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ON REAL HYPERSURFACES OF TYPE A IN A
COMPLEX SPACE FORM (I)

By

Yong-Soo PYO

\S 1. Introduction.

A complex n-dimensional K\"ahler manifold of constant holomorphic sectional
curvature $c$ is called a complex space form, which is denoted by $M_{n}(c)$ . A com-
plete and simply connected complex space form consists of a complex projective
space $P_{n}C$ , a complex Euclidean space $C^{n}$ or a complex hyperbolic space $H_{n}C$ ,

according as $c>0,$ $c=0$ or $c<0$ .
Now, let $M$ be a real hypersurface of an n-dimensional complex space form

$M_{n}(c)$ . Then $M$ has an almost contact metric structure ( $\phi,$ $\xi,$
$\eta$ , g)induced

from the K\"ahler metric and the almost complex structure of $M_{n}(c)$ . Okumura
[7] and Montiel and Romero [6] proved the following

THEOREM A. Let $M$ be a real hypersurface of $P_{n}C,$ $n\geqq 2$ . If it satisfies
(1.1) $A\phi-\phi A=0$ ,

then $M$ is locally a tube of radius $r$ over one of the following Kahler submani-

folds:
$(A_{I})$ a hyperplane $P_{n-1}C$, where $0<r<\pi/2$ ,
$(A_{2})$ a totally geodesic $P_{k}C(1\leqq k\leqq n-2)$ , where $0<r<\pi/2$ ,

where $A$ is the shape operator in the direction of the unit normal $C$ on $M$.

THEOREM B. Let $M$ be a real hypersurface of $H_{n}C,$ $n\geqq 2$ . If it satisfies
(1.1), then $M$ is locally one of the following hypersurfaces:

$(A_{0})$ a horosphere in $H_{n}C,$ $i$ . $e.$ , a Montiel tube,
$(A_{1})$ a tube of a totally geodesic hyperplane $H_{n-1}C$ ,

$(A_{2})$ a tube of a totally geodesic $H_{k}C(1\leqq k\leqq n-2)$ .

On the other hand, the following theorem is proved by Maeda and Udagawa
[4] under that the structure vector $\xi$ is principal and then recently by Kimura
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and Maeda [3] and Ki, Kim and Lee [1] without the above assumption.

THEOREM C. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 2$ . If it

satisfies
(1.2) $\nabla_{\xi}A=0$ , $g(A\xi, \xi)\neq 0$ ,

then $M$ is locally of type $A$ , where $\nabla$ is the Riemannian connection on $M$ .

The purpose of this article is to prove the following generalized property

of Theorem C.

THEOREM. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 2$ . If it satisfies

(1.3) $\nabla_{\xi}A=a(A\phi-\phi A)$ , $2a\neq-g(A\xi, \xi)$

for some non-zero constant $a$ , then $M$ is locally of type $A$ .

The author would like to thank Professors U-H. Ki and H. Nakagawa for
his valuble suggestions and encouragement during the preparation of this paper.

\S 2. Preliminaries.

First of all, we recall fundamental properties about real hypersurfaces of a
complex space form. Let $M$ be a real hypersurface of a complex n-dimensional
complex space form $M_{n}(c)$ of constant holomorphic sectional curvature $c$ , and
let $C$ be a unit normal vector field on a neighborhood in $M$ . We denote by $J$

the almost complex structure of $M_{n}(c)$ . For a local vector field $X$ on the
neighborhood in $M$ , the images of $X$ and $C$ under the $1\iota near$ transformation $J$

can be represented as
$JX=\phi X+\eta(X)C$ , $ JC=-\xi$ ,

where $\phi$ defines a skew-symmetric transformation on the tangent bundle $TM$

of $M$, while $\eta$ and $\xi$ denote a l-form and a vector field on the neighborhood in
$M$, respectively. Then it is seen that $g(\xi, X)=\eta(X)$ , where $g$ denotes the Rie-
mannian metric tensor on $M$ induced from the metric tensor on $M_{n}(c)$ . The
set of tensors $(\phi, \xi, \eta, g)$ is called an almost contact metric structure on $M$ .
They satisfy the following properties:

$\phi^{2}=-I+\eta\otimes\xi$ , $\phi\xi=0$ , $\eta(\xi)=1$ ,

where $I$ denotes the identity rransformation. Furthermore, the covariant deriva-
tives of the structure tensors are given by
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(2.1) $\nabla_{X}\xi=\phi AX$ , $\nabla_{X}\phi(Y)=\eta(Y)AX-g(AX, Y)\S$

for any vector fields $X$ and $Y$ on $M$, where $\nabla$ is the Riemannian connection on
$M$ and $A$ denotes the shape operator of $M$ in the direction of $C$ .

Since the ambient space is of constant holomorphic sectional curvature $c$ ,

the equations of Gauss and Codazzi are respectively obtained:

(2.2) $R(X, Y)Z=\frac{c}{4}\{g(Y, Z)X-g(X, Z)Y$

$+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y-2g(\phi X, Y)\phi Z\}$

$+g(AY, Z)AX-g(AX, Z)AY$ ,

(2.3) $\nabla_{X}A(Y)-\nabla_{Y}A(X)=\frac{C}{4}\{\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi\}$ ,

where $R$ denotes the Riemannian curvature tensor of $M$ and $\nabla_{X}A$ denotes the
covariant derivative of the shape operator $A$ with respect to $X$ .

Next, we suppose that the structure vector field $\xi$ is principal with corre-
sponding principal curvature $\alpha$ . Then it is seen in [2] and [5] that $\alpha$ is con-
stant on $M$ and it satisfies

(2.4) $A\phi A=\frac{c}{4}\phi+\frac{1}{2}\alpha(A\phi+\phi A)$ .

\S 3. Proof of Theorem.

Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 2$ . In this section, we
shall give a sufficient condition for the structure vector field $\xi$ to be principal.
First, we assume that $\xi$ is principal, $i$ . $e.,$ $ A\xi=\alpha\xi$ , where $\alpha$ is constant. Then,

by (2.1) and (2.4), we get

(3.1) $\nabla_{X}A(\xi)=-\frac{c}{4}\phi X-\frac{1}{2}\alpha(A\phi-\phi A)X$ ,

from which together with (2.3) it follows that

$\nabla_{\xi}A=-\frac{1}{2}\alpha(A\phi-\phi A)$ .

Taking account of this property and the assumption of Theorems A and $B$ , we
shall assert the following

PROPOSITION 3.1. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0,$ $n\geqq 2$ . If
it satisfies

(3.2) $\nabla_{\xi}A=a(A\phi-\phi A)$
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for some non-zero constant $a$ , then $\xi$ is principal.

By the assumption (3.2) and (2.3), it turns out to be

$\nabla_{Y}A(\xi)=a(A\phi-\phi A)Y-\frac{c}{4}\phi Y$ .

Differentiating this equation with respect to $X$ covariantly and taking account
of (2.1), we get

(3.3) $\nabla_{X}\nabla_{Y}A(\xi)=-\nabla_{Y}A(\phi AX)$

$+a\{\nabla_{X}A(\phi Y)+g(Y, \xi)A^{2}X-g(AX, Y)A\xi$

$-g(AY, \xi)AX+g(AX, AY)\xi-\phi\nabla_{X}A(Y)\}$

$-\frac{c}{4}\{g(Y, \xi)AX-g(AX, Y)\xi\}$

for any vector fields $X$ and $Y$ . Since the Ricci formula for the shape operator
$A$ is given by

(3.4) $\nabla_{Y}\nabla_{Y}A(Z)-\nabla_{X}\nabla_{Y}A(Z)=R(X, Y)(AZ)-A(R(X, Y)Z)$ ,

we obtain by (2.2), (2.3) and (3.3)

(3.5) $\nabla_{x}A(\phi AY)-\nabla_{Y}A(\phi AX)+a\{\nabla_{X}A(\phi Y)-\nabla_{Y}A(\phi X)\}$

$=-\{ag(Y, \xi)+g(AY, \xi)\}A^{2}X+\{ag(X, \xi)+g(AX, \xi)\}A^{2}Y$

$+\{ag(AY, \xi)+g(A^{2}Y, \xi)\}AX-\{ag(AX, \xi)+g(A^{2}X, \xi)\}AY$

$+\frac{c}{4}[\{ag(Y, \xi)+g(AY, \xi)\}X-\{ag(X, \xi)+g(AX, \xi)\}Y]$

$+\frac{c}{4}\{g(A\phi Y, \xi)\phi X-g(A\phi X, \xi)\phi Y\}-\frac{c}{2}g(\phi X, Y)\phi A\xi$

for any vector fields $X$ and $Y$ .
Now, in order to prove the proposition, we shall express (3.5) with the

simpler form. The inner product of (3.5) and $\xi$ , combining with (2.3) and (3.2),

implies

(3.6) a $g((A\phi A\phi-\phi A\phi A)X, 1^{\nearrow})$

$+a^{2}\{g(X, \xi)g(AY, \xi)-g(Y, \xi)g(AX, \xi)\}$

$+a\{g(X, \xi)g(A^{2}Y, \xi)-g(Y, \xi)g(A^{2}X, \xi)\}$

$+2\{g(AX, \xi)g(A^{2}Y, \xi)-g(AY, \xi)g(A^{2}X, \xi)\}$

$=0$
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for any vector fields $X$ and $Y$ . Since $Y$ is any vector fields, we get

(3.7) $ a(A\phi A\phi-\phi A\phi A)X+\{ag(X, \xi)+2g(AX, \xi)\}A^{2}\xi$

$+\{a^{2}g(X, \xi)-2g(A^{2}X, \xi)\}A\xi$

$-a$ {a $g(AX,$ $\xi)+g(A^{2}X,$ $\xi)$ } $\xi$

$=0$

for any vector field $X$ . On the other hand, taking account of (2.1) and the
skew-symmetry of the transformation $\phi$ , we have

$g((A\phi A\phi-\phi A\phi A)X, \phi X)=g(X, \xi)g(A\phi AX, \xi)$ .

Putting $Y=\phi X$ in (3.6) and applying the above property, we get

(3.8) a $g(X, \xi)\{g(A\phi AX, \xi)+ag(A\phi X, \xi)+g(A^{2}\phi X, \xi)\}$

$+2\{g(AX, \xi)g(A^{2}\phi X, \xi)-g(A\phi X, \xi)g(A^{2}X, \xi)\}$

$=0$ .

Let $T_{0}$ be a distribution defined by the subspace $T_{0}(x)=\{u\in T_{x}M:g(u, \xi(x))=0\}$

of the tangent space $T_{x}M$ of $M$ at any point $x$ , which is called the holomorphic

distribution. For any vector field $X$ belonging to $T_{0},$ $(3.8)$ is simplified as

$g(AX, \xi)g(A^{2}\phi X, \xi)-g(A\phi X, \xi)g(A^{2}X, \xi)=0$ .
Furthermore, this equation holds for any vector field $X$ . By polarization, we
have

$g(AX, \xi)g(A^{2}\phi Y, \xi)-g(A\phi X, \xi)g(A^{2}Y, \xi)$

$+g(AY, \xi)g(A^{2}\phi X, \xi)-g(A\phi Y, \xi)g(A^{2}X, \xi)$

$=0$

for any vector fields $X$ and $Y$ . Hence we have

(3.9) $ g(AX, \xi)\phi A^{2}\xi+g(A\phi X, \xi)A^{g}\xi$

$-g(A^{g}\phi X, \xi)A\xi-g(A^{2}X, \xi)\phi A\xi$

$=0$ .
Now, suppose that the structure vector field $\xi$ is not principal. Then we

can put $A\xi=\alpha\xi+\beta U$ , where $U$ is a unit vector field in the holomorphic distri-
bution $T_{0}$ , and $\alpha$ and $\beta$ are smooth functions on $M$ . So we may consider that
the function $\beta$ does not vanish identically on $M$. Let $M_{0}$ be the non-empty
open subset of $M$ consisting of points $x$ at which $\beta(x)\neq 0$ . And we put $AU=$
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$\beta\xi+\gamma U+\delta V$ , where $U$ and $V$ are orthonormal vector fields in the holomorphic

distribution $T_{0}$ , and $\gamma$ and $\delta$ are smooth functions on $M_{0}$ .
First, we shall assert the $fo$ ]$[0Wlng$

LEMMA 3.2.

(3.10) $AU=\beta\xi+\gamma U$ on $M_{0}$ .

PROOF. By the forms $A\xi=\alpha\xi+\beta U$ and $AU=\beta\xi+\gamma U+\delta V$ , it tums out to
be

$A^{2}\xi=(\alpha^{2}+\beta^{2})\xi+\beta(\alpha+\gamma)U+\beta\delta V$ .

Thus we can rewrite (3.9) as

(3.11) $\{\alpha g(A^{2}\phi X, \xi)-(\alpha^{2}+\beta^{2})g(A\phi X, \xi)\}\xi$

$+\beta\{g(A^{2}\phi X, \xi)-(\alpha-\gamma)g(A\phi X, \xi)\}U-\beta\delta g(A\phi X, \xi)V$

$+\beta\{g(A^{2}X, \xi)-(\alpha+\gamma)g(AX, \xi)\}\phi U-\beta\delta g(AX, \xi)\phi V$

$=0$

for any vector field $X$ . The inner product of (3.11) and $\phi U$ implies

$g(A^{2}X, \xi)-(\alpha+\gamma)g(AX, \xi)-\delta g(A\phi X, \xi)g(V, \phi U)=0$ .

Putting $X=V$ in this equation and calculating directly, we have

$\delta\{1+g(V, \phi U)^{2}\}=0$ .

Accordingly it turns out to be $\delta=0$ . This completes the proof. $\square $

Furthermore, by the above proof, we also get

(3.12) $ A^{2}\xi=(\alpha+\gamma)A\xi$ , $\beta^{2}=\alpha\gamma$ .

By polarization in (3.8), we have

$ag(X, \xi)\{g(A\phi AY, \xi)+ag(A\phi Y, \xi)+g(A^{2}\phi Y, \xi)\}$

$+ag(Y, \xi)\{g(A\phi AX, \xi)+ag(A\phi X, \xi)+g(A^{2}\phi X, \xi)\}$

$+2\{g(AX, \xi)g(A^{2}\phi Y, \xi)-g(A\phi X, \xi)g(A^{2}Y, \xi)\}$

$+2\{g(AY, \xi)g(A^{2}\phi X, \xi)-g(A\phi Y, \xi)g(A^{2}X, \xi)\}$

$=0$ .
Putting $ Y=\xi$ , we see
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$a\{g(A\phi AX, \xi)+ag(A\phi X, \xi)+g(A^{2}\phi X, \xi)\}$

$+2\{g(A\xi, \xi)g(A^{2}\phi X, \xi)-g(A\phi X, \xi)g(A^{2}\xi, \xi)\}$

$=0$

for any vector fild $X$ because $ A\phi A\xi$ is orthogonal to $\xi$ . Consequently

$aA\phi A\xi+(a+2\alpha)\phi A^{2}\xi+(a^{2}-2\alpha^{2}-2\beta^{2})\phi A\xi=0$ .
By (3.12), we get

(3.13) $A\phi U+\lambda\phi U=0$ , $\lambda=a+\alpha+\gamma$ .

We remark here that the property $a\neq 0$ is essential to derive the above first
equation.

Next, we give the following

LEMMA 3.3. Assume that $A^{2}\xi+kA\xi=0$ , where $k$ is constant. Then it satisfies

(3.14) $a\lambda^{2}+(4a\gamma-2k\gamma+\frac{c}{4})\lambda-a^{2}\gamma-\frac{c}{4}(2k+2\alpha+\gamma)=0$ on $M_{0}$ .

PROOF. Differentiating our assumption $A^{2}\xi+kA\xi=0$ with resect to $X$ and
taking account of (2.1), (2.3) and (3.2), we get

$\nabla_{X}A(A\xi)+aA(A\phi-\phi A)X+ak(A\phi-\phi A)X$

$+A^{2}\phi AX+kA\phi AX-\frac{c}{4}A\phi X-\frac{c}{4}k\phi\chi$

$=0$

for any vector field $X$ . The inner product of this equation with any vector
field $Y$ implies

$g(\nabla_{X}A(Y), A\xi)+ag(A(A\phi-\phi A)X, Y)+akg((A\phi-\phi A)X, Y)$

$+g(A^{2}\phi AX, Y)+kg(A\phi AX, Y)=\frac{c}{4}g(A\phi X, Y)-\frac{c}{4}kg(\phi X, Y)$

$=0$ .

Exchanging $X$ and $Y$ in the above equation and substituting the second one
from the first one, we have

$g(\nabla_{X}A(Y)-\nabla_{Y}A(X), A\xi)+ag((A^{2}\phi-2A\phi A+\phi A^{2})X, Y)$

$+g((A^{2}\phi A+A\phi A^{2})X, Y)+2kg(A\phi AX, Y)$

$-\frac{c}{4}g((A\phi+\phi A)X, Y)-\frac{c}{2}kg(\phi X, Y)$

$=0$
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for any vector fields $X$ and }‘. Putting $X=U$ and } $‘=\phi U$ in this equation and
taking account of (3.10), (3.12) and (3.13), we can easily show the equation
(3.14). $\square $

Now, we are in position to prove Proposition 3.1.

PROOF OF PROPOSITION 3.1. By the form $A\xi=\alpha\xi+\beta U$ and (2.1), we have

$\nabla_{\xi}A(\xi)=d\alpha(\xi)\xi+\alpha\beta\phi U+d\beta(\xi)U-\beta A\phi U+\beta\nabla_{\xi}U$ .
This, combining with the assumption (3.2), implies

$d\alpha(\xi)\xi+d\beta(\xi)U+\beta(a+\alpha)\phi U-\beta A\phi U+\beta\nabla_{\xi}U=0$ .

From the inner product of $\xi$ and $U$ respectively, we get $d\alpha(\xi)=0$ and $d\beta(\xi)=0$ ,

where we have used that $g(\nabla_{\xi}U, \xi)=0,$ $g(A\phi U, \xi)=0$ and $g(A\phi U, U)=0$ . Hence

(3.15) $(a+\alpha)\phi U-A\phi U+\nabla_{\xi}U=0$ .

By (3.13) and the above equation, we find

(3.16) $\left\{\begin{array}{l}\nabla_{\xi}U=-(2a+2\alpha+\gamma)\phi U,\\d\alpha(\xi)=0, d\beta(\xi)=0.\end{array}\right.$

On the other hand, by making use of (3.2) and (3.10), $\gamma=g(AU, U)$ gives
us to

(3.17) $d\gamma(\xi)=0$ .
Furthermore, from (3.13) and (3.16), we get $d\lambda(\xi)=0$ . Differentiating (3.13)

with respect to $\xi$ covariantly and taking account of (2.1) and the above pro-
perty, we get

$\nabla_{\xi}A(\phi U)-g(AU, \xi)A\xi+A\phi(\nabla_{\xi}U)+\lambda\{-g(AU, \xi)\xi+\phi\nabla_{\xi}U\}=0$ .
By (3.2), (3.12), (3.13) and the first equation of (3.16), the above equation gives
the $fol[oWlng$

(3.18) $a+\alpha+\gamma=0$ or $a+2\alpha+2\gamma=0$ .
Since $a\neq 0,$ $\alpha+\gamma\neq 0$ by the above equation.

Now, we consider the first case $a+\alpha+\gamma=0$ of (3.18). By (3.13) and $(3,15)$ ,

we get

(3.19) $A\phi U=0$ , $\nabla_{\xi}U=\gamma\phi U$ .
By (2.1), we have $\nabla_{U}\xi=\phi AU=\gamma\phi U$ . This implies $[\xi, U]=0$ by the second equ?-

tion of (3.19). On the other hand, by (2.1), (3.10) and (3.17), we get
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$\nabla_{U}\nabla_{\xi}\xi=d\beta(U)\phi U-\beta\gamma\xi+\beta\phi\nabla_{U}U$ ,

$\nabla_{\xi}\nabla_{U}\xi=-\beta\gamma\xi-\gamma^{2}U$ .
Accordingly, by the Riemannian curvature tensor $ R(\xi, U)\xi$ and (2.2), we have

$(\frac{c}{4}-\gamma^{2})U-d\beta(U)\phi U-\beta\phi\nabla_{U}U=0$ ,

where we have used (3.12). The inner product of the above equation and $\phi U$

yields $d\beta(U)=0$ . Thus

$(\frac{c}{4}-\gamma^{2})U-\beta\phi\nabla_{U}U=0$ ,

from which we get

(3.20) $\beta\nabla_{U}U=(\gamma^{2}-\frac{C}{4})\phi U$ , $d\beta(U)=0$ .

Differentiating $A\xi=\alpha\xi+\beta U$ with respect to any vector field $X$ covariantly

and taklng account of (3.2), we get

$a(A\phi-\phi A)X-\frac{c}{4}\phi X+A\phi AX-d\alpha(X)\xi-\alpha\phi AX-d\beta(X)U-\beta\nabla_{X}U=0$ .

By taking the inner product of this equation with $\xi$ and $U$ respectively, we get

(3.21) $d\alpha(X)=a\beta g(\phi X, U)$ ,

(3.22) $d\beta(X)=(a\gamma-\frac{c}{4})g(\phi X, U)$ ,

where we have used (3.10) and the first equation of (319). Because of $\beta^{2}=\alpha\gamma$ ,

it is easily seen that
$2\beta d\beta(X)=\gamma d\alpha(X)+\alpha d\gamma(X)$ ,

from which together with (3.21) and (3.22) it tums out to be

$2(a\gamma-\frac{c}{4})g(\phi X, U)=a(\gamma-\alpha)g(\phi X, U)$

for any vector field $X$ . This implies $2a^{2}+c=0$ . Hence, by (3.14), we get $\gamma=0$ ,

where we have used that $\lambda=a+\alpha+\gamma=0$ and $k=a$ . Thus we have $\beta=0$ by
(3.12), a contradiction.

Lastly, we suppose that $a+2\alpha+2\gamma=0$ .
On the other hand, putt’lng $ X=\xi$ and $Y=U$ in (3.5) and from the inner

product of $\xi$ and $U$ respectively, we obtain

$\left\{\begin{array}{l}\beta g(\phi\nabla_{U}U,U)=(a+\gamma)(a+\alpha+\gamma)+\gamma(a+\alpha)+\frac{c}{4},\\\beta(a+\alpha+2\gamma)g(\phi\nabla_{U}U,U)=a(a+2\gamma)(a+\alpha+\gamma)+\gamma^{2}(a+\alpha)-\frac{c}{4}(a+\alpha),\end{array}\right.$
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where we have used (3.2), (3.10), (3.12), (3.13), (3.16) and (3.17). Combining of
the above two equations, we get

$(a+\alpha+\gamma)(a\alpha+2a\gamma+2\alpha\gamma+2\gamma^{2}+\frac{c}{2})=0$ .

By our assumption, we have $a^{2}=c$ . Therefore, by (3.14), we obtain $\alpha=0$ ,

where we have used that $a+2\alpha+2\gamma=0$ and $k=\lambda=a/2$ . Hence $\beta=0$ , a contra-
dition.

These mean that the subset $M_{0}$ is empty and hence the structure vector
field $\xi$ is principal. $\square $

REMARK. The equation (3.2) is equivalent to

$\mathcal{L}_{\xi}(h+ag)=0$ ,

where $\mathcal{L}_{\xi}$ is the Lie derivative with respect to $\xi$ and $h(X, Y)=g(AX, Y)$ for
any vector fields $X$ and $Y$ .

The main theorem is proved by Proposition 3.1, the remark stated first in
this section and Theorems A and B.
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