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1. Introduction and statement of the result

Let $M$ be a smooth oriented 4-manifold, which admits an open subset $K$

with one end $N$ and an open submanifold $W_{0}$ with two ends $N_{-},$ $N_{+}$ . $W_{1},$ $W_{2},$ $\cdots$

denote copies of $W_{0}$ . The 4-manifold $M$ will be called end-periodic if it admits
a decomposition $ M=K\bigcup_{N}W_{0}\bigcup_{N}W_{1}\cup\cdots$ , where $N\subset K$ is identified with the end
$N_{-}$ of $W_{0}$ and the end $N_{+}$ of $W_{0}$ is identified with the end $N_{-}$ of $W_{1}$ and so
on. Let $Y$ be the compact oriented 4-manifold which is obtained from $W_{0}$ by

identifying the two ends. The manifold $Y$ has a Z-cover $\tilde{Y}=\cdots\bigcup_{N}W_{-1}\bigcup_{N}W_{0}$

$\bigcup_{N}W_{1}\bigcup_{N}\cdots$ with projection $\pi:\tilde{Y}\rightarrow Y$ .
A geometric object on $M$ , a vector bundle, a connection, a differential

operator, a Riemannian metric etc. will be called end-periodic if its restriction
on End $ M=W_{0}\bigcup_{N}W_{1}\bigcup_{N}\cdots$ is the pull back by $\pi$ of an object on $Y$ . By making

use of a smooth function $t;W_{0}\rightarrow[0,1]$ such that $t|_{N-}=0$ and $t|_{N+}=1$ , we obtain
a smooth step function $\tau:M\rightarrow[0, \infty$ ) such that $\tau|_{K}=0$ and $\tau(x)=n+t(x)$ if
$x\in W_{n},$ $n=1,2,$ $\cdots$ .

Let $P\rightarrow M$ be an end-periodic principal $SU(2)$-bundle, and $A_{0}$ be an end-
periodic connection on $P$ which is isomorphic over End $M$ to the product con-
nection on End $M\times SU(2)$ . Then by the lemma 7.1 in [11],

$l=(1/8\pi^{2})\int_{M}tr(F_{A_{0}}\wedge F_{A_{0}})$

is an integer, where $tr(\cdot)$ is the trace on the adjoint representation of the group
$SU(2)$ . Let $E\rightarrow M$ be an end-periodic vector bundle. Put $L_{1oc}^{2}(E)=\{section$ $u$

of $E;u\in L^{2}(E|_{A})$ for every measurable $A\subset M$ } and denote by $\Vert\cdot\Vert_{4_{0}}4$ the norm
by the covariant derivative $\nabla_{A_{0}}$ : $C_{0}^{\infty}(E)\rightarrow C_{0}^{\infty}(E\otimes T*M)$ of compactly supported

smooth sections. Further $\nabla_{A}^{(j_{0})}$ denote the $j$ times iterated derivative $\nabla_{A_{0}}\cdots\nabla_{A_{0}}$ .
For $\delta>0$ , we put
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$\cup t_{l}(\delta)=\{A_{0}+a;a\in L_{6.10C}^{2}(adP\otimes T*M)$

with norm $\int_{M}e^{\tau\delta}\{\Sigma_{f=0}^{5}|\nabla_{A}^{(j_{0})}a|^{2}\}<\infty\}$ ,

and define the small gauge group $\mathcal{G}_{l}=\{h\in L_{6.1oc}^{2}(AutP);\Vert\nabla_{A_{0}}h\Vert_{A_{0}}<\infty\}$ , where
$adP$ is the associated bundle $PX_{Ad}su(2)$ , and $AutP$ denotes the automorphisms

of the principal bundle $P$. Here we have used the adjoint representation $Ad$ :
$SU(2)/Z_{2}\rightarrow End(su(2))$ and the embedding $C^{\infty}(P\times AdSU(2)/Z_{2})\rightarrow C^{\infty}(P\times AdEnd(su(2)))$

of effective gauge transformations, and their Sobolev completions (4 in [8]).

Let $\llcorner fl_{l}^{*}(\delta)\subset A_{l}(\delta)$ denote the subset of irreducible connections, and $g_{0}$ be an
end-periodic metric on the tangent bundle $TM$ and $\mathcal{E}$ be the set of asymptoti-
cally periodic metrics ((6.1) in [11]). Consider a $\mathcal{G}_{l}$ -equivariant map

$\rho;\llcorner A_{l}(\delta)\times \mathcal{E}\ni(A, \varphi)\rightarrow P_{-}(g_{0})(\varphi^{-1})^{*}F_{A}\in L_{4.1oc}^{2}(adP\otimes P_{-}\wedge^{2}T*M)$ ,

where $P_{-}$ denotes the projection to the anti-self dual parts. Let $\hat{\mathfrak{m}}_{l}=\rho^{-1}(0)/\mathcal{G}_{l}$

and $\overline{\pi}$ : $\hat{\mathfrak{m}}_{l}\rightarrow \mathcal{E}$ be the projection.
Now the manifold $S^{1}\times R^{3}$ is end periodic (Proposition 1 in Section 2). Then

our main result is

THEOREM. For a Baire set of $\varphi\in \mathcal{E}$ , the moduli space $\overline{\pi}^{-1}(\varphi)\cap \mathcal{A}_{l}^{*}/\mathcal{G}_{l}$ is a
smooth manifold of dimension 81–3.

We can choose a connection $A_{0}$ for each 1 (Proposition 9 in Section 3), and
can replace the Sobolev space $L_{5}^{2}$ . loc by $L_{2}^{2}$ . loc (Remark 1 in Section 4). Almost
all arguments in [11] are fitted with the case, $M=S^{1}\times R^{3}$ except for the admis-
sibility which is (1) $\pi_{1}(W)$ does not represent non trivially $:_{11}SU(2),$ (2) $H_{1}(N$ ;
$R)=H_{2}(N;R)=0,$ (3) the intersection pairing on $H_{2}(Y;R)$ be positive definite.
C. H. Taubes proved in [11].

THEOREM (1.4 in [11]). Let $M$ be a smooth, end-periodic and admissible 4-

manifold. Suppose that $\pi_{1}(M)$ has only the trivial representation into $SU(2)$ . If
$H_{2}(K;Z)$ has positive definite, unimodular intersection pairing, then this pairing

is diagonalizable over Z. If the intersection pairing on $H_{2}(K;Z)$ is only known
to be positive definite, then the intersection pairing on $H_{2}(M;Z)$ is unimodular
and diagonalizable over $Z$ in the following sense: There is a sequence of free
abelian groups $\Lambda_{-1}\subset\Lambda_{0}\subset\Lambda_{1}\subset\cdots\subseteqq H_{2}(M;Z)$ with $\lim_{\rightarrow}\Lambda_{n}=H_{2}(M;Z)$ such that (1)

$\Lambda_{-1}\otimes R=H_{2}(K;R)$ and (2) the intersection pairing on $\Lambda_{n}$ is unimodular and
diagonalizable.

Further he obtained the striking

THOREM (1.1 in [11]). There exists an uncountable family of diffeomorphism
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classes of oriented 4-manifolds which are homeomorphic to $R^{4}$ .

In [11] the admissibility is used in many parts. Then our main task is to

deduce substitutes directly from the topological structure of the manifold instead
of the admissibility condition. The main theorem is proved in Section 4.

The authors wish to thank to Professor M. Itoh for his advice.

2. Preparations

PROPOSITION 1. The space $M=S^{1}\times R^{3}$ is end-periodic.

PROOF. Let $D_{3/2}^{3}$ be the disc of radius 3/2 in $R^{3}$ . Then using the follow-
ing diffeomorphism

$S^{1}\times(R^{3}-D_{3/2}^{3})\approx S^{1}\times S^{2}\times(3/2, \infty),$ $(x, y)\rightarrow(x, y/\Vert y\Vert, \Vert y\Vert)$

we see that the space $S^{1}\times R^{3}$ admits a decomposition as a smooth manifold,

$ S^{1}\times D_{3/2}^{3}\cup(S^{1}\times S^{2}\times(1,3))\cup(S^{1}\times S^{2}\times(2,5))\cup\cdots$

$\cup(S^{1}\times S^{2}\times(2n, 2n+3))\cup(S^{1}\times S^{2}\times(2n+2,2n+5))\cup\cdots$ .

Now for our argument we put

$K=S^{1}\times D_{3/2}^{3}\cup S^{1}\times S^{2}\times(1,3)$ ,

$N=S^{1}\times S^{2}\times(2,3)=N_{-},$ $W_{0}=S^{1}\times S^{2}\times(2,5),$ $N_{+}=S^{1}\times S^{2}\times(4.5)$ ,

and so on, and put further End $M=W_{0}\cup W_{1}\cup\cdots=S^{1}\times S^{2}\times(2, \infty)$ .

PROPOSITION 2. Any principal $SU(2)$-bundle over $M$ is trivial.

PROOF. The identity map $1_{M}$ : $M\rightarrow M$ is homotopic to the projection $ S^{1}\times$

$R^{3}\rightarrow S^{1}X(0)$ , and the space $S^{1}\times R^{3}$ yields the Lindel\"of property. Then a principal
$SU(2)$-bundle $P\rightarrow M$ is isomorphic to the bundle $(P|_{S1})\times R^{3}$ , where $P|_{S1}$ is the
restriction of the bundle $P\rightarrow M$ onto the subspace $S^{1}\times(0)\subset S^{1}\times R^{3}$ . Since the
group $SU(2)$ is connected, the bundle $P|_{S1}$ is trivial.

PROPOSITION 3. Let $[S^{1}\times S^{2}, SU(2)]$ be the set of homotopy classes. Then
we have a $bi_{J^{ection}}$

$[S^{1}\times S^{2}, SU(2)]-\pi_{3}(SU(2))\cong Z$ integers.

PROOF. By 8.9 Satz in [2], the following sequence is exact:

$*-[S^{1}\vee S^{2}, SU(2)]-[S^{1}\times S^{2}, SU(2)]-[S^{1}\wedge S^{2}, SU(2)]-*$ .

Thus this proposition is obtained.
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Let $Y$ be a compact oriented 4-manifold which is obtained from $W_{0}$ by
identify $N_{+}$ with $N_{-}$ via the obvious map. Then $Y=S^{1}\times S^{2}\times S^{1}$ . Let $[\gamma]$ be
the cohomology class which corresponds to the last circle $S^{1}$ .

PROPOSITION 4. The Euler-characteristic and the signature of $Y$ is zero,

and the map $[\gamma]\cup:H_{dR}^{1}(Y)\rightarrow H_{dR}^{2}(Y)$ has the l-dimensional kernel $\{\lambda[\gamma]:\lambda\in R\}$ ,

where $H_{dR}$ denotes the deRham cohomology.

PROOF. $\chi(Y)=1-2+2-2+1=0$ .

The signature is the signature of $\{H^{2}(Y)\ni x\rightarrow(x\cup x)[Y]\in Z\}$ , then it is
zero. Let $\gamma^{\prime}$ be the cohomology class which corresponds to the first circle $S^{1}$ .
Then $[\gamma]\cup[\gamma]=0$ and $[\gamma^{\prime}]\cup[\gamma]$ corresponds to $S^{1}\times(pr)\times S^{1}$ .

3. Index calculations

The manifold $Y$ admits a Z-cover $\tilde{Y}=\cdots\cup W_{-1}\cup W_{0}\cup W_{1}\cup\cdots$ , with the pro-
jection $\pi$ : $\tilde{Y}\rightarrow Y$ . For an end-periodic bundle $E\rightarrow M$ , and $1\leqq p\leqq\infty,$ $ 0\leqq k<\infty$ ,

$\delta\in R,$ $L^{p_{k\delta}},(E)$ denotes the completion of $C_{0}^{\infty}(E)$ in the norm

$\Vert s\Vert_{L^{p_{k.\delta}}}=[\int_{M}dvol(e^{\tau\delta}\Sigma_{f=0}^{k}|\nabla^{(j)}s|^{p}]^{1/p}$ ,

where $\tau$ : End $ M\rightarrow[0, \infty$ ) is the smooth step function.

PROPOSITION 5. For all but a discrete set of $\delta\in R$ and $k\geqq 4$ , the complex

$d$ $P_{-}d$

$0\rightarrow L^{P_{k+2.\delta}}(M)\rightarrow L^{P_{k+1.\delta}}(T^{*}M)-L^{P_{k\delta}},(P_{-}\wedge^{2}T*M)\rightarrow 0$

is Fredholm.

PROOF. The proposition 4 in [11] can be applied to our case without any
change.

PROPOSITION 6. For the anti-self-dual deRham complex in Proposition 5,

$H^{0}(L_{\delta}^{2}(d, P_{-}d))=ker(d;L_{k+a.\delta}^{2}(M)-L_{k+1.\delta}^{2}(T^{*}M))=0$ .

PROOF. For $\delta\geqq 0$ , the constants are not in $L_{\delta}^{2}$ .

PROPOSITION 7. $H^{1}(L_{\delta}^{2}(d, P_{-}d))=0$ for $k>2$ .

PROOF. By the Sobolev imbedding $L_{k+\iota.\delta}^{2}\subset L_{k+1}^{2}\subset C^{l}$ for $k+1-2>1$ , and for
$w\in kerP_{-}d$ , the equality
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$0=\int_{M}|P_{-}dw|^{2}=(1/2)\int_{M}|dw|^{2}$

shows that $dw=0$ on $M$ . Here the second equality is obtained as follows:

$|P_{-}dw|^{2}=((1/2)(1-*)dw)$ A $((1/2)(*-1)dw)$

and
$dw\wedge dw=d(dw\wedge w)$ , $(*dw)\wedge(*dw)=(*dw, dw)\omega_{\rho}=dw\wedge dw$ ,

$\omega_{\rho}$ is a volume form. Now we consider the integral $J_{\overline{K}_{n}}^{d(dw\wedge w)}$

(

where $\overline{K}_{n}$

denotes the closure of $K_{n}=K\bigcup_{N}W_{0}\bigcup_{N}\cdots\bigcup_{N}W_{n}$ . Then the integral is equal to

$\int_{\delta\overline{K}_{n}}dw\wedge w$ which converges to zero as $ n\rightarrow\infty$ . Thus $w$ represents a class $[w]$

$\in H_{dR}^{1}(M;R)$ , and a homomorphism

$r;H^{1}(L_{\delta}^{2}(d, P_{-}d))-H_{dR}^{1}(M;R)$

is obtained. If $w\sim 0$ in $C^{1}(M;R)$ , then there exists a $z\in C^{2}(M;R)$ such that
$w=dz$ . Now the lemma 5.2 in [11] can be applied,

$\int_{M}e^{\tau\delta}|z-\overline{z}|^{2}<Z\int_{M}e^{\tau\delta}|w|^{2}<\infty$ for some $\overline{z}\in R$ .

Then $d(z-\overline{z})=w$ and $dw=0$ , therefore $w\sim 0$ in $L_{k+1,\delta}^{2}(T^{*}M)$ . Hence $r$ is monic.
Any class $[w]\in H^{1}(L_{\delta}^{2}(d, P_{-}d))$ can be represented as $w=fd\theta+\cdots,$ $\theta$ is the
local coordinate in the circle $S^{1}$ . Then

$\int_{M}e^{\tau\delta}|f|^{2}<\infty$ and $f-0$ as $\tau-\infty$ . (1)

On the other hand $H_{dR}^{1}(M;R)\cong R$ is generated by the class $[d\theta]$ . If $w-d\theta=$

$(\partial g/\partial\theta)d\theta+\cdots$ , then $(f-1)d\theta=g_{\theta}d\theta,$ $g_{\theta}=(\partial g/\partial\theta)$ . Therefore $g_{\theta}\rightarrow-1$ as $\tau\rightarrow\infty$

by (1). Now $g$ is a periodic function of $\theta$ and so $g_{\theta}$ can be expanded as a
Fourier series

$g_{\theta}=\Sigma_{n\approx 1}^{\infty}(a_{n}\cos n\theta+b_{n}\sin n\theta)$ . (2)

Here the constant term is zero. Therefore the Fourier series can not converge
to the constant function $-1$ . This is a contradiction. Thus $r$ is not surjective

and the proposition is proved.

Now we proceed to compute the second cohomology group $H^{2}(L_{\delta}^{2}(d, P_{-}d))$ .
The homomorphism $r_{n}$ ; $H^{2}(L_{\delta}^{2}(d, P_{-}d))\rightarrow H_{0.dR}^{2}(K_{n} ; R)$ , (5.13) in [11] can be
defined by the property $H_{2}(K_{n} ; R)=0$ instead of the condition $H^{2}(N;R)=0$

which is one of the admissiblity condition in [11]. For our case we have to

choose $k$ with $k-2>1,$ $i$ . $e$ . $k>3$ . The lemmas 5.2, 5.4, 5.5, 5.8 and 5.9 for the
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proof of the lemma 5.3 in [11] can be obtained in our case without the admis-
sibility condition except for the proof of the lemma 5.9. So we state it again
and prove.

LEMMA. Consider the complex

$0-C^{\infty}(Y)C^{\infty}(T^{*}Y)C^{\infty}(P_{-}\wedge^{2}T*\}^{\prime})-0\underline{d_{z}}\underline{P_{-}d_{z}}$

where $z\in C$ obeys $|z|=1$ and $d_{z}f=df+z^{l}dz^{-t}\wedge f$ , is a l-form on Y. Then
coker $(P_{-}d_{z})=0$ .

PROOF. The manifold $Y=S^{1}\times S^{2}\times S^{1}$ has a positive scalar curvature, and
is conformally flat. Then it is a self-dual 4-dimensional manifold (Example 1
in the section 1 of [1]). Now $d_{z}$ is a covariant derivative with respect to a
connection $(-\log z)dt$ . Then its curvature is zero and so the connection is
self-dual. Thus the second cohomology of the complex vanishes.

PROPOSITION 8. $H^{2}(L_{\delta}^{2}(d, P_{-}d))=0$ for le $\geqq 4$ .

PROOF. By the Lemma 5.4 in [11], the homomorphism $r_{n}$ is injective for
sufficiently large $n$ . By making use of Poincar\’e duality, $H_{0.dR}^{2}(K_{n})\cong H_{n}(K_{n})=0$ .
Then by the Lemma 5.6 in [11], we obtained the proposition.

4. Gauge theory and Moduli space

By Proposition 2 in the section 1, any $SU(2)$-principal bundle over $M$ is
isomorphic to the product bundle $M\times SU(2)$ . We have in particular $ P|_{EndM}\cong$

$\pi^{*}(Y\times SU(2)),$ $i$ . $e$ . it is end-periodic, where $\pi$ : End $M\rightarrow Y$ is the projection.

PROPOSITION 9. For each integer 1, there exists a principal $SU(2)$-bundle $P$

and an end-periodic connection $A_{0}$ on $P$ which is isomorphic over End $M$ to the

product connection on End $M\times SU(2)$ satisfying

$p\equiv(1/8\pi^{2})\int_{M}tr(F_{A_{0}}\wedge F_{A_{0}})=l$ .

PROOF. As in the proof of the Lemma 7.1 in [11], consider a compact 4-
manifold $Q$ . In our case the manifold $Q$ is $S^{1}\times D_{+}^{3}\cup S^{1}\times D_{-}^{3}$ . Here we refer
to the construction of the definition 4.2 in [10]. Let $\pi;F_{Q}\rightarrow Q$ be the projec-

tion of the orthonormal frame bundle, and $(f_{i})_{1\leq i\leq l}$ be a set of orthonormal
frames at $l$ distinct points in $S^{1}\times D_{+}^{3}$ . We choose sufficiently small Gaussian
coordinate neighborhoods $U_{i}$ of $\pi(f_{i})$ such that $U_{i}\subset S^{1}\times D_{+}^{3}$ for all $i$ , and put
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$U_{0}=Q-\bigcup_{i-1}^{\iota}\pi(f_{i})$ . Then $\bigcup_{i=0}^{l}U_{i}$ is a covering of $Q$ , and by the construction
due to Taubes we obtain a bundle $P(y)$ which satisfies the relation $-c_{2}(P(y))$

$=1$ , where $y$ denotes an l-tuple $((f_{i}, \lambda_{i})_{i=1}^{l})$ for some positive numbers $\{\lambda_{i}\}$ . By

the relation

$(1/4\pi^{2})\int_{Q}tr(F_{A_{0}}\wedge F_{A_{0}})=\int_{Q}\{c_{1}^{2}(P(y))-2c_{2}(P(y))\}$ ,

$p$ is equal to $l$ , where $A_{0}$ denotes the connection which is given by the defini-
tion 4.2 above. Since $ A_{0}=\theta+\Sigma_{i-1}^{\iota}\psi_{f_{i}}^{*}(\beta,_{i}\lambda w_{\lambda_{i}}^{2})(\theta$ is the flat product connec-
tion) gives the product connection in $S^{1}\times D^{\underline{3}}$ , we can replace $S^{1}\times D^{\underline{3}}$ by End $M$ .
Thus the proposition is proved.

PROOF OF THEOREM. The smooth manifold structure is obtained by the
argument in sections 6, 7 and 8 in [11]. The manifold $Q$ in the proof of Pro-
position 9 is self-dual and the connections on $Q$ is self-dual and so, on the

manifold $Q$ the index of the elliptic operator $P_{-}(g_{0})(\varphi^{-1})^{*}d_{A}+e^{-\iota\delta}d_{A^{*}}e^{\tau\delta}$ is 81,

where we use the equations $\chi(Q)=\tau(Q)=0$ .
On the other hand, by Propositions 6, 7, 8 in section 3, the index of the

anti-self-dual deRham complex

$d$ $P_{-}d$

$0\rightarrow L_{k+2.\delta}^{2}(M)\rightarrow L_{k+1.\delta}^{2}(T^{*}M)-L_{k.\delta}^{2}(P_{-}\wedge^{2}T^{*}M)\rightarrow 0$

is zero. Let $\uparrow\hat{\mathfrak{n}}_{l}^{\prime}=\rho^{-1}(0)/\mathcal{G}_{l}^{\prime}$ , where $\mathcal{G}_{l}^{\prime}=\{g\in \mathcal{G}_{l} ; r(g)=1\}$ [11], and $\pi^{\prime}=$ : $\hat{\mathfrak{m}}_{l}^{\prime}\rightarrow \mathcal{E}$ be
the projection. By the excision property of the index, the index of the elliptic

operator above is just the dimension of the manifold $(\overline{\pi}^{\prime})^{-1}(\varphi)\bigcap_{\llcorner}A_{l}^{*}/\mathcal{G}_{l}^{\prime}(c$ . $f$ . the
proof of the Lemma 8.4 in [11]). Since the projection $(\overline{\pi}^{\prime})^{=1}(\varphi)\cap A_{\iota}^{*}/\mathcal{G}_{l}^{\prime}\rightarrow\overline{\pi}^{-1}(\varphi)$

$\bigcap_{\iota}A_{l}^{*}/\mathcal{G}_{l}$ is a principal $SO(3)$-bundle ( $c$ . $f$ . the proof of the Lemma 7.3 in [11]),

the dimension of our moduli is $8l-3$ .

REMARK 1. By the Proposition $(4.2.16)in[3]$ , our theorem holds for $k=2$ .
In fact we can use the regularity of the linear elliptic operator $e^{-\tau\delta}d_{B^{*}}e^{\tau\delta}+$

$P_{-}d_{B}$ , where $B$ is a smooth connection and so the operator has smooth co-
efficients.

REMARK 2. Existence of self-dual connections.

Using the connection $A_{0}$ in Proposition 9, we will get $a\in L_{3,1oc}^{2}(adP\otimes T^{*}M)$

such that $A=A_{0}+a$ is self-dual. It suffices then to solve the equation

$(P_{-}D_{A_{0}})^{*}D_{A_{0}}u+P_{-}(*D_{A_{0}}u\wedge*D_{\Lambda_{0}}u)=-P_{-}F_{A_{0}}$ ($(3.4)$ in [9], (2.2) in [6]).
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By the consideration in the section 4 of [9], the solution is constructed induc-
tively. The first step is to solve $P_{-}D_{A_{0}}(*D_{A_{0}}u)=-P_{-}F_{A_{0}}$ . Now $A_{0}=0$ on the
half $S^{1}\times D_{-}^{3}$ in $Q$ , then we can assume that $u_{1}=0$ on the half $S^{1}\times D^{\underline{3}}$ . For the
equations

$P_{-}D_{A_{0}}(*D_{A_{0}}u_{k})=2\sum_{j=1}^{k-2}P_{-}(*D_{A_{0}}u_{j}\wedge*D_{A_{0}}u_{j})-P_{-}(*D_{A_{0}}u_{k-1}\wedge*D_{A_{0}}u_{k-1})$ ,

we can assume that $u_{k}=0$ on the half $S^{1}\times D^{\underline{3}}$ .
Next we replace the half $S^{1}\times D^{\underline{3}}$ by End $M$ . Then

$\int_{M}\{\sum_{l\approx 0}^{4}|\nabla_{A_{0}}^{(i)}a|^{2}\}=\int_{Q}\{\sum_{l=0}^{4}|\nabla_{A_{0}}^{(i)}a|^{2}\}<\infty$ .

Therefore by the argument in sections 5\sim 9 of [9], it can be shown that $A$ is
self-dual.

REMARK 3. Reducible self-dual connections.

Let $A$ be a reducible connection on an $SU(2)$-bundle over the space $S^{1}\times R^{3}$ .
Then $A$ reduces to an $S(U(1)\times U(1))$-connection, and the curvature $F_{A}$ has the

form $\left\{\begin{array}{ll}d\alpha & 0\\0 & -d\alpha\end{array}\right\}$ , where $ d\alpha$ is a 2-form. Now a self-dual connection is a

Yang-Mills connection. Therefore $ d\alpha$ is harmonic. Since $H^{2}(S^{1}\times R^{3}, R)=0$ ,
$F_{A}=0$ and so the connection is flat. The moduli space of reducible flat connec-
tions is just the space $Hom(\pi_{1}(S^{1}), S(U(1)\times U(1))/AdSU(2)$ , which can be
identified with a one dimensional manifold $U(1)/Z_{2}$ , the upper hemicircle $(c$ . $f$ .
the Lemmas 6.2 and 6.5 in [6]).
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Added in proof. In the proof of the lemma in Section 3, we assume that
the manifold $Y=S^{1}\times S^{2}\times S^{1}$ is conformally flat, but this is not clear. Then we
give here a correct proof. The twist map $S^{1}\times S^{2}\times S^{1}\rightarrow S^{2}\times S^{1}\times S^{1}$ is orientation
preserving. We give on the projective line $S^{2}$ the Fubini-Study metric, which
coincides with the metric obtained by the stereographic projection onto Eucli-
dean plane $R^{2}$ . On the other hand we introduce the flat metric on the torus
$S^{1}\times S^{1}$ . Then we obtain a product K\"ahler metric on the manifold $Y$ and its
scalar curvature is positive. Now we apply the Theorem 3.1 in [M. Itoh, On
the moduli space of anti-self-dual Yang-Mills connections on Kahler surfaces,
Publ. RIMS Kyoto Univ. 19(1983), 15-32]. Then for each irreducible ASD con-
nection on the Kahler surface $Yh^{2}=0$ . Now we reverse the orientation on $Y$ ,
then for the complex in the lemma the second cohomology vanishes.
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