin(10))$ satisfies that the eigenvalue of its Casimir
operator is less than that of $\omega_{4}$ or $\omega_{5}$ , then $\lambda=0$ or $\omega_{1}$ . On the other hand,
$\mathfrak{m}^{\perp}$ is isomorphic to the tangent space of $N$ at a point $oT_{o}N$ as an $U^{\wedge}(5)-$

module, where $\mathfrak{m}^{\perp}$ is the orthogonal complement of $T_{o}N$ in $T_{o}M$. And we have

$(\mathfrak{m}^{\perp})^{C}=W_{\omega_{2}(A_{4})}\oplus W_{\omega_{3}(A_{4})}$

as an $U^{\wedge}(5)$-module. Since we get the next decomposition as an $U^{\wedge}(5)$-module

$V_{\omega_{1}(D_{6})}=W_{\omega_{1}(A_{4})}\oplus W_{\omega_{4}(A_{4})}$ ,

we can conclude that DIII(5) is stable.

CASE (1.3). The automorphism group of $N,$ $G_{N}$ is $Sp(4)^{*}$ and the auto-
morphism group of $M,$ $G_{M}$ is $E_{6}$ . Then we can see the representation of $G_{N}$

on $\mathfrak{g}^{\perp}$ is equivalent to the isotropy representation, that is, $\omega_{4}$ where $\mathfrak{g}^{\perp}$ is the
orthogonal complement of $\mathfrak{g}_{N}$ in $\mathfrak{g}_{M}$ which are the Lie algebras of $G_{N}$ and $G_{M}$

respectively. If $\lambda\in D(Sp(4)^{*})$ satisfies that the eigenvalue of its Casimir operator

is less than that of $\omega_{4}$ , then $\lambda=0,$ $\omega_{2}$ or $2\omega_{1}$ . On the other hand, $\mathfrak{m}^{\perp}$ is isomor-
phic to the tangent space of $N$ at a point $oT_{o}N$ only as a vector space not as
an $U(4)/Z_{2}$-module, where $\mathfrak{m}^{\perp}$ is the othogonal complement of $T_{0}N$ in $T_{o}M$. In
fact we have

$(\mathfrak{m}^{\perp})^{C}=(V(\lambda)\otimes W_{2\omega_{3}(A_{3})})\oplus(V(-\lambda)\otimes W_{2\omega_{1}(A_{3})})$

$\mathfrak{m}^{C}=(V(\lambda)\otimes W_{2\omega_{1}(A_{3})})\oplus(V(-\lambda)\otimes W_{2\omega_{3}(A_{3})})$

as an $U(4)/Z_{2}$-module where $V(\lambda)$ and $V(-\lambda)$ are the weight spaces of $\omega_{1}(A_{1})$ .
So $2\omega_{1}$ is not admissible. Since we get the next decomposition as an $U(4)/Z_{2^{-}}$

module
$V_{\omega_{2}(C_{4})}=W_{\omega_{2}(A_{3})}\oplus W_{\omega_{g}(A_{\$})}\oplus W_{(\omega_{1}+\omega_{3})(A_{3})}$ ,

$\omega_{2}$ is not also admissible. Now we conclude that CI(4) is stable.
For the case (2.2) the similar argument works as the case (1.2). And for

the case (2.3) and (3.2) the similar arguments work as the case (1.3). $q.e.d$ .

We discussed the stability of p-harmonic maps in [NS-3] and got the fol-
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lowing result.

THEOREM 4.3 (2.12 in [NS-3]). Let $f:M\rightarrow N$ be a non-constant smooth map
of a compact connected Riemannian manifold $M$ into another. Assume that $f$ is
isometric and totally geodesic immersion. Then $f$ is stable as a p-harmonic map
for a sufficiently large $p$ if and only if $f$ is stable as a minimal immersion.

We get the immediate corollary of this theorem.

COROLLARY 4.4. Let $M$ be a compact connected irreducible symmetric space
and $N$ a polar or a meridian of $M$ which does not belong to the five cases in
Theorem 3.12 in the previous section. Then the inclusion map $f:N\rightarrow M$ is a
stable $p- harmo\dot{m}c$ map for a sufficiently large $p$ .

APPENDIX. The isotropy representations (cf. [Be] for example)

$M=G/K$ isotropy representation

$SU(n)=SU(n)\times SU(n)/SU(n)$ $(\omega_{1}+\omega_{n- 1})(A_{n-1})$

Spin$(n)=Spin(n)\times Spin(n)/SO(n)$ $\omega_{2}(SO(n))$

$Sp(n)=Sp(n)\times Sp(n)/Sp(n)$ $2\omega_{1}(C_{n})$

$E_{6}=E_{6}\times E_{6}/E_{6}$ $\omega_{2}(E_{6})$

$E_{7}=E_{7}\times E_{7}/E_{7}$ $\omega_{1}(E_{7})$

$E_{8}=E_{8}\times E_{8}/E_{8}$ $\omega_{8}(E_{8})$

$F_{4}=F_{4}\times F_{4}/F_{4}$ $\omega_{1}(F_{4})$

$G_{2}=G_{2}\times G_{2}/G_{2}$ $\omega_{2}(G_{2})$

$AI(n)=SU(n)/SO(n)$ $2\omega_{1}(SO(n))$

$AII(n)=SU(2n)/Sp(n)$ $\omega_{2}(C_{r})$

$G_{r^{O}}(R^{n})=SO(n)/SO(r)\times SO(n-r)$ $\omega_{1}(SO(r))+\omega_{1}(SO(n-r))$

$G_{r}(C^{n})=SU(n)/T\cdot(SU(r)\times SU(n-r))$ $T+\omega_{1}(A_{r-1})+\omega_{1}(A_{n- r- 1})$

$G_{r}(H^{n})=Sp(n)/Sp(r)\times Sp(n-r)$ $\omega_{1}(C_{r})+\omega_{1}(C_{n-r})$

CI$(n)=Sp(n)/U(n)$ $T+2\omega_{1}(A_{n-1})$

$DlII(n)=SO(2n)/U(n)$ $T+\omega_{2}(A_{n-1})$

$EI=E_{6}/Sp(4)^{*}$ $\omega_{4}(C_{4})$
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$EII=E_{6}/Sp(1)\cdot SU(6)$ $\omega_{1}(A_{1})+\omega_{3}(A_{6})$

$EIII=E_{6}/\tau spin(10)$ $T+\omega_{5}(D_{5})$

$ElV=E_{6}/F_{4}$ $\omega_{4}(F_{4})$

$EV=E_{7}/SU(8)/Z_{2}$ $\omega_{4}(A_{7})$

$EVI=E_{7}/Sp(1)\cdot Spin(12)$ $\omega_{1}(A_{1})+\omega_{6}(D_{6})$

$EVII=E_{7}/T\cdot E_{6}$ $T+\omega_{1}(E_{6})$

EVIII $=E_{8}/SO(16)^{*}$ $\omega_{7}(D_{8})$

$EIX=E_{8}/sp(1)\cdot E_{7}$ $\omega_{1}(A_{1})+\omega_{7}(E_{7})$

$FI=F_{4}/sp(1)\cdot Sp(3)$ $\omega_{1}(A_{1})+\omega_{3}(C_{3})$

$FII=F_{4}/spin(9)$ $\omega_{4}(B_{4})$

$GI=G_{2}/SO(4)$ $\omega_{1}(A_{1})+3\omega_{1}(A_{1}^{\prime})$
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