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\S $0$ . Introduction

The concept of ideal boundary of Hadamard manifolds was introduced by
Eberlein and O’Neill [3] in 1973, which had marked a milestone in the study
of the geometry of noncompact Riemannian manifolds. Since then, it has been
utilized in various fields of research on Hadamard manifolds.

Subsequently, the concept of ideal boundary was also defined on other class-
es of Riemannian manifolds. One is done by Kasue [6] on asymptotically
nonnegatively curved manifolds, and the other by Shioya [9] [10] on complete
open surfaces admitting total curvature.

Based on their works, it is an interesting problem to study to what extent
the structure of manifolds is determined by information about their ideal
boundaries. In our previous papers, we characterized in [8] the rigidity of
product manifolds by information on ideal boundary, and in [1] the Euclidean
factor of a Hadamard manifold in terms of the polar points on ideal boundary.

Recently, Kubo [7] proved that given two connected complete oriented and
noncompact Riemannian 2-manifolds with finite total curvature, if there is a
Hausdorff approximation between them, then their ideal boundaries are isometric.
This means that if ideal boundaries are not isometric, then there is no Hausdorff
approximation between their underlying open surfaces.

In this paper, for other two classes of Riemannian manifolds mentioned
above, we shall study the same rigidity problem on ideal boundaries by a
different method from Kubo’s, and prove the following theorems.

THEOREM A. Let $M$ and $N$ be Hadamard manifolds with ideal boundaries
$M(\infty)$ and $N(\infty)$ respectively, which are assumed to be compact with respect to
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the Tits-topology. If there exists a Hausdorff approximation from $M$ to $N$ , then
( $M(\infty)$ , Td) is isometric to ( $N(\infty)$ , Td).

THEREM B. Let $M$ and $N$ be manifolds of asymptotically nonnegative cur-
vature with ideal boundaries $M(\infty)$ and $N(\infty)$ respectively. If there exists a

Hausdorff approximation from $M$ to $N$, then ( $M(\infty)$ , Td) is isometric to $(N(\infty)$ ,

Td).

It should be noted that the ideal boundaries treated in both Kubo’s theorem
and our Theorems $A,$ $B$ are compact with respect to the Tits-topology. The
result seems to remain true even in the case when ideal bonndaries are non-
compact, but we shall need another approach to prove it.

\S 1. Definitions

We shall first summarize the definitions concerning ideal boundary for
Hadamard manifolds and for manifolds of asymptotically nonnegative curvature.

For details, we refer to [2] for the former and to [6] for the latter case. In

what follows, geodesics are assumed to be parametrized by arc length unless

otherwise stated.
Let $M$ be a Hadamard manifold, which is a simply connected complete

Riemannian manifold of nonpositive curvature. Two geodesic rays $\gamma_{1},$ $\gamma_{2}$ : $[0$ ,

$\infty)\rightarrow M$ are said to be asymptotic if the distance function $t\rightarrow d_{M}(\gamma_{1}(t), \gamma_{2}(t))$ is

bounded from above for all $t\geqq 0$ . Then we define the ideal boundary $M(\infty)$ of
$M$ as the set of all asymptotic classes of geodesic rays in $M$ .

The Tits metric on this boundary is defined in the following manner. For
given points $x\in M$ and $z\in M(\infty)$ , we have a unique geodesic ray $\gamma_{xz}$ in $M$

emanating from $x$ , whose asymptotic class $\gamma_{xz}(\infty)$ is $z$ . Then the angle $\angle(z, w)$

on $M(\infty)$ is defined by

$\angle(z, w)=\sup_{x\in M}\angle_{x}(z, w)$ ,

where $\angle_{x}(z, w)=\angle(\gamma_{xz}^{\prime}(0), \gamma_{xw}^{\prime}(0))$ . The Tits metric $Td(\cdot, )$ is the interior
metric $\angle_{i}$ induced from this angle.

Now we assume that $M$ is a manifold of asymptotically nonnegative curva-
ture, that is, the sectional curvature $K_{\lambda I}$ of $M$ satisfies $K_{M}\geqq-k\circ\gamma_{0}$ , where $r_{0}$

is the distance function from a fixed point $0\in M$ , called the base point of $M$,

and $k(t)$ is a nonnegative monotone nonincreasing function on $[0, \infty$ ) such that

the integral $\int_{0}^{\infty}t\cdot k(t)dt$ is finite.
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Let $p$ be an arbitrarily fixed point of $M$ . For sufficiently large $t$ , the metric
sphere $S_{t}(p)$ around $p$ of radius $t$ is a Lipschitz hypersurface of $M$ consisting
of $k$ connected components, where $k$ is the number of the ends of $M$ . On
$s_{l}(p)$ , we introduce the interior metric, denoted by $d_{p,l}$ , induced from the
metric $d_{M}$ restricted on $S_{t}(p)$ .

Two rays $\sigma$ and $\gamma$ are called equivalent if $\lim_{t\rightarrow\infty}d_{M}(\sigma(t), \gamma(t))/t=0$ , and
then denoted by $\sigma\sim\gamma$ . The ideal boundary $M(\infty)$ of $M$ is, by definition, the
set of all equivalence classes of $\sim$ . We write $\sigma(\infty)$ for the equivalence class
of $\sigma$ . For any fixed point $p\in M$, we define the Tits metric Td on $M(\infty)$ by

$(*)$ $Td(\sigma(\infty), \gamma(\infty)):=\lim_{t\rightarrow\infty}\frac{d_{p,t}(\sigma\cap S_{t}(p),\gamma\cap S_{t}(p))}{t}$ .

Then Td is well-defined on $M(\infty)$ and is independent of the choice of $p$ . (cf.

Proposition 2.1 in [6])

REMARK. The equivalence relation $\sim$ is a natural extension of the asymp-
totic rlation. We can see that on Hadamard manifolds the equivalence relation
$\sim$ coincides with the asymptotic relation. Moreover, the equation $(*)$ defining
the metric Td for asymptotically nonnegatively curved manifolds is also valid
for the metric Td for Hadamard manifolds.

Next, following [4], we shall recall Hausdorff convergence. The definition
in [4] is slightly different from the original one introduced by Gromov in [5].

However this is more tractable in our discussion.
Let $\mathfrak{M}\mathfrak{G}X$ denote the set of all isometry classes of metric spaces. For any

isometry class $X\in \mathfrak{M}\mathfrak{G}\mathfrak{T}$ , we denote a representative metric space of $X$ also
by the same symbol $X$ . For $X,$ $Y\in \mathfrak{M}\mathfrak{G}\mathfrak{T}$ , a (not necessary continuous) map
$\phi$ : $X\rightarrow Y$ is said to be a $\Delta$-Hausdorff approximation if $\phi$ satisfies the following
conditions:

(1) The $\Delta$-neighborhood $B_{\Delta}(\phi(X))=\{x\in Y|d(x, \phi(X))<\Delta\}$ of $\phi(X)$ in $Y$ is
equal to $Y$ .

(2) For any points $x,$ $y\in X$ , we have

$|d_{X}(x, y)-d_{Y}(\phi(x), \phi(y))|<\Delta$ .

The Hausdorff distance $d_{H}(X, Y)$ between $X$ and $Y$ is defined to be the in-
finimum of the positive numbers $\Delta$ such that there exist $\Delta$-Hausdorff approxi-
mations from $X$ to $Y$ and from $Y$ to $X$ .

We should note that $d_{H}$ is not a metric, but it satisfies that for $X,$ $Y,$ $ Z\in$

$\mathfrak{M}\mathfrak{G}\mathfrak{T}$
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$d_{JJ}(X, Z)\leqq 2\{d_{H}(X, Y)+d_{J},(\}^{\prime},$ $Z$ )}.

Hence $d_{H}$ defines a uniform structure on $\mathfrak{M}\mathfrak{G}_{\wedge}^{\pi}$ .
Now let $\mathfrak{C}\mathfrak{M}\mathfrak{G}\mathfrak{T}$ denote the set of all isometric classes of compact metric

spaces. Then, with respect to the uniform topology defined by $d_{H}$ , the follow-
ing holds.

THEOREM 1.1. (Theorem 1.5 in [4], also cf. Proposition 3.6 in [5]) $\mathfrak{C}\mathfrak{M}\mathfrak{G}\mathfrak{T}$

is Hausdorff and complete.

The Hausdorffness means that the uniform structure on $\mathfrak{C}\mathfrak{M}\mathfrak{G}_{\sim^{Y}}^{c}$ is metri-
zable, and that we may treat $d_{H}$ as if it is a distance function.

On the other hand, in the noncompact case, we need to study the category

of pointed and locally compact metric spaces.
We denote by $\mathfrak{M}\mathfrak{G}\mathfrak{T}_{0}$ the set of all isometry classes of pointed metric spaces

(X, p) with a base point $p\in X$ such that the closure $\overline{B}_{R}(p, X)$ of R-neighborhood

of $p$ in $X$ is compact for every $R>0$ . Let (X, $p$), $(Y, q)\in \mathfrak{M}\mathfrak{G}\mathfrak{T}_{0}$ and $\phi:(X, p)$

$\rightarrow(Y, q)$ be a pointed map, namely $\phi(p)=q$ . We say that $\phi$ is a $\Delta$-pointed

Hausdorff approximation if $\phi(\overline{B}_{1/\Delta}(p, X))\subset\overline{B}_{\iota/\Delta}(q, Y)$ and if the restriction of $\phi$

on $\overline{B}_{1/\Delta}(p, X)$ into $\overline{B}_{1/\Delta}(q, Y)$ is a $\Delta$-Hausdorff approximation. Then the pointed

Hausdorff distance $d_{p.H}((X, p),$ $(Y, q))$ is also defined to be the infimum of the
numbers $\Delta$ such that there exist $\Delta$-pointed Hausdorff approximations from (X,

p) to $(Y, q)$ and from $(Y, q)$ to (X, $p$).

It should be noted that $\mathfrak{M}\mathfrak{G}\mathfrak{T}_{0}$ is also Hausdorff and complete, but the limit
space depends on the choice of base points.

\S 2. The case of Hadamard manifolds

Let $M$ be a Hadamard manifold and $d_{M}$ the distance function on $M$ . If the

ideal boundary of $M$ is compact (with respect to the Tits-topology), then there
exists the tangent cone of $M$ at infinity, that is, the pointed Hausdorff limit
of pointed spaces $((M, (1/t)d_{M}),$ $p$ ) exists for $ t\rightarrow\infty$ , and is isometric to the cone
of $M(\infty)$ . We shall first prove this fact and make use of it in the proof of
Theorem A.

We recall the definition of the cone $(\mathfrak{C}(M(\infty)), 0)$ of $M(\infty)$ with vertex $0$ .
For a pair of points $(s, w),$ $(t, z)\in[0, \infty)\times M(\infty)$ , we set

$\delta((s, w),$
$(t, z)):=\sqrt s^{2}+t^{2}-2st\cos(\tilde{T}d(w, z))$ ,

where $\tilde{Td}(w, z):=\min\{\pi, Td(w, z)\}$ . Using the function $\delta$ , we can define an
equivalence relation as follows:
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$(s, w)\sim(t, z)=\delta((s, w),$ $(t, z))=0$ .

Then it is immediate that $\delta$ gives rise to a distance function on the quotient
space $\{[0, \infty)\times M(\infty)\}/\sim$ . This metric space $(\{[0, \infty)\times M(\infty)\}/\sim,$ $\delta$) is called
the cone of $M(\infty)$ and is denoted by $\mathfrak{C}(M(\infty))$ . We mean by the vertex of
$\mathfrak{C}(M(\infty))$ the equivalence class $[(0, z)](z\in M(\infty))$ . Then the following holds:

PROPOSITION 2.1. If the ideal boundary is compact (with respect to the Tits-
topology), then for any fixed point $p$ on $M$ the sequence of pointed metric spaces
$((M, d_{l}^{M}),$ $p$ ) converges to the cone $(\mathfrak{C}(M(\infty)), 0)$ of $M(\infty)$ with vertex $0$ in the
sense of pointed Hausdorff distance:

$\lim_{t\rightarrow\infty}((M, d_{l}^{M}),$
$p$ ) $=(\mathfrak{C}(M(\infty)), 0)$ ,

where $d_{l}^{M}=(1/t)d_{M}$ .

PROOF. Let $R$ be an arbitrary large number. Let $\overline{B}_{R}^{t}(p)$ denote the closed
geodesic ball around $p$ with radius $R$ in $M_{t}$ $:=(M, d_{l}^{M})$ . Then we can identify
$\overline{B}_{R}{}^{t}(p)$ with the closed disk $\overline{B}_{R}=\{v\in T_{p}M|\Vert v\Vert\leqq R\}$ in $T_{p}M$ , and $\overline{B}_{R}$ with the
closed ball $\overline{B}_{R}(0)$ in $\mathfrak{C}(M(\infty))$ as follows:

$T_{p}M\supset\overline{B}_{R}\ni v-\gamma_{v}(r)\in\overline{B}_{R}^{l}(p)\subset M_{t}$ ,

$T_{p}M\supset\overline{B}_{R}\ni v-[(\Vert v\Vert, \gamma_{v/\Vert v\Vert}(\infty))]\in\overline{B}_{R}(0)\subset \mathfrak{C}(M(\infty))$ .

The metric on $\overline{B}_{R}$ induced from $(\overline{B}_{R}^{t}(p), d_{t}^{M})$ or $(\overline{B}_{R}(0), \delta)$ through this identi-
fication is also denoted by the same symbol $d_{l}^{M}$ or $\delta$ , respectively.

It is known in [2] that the sequence $\{d_{t}^{M}\}$ converges to the metric $\delta$ . We
remark that the sequence $\{d_{l}^{M}\}$ restricted on $\overline{B}_{R}$ converges uniformly to the
metric $\delta$ on $\overline{B}_{R}$ , where $\overline{B}_{R}$ is equipped with the standard metric.

In fact, since $\overline{B}_{R}$ is homeomorphic to $(\overline{B}_{R}^{t}(p), d_{l}^{M}),$ $d_{t}^{M}$ is a continuous func-
tion on $\overline{B}_{R}\times\overline{B}_{R}$ . On the other hand, it is proved in Proposition 2.1 of [8] that
($M(\infty)$ , Td) is compact if and only if the unit tangent sphere is homeomorphic

to ($M(\infty)$ , Td). Therefore $\overline{B}_{R}$ is homeomorphic to $\overline{B}_{R}(0)$ . Hence $\delta$ is also con-
tinuous on $\overline{B}_{R}\times\overline{B}_{R}$ . Since the sequence $\{d_{t}^{M}\}$ of monotone non-decreasing con-
tinuous functions converges to a continuous function $\delta$ on the compact set
$\overline{\dot{B}}_{R}\times\overline{B}_{R}$ , the convergence is uniform.

This means that

$\epsilon_{R}(t):=\max_{(u.v)\in\overline{B}_{R}\times\overline{B}_{R}}|\delta(u, v)-d_{t}^{M}(u, v)|$

converges to $0$ as $t$ tends to $\infty$ .
Now for any $\epsilon>0$ , let $ R=1/\epsilon$ . Then there is a number $t_{\epsilon}$ such that $\epsilon_{R}(t)$
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$<\epsilon$ for all $ t>t_{\vee}\circ\cdot$ Since the map

$\Phi_{l}$ : $(M_{t}, p)-(\mathfrak{C}(M(\infty)), 0):\Phi_{l}(x)=[(d_{l}^{M}(p, x), \gamma_{px}(\infty))]$ ,

where $\gamma_{px}$ denotes the geodesic emanating from $p$ through $x$ , is an $\epsilon$ -pointed

Hausdorff approximation for $t>t_{\epsilon}$ , this completes the proof. $\blacksquare$

REMARK. We can see from the proof that when ($M(\infty)$ , Td) is noncompact,

the sequence $\{((M, d_{t}^{M}), p)\}$ of pointed metric spaces does not converge in the
sense of pointed Hausdorff distance.

In fact, if the sequence converges in this sense, then the sequence $\{d_{t}^{M}\}$ of
the continuous functions on $\overline{B}_{R}\times\overline{B}_{R}$ converges uniformly to $\delta$ . Hence $\delta$ is also

continuous on $\overline{B}_{R}\times\overline{B}_{R}$ . This means that ( $M(\infty)$ , Td) is homeomorphic to a
standard sphere, and hence is compact.

PROOF OF THEOREM A. We assume that a $\Delta$-Hausdorff approximation $\phi$ :
$M\rightarrow N$ is given. Let $p$ be any fixed point of $M$ and $q:=\phi(p)\in N$ .

From Proposition 2.1, there is a sequence of $\epsilon(t)$-pointed Hausdorff approx-
imation $\Phi_{t}$ : $((N, d_{t}^{N}),$ $q$) $\rightarrow(\mathfrak{C}(N(\infty)), 0)$ such that $\epsilon(t)\rightarrow 0$ as $ t\rightarrow\infty$ . If we regard
$\phi$ as a map from $(M, d_{i^{w}})$ to $(N, d_{t}^{N})$ , then $\phi$ is a $\Delta/t$-Hausdorff approximation
and the composite $\Psi_{t}:=\Phi_{l}\circ\phi:((M, d_{t}^{M}),$ $p$ ) $\rightarrow(\mathfrak{C}(N(\infty)), 0)$ is a $((\Delta/t)+2\epsilon(t))-$

pointed Hausdorff approximation. Since $(\Delta/t)+2\epsilon(t)\rightarrow 0$ as $ t\rightarrow\infty$ , it holds that

$\lim_{t\rightarrow\infty}((M, d_{t}^{M}),$
$p$ ) $=(\mathfrak{C}(N(\infty)), 0)$ .

On the other hand, the left side of this equality coincides with $(\mathfrak{C}(M(\infty)), 0)$ ,

and hence $(\mathfrak{C}(M(\infty), 0)$ is isometric to $(\mathfrak{C}(N(\infty)), 0)$ . Since ($M(\infty)$ , Td) is iso-
metric to the metric sphere in $\mathfrak{C}(M(\infty))$ around a vertex $0$ of radius 1 equipped

with the interior metric \’induced from the restriction of $\delta$ , we can conclude
that ($M(\infty)$ , Td) is isometric to ( $N(\infty)$ , Td). $\blacksquare$

To conclude this section, we give an example of Hadamard manifolds whose
ideal boundaries are isometric but no Hausdorff approximation exists between
them.

EXAMPLE. Let $M$ be a Hadamard 2-manifold equipped with a metric given
as $ds^{2}=dr^{2}+f(r)^{2}d\theta^{2}$ , where $(r, \theta)$ is a polar coordinate of $M$ with origin $0_{M}$

and $ f:[0, \infty$ ) $\rightarrow[0, \infty$ ) is a smooth function satisfying
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$\left\{\begin{array}{l}f(0)=0, \int^{\prime}(0)=1, /\prime\prime(0)=0\\f^{\prime\prime}(0)\geqq 0 (foranyt\geqq 0)\\f\prime(t)\equiv 2 (fort\geqq 2).\end{array}\right.$

Let $N$ be a Hadamard 2-manifold with a metric $ds^{2}=dr^{2}+g(r)^{2}d\theta^{2}$ , where $g$

satisfies

$\left\{\begin{array}{l}g(0)=0, g^{\prime}(0)=1, g^{\prime\prime}(0)=0\\g^{\prime}(0)\geqq 0 (foranyt\geqq 0)\\g\prime(t)=2-\frac{1}{t} (fort\geqq 2).\end{array}\right.$

Then the difference of the girths of the geodesic spheres of radius $t$ , with
center o.lf and $0_{N}$ respectively, equals to $2\pi(f(t)-g(t))$ . This is $2\pi(\log(t/2)+f(2)$

$-g(2))$ for $t\geqq 2$ , and goes to infinity as $ t\rightarrow\infty$ . Hence no Hausdorff approxima-
tion exists between them, but their ideal boundaries are isometric to a circle
of girth $ 4\pi$ .

\S 3. The case of manifolds of asymptotically nonnegative curvature

For an asymptotically nonnegatively curved manifold, its ideal boundary is
always compact and the counterpart of Proposition 2.1 is valid, which can be
seen in the proof of Proposition 2.4 of [6] due to Kasue.

PROPOSITION 3.1. Let $M$ be a manifold of asymptotically nonnegative cur-
vature and $p$ be a base point of M. Then the sequence of pointed metric spaces
$((M, d_{l}^{M}),$ $p$ ) converges to the cone $(\mathfrak{C}(M(\infty)), 0)$ of $M(\infty)$ with vertex $0$ in the
sense of pointed Hausdorff distance:

$\lim_{l\rightarrow\infty}((M, d_{l}^{Jt}),$ $p$ ) $=(\mathfrak{C}(M(\infty)), 0)$ ,

where $d_{t}^{M}=(1/t)d_{M}$ .

It should be noted that the Hausdorff limit in the proposition is independent

of the choice of a base point $p\in M$ .
Theorem $B$ can be proved in a quite similar way to the case of Hadamard

manifolds by applying Proposition 3.1. We also note that for two asymptotically
nonnegatively curved manifolds, there exists no Hausdorff approximation between
them in general, even if their ideal boundaries are isometric. Indeed, the
example of the previous section gives also a counter example in this case.
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\S 4. Appendix

Propositions 2.1 and 3.1 imply that if the ideal boundary is compact, then
we may regard it as the Hausdorff limit of a sequence of geodesic spheres

around arbitrary fixed point equipped with normalized metric. Namely we
have the following

COROLLARY 4.1. Let $M$ be either a Hadamard manifold or a manifold of
asymptotically nonnegative curvature and $d_{M}$ be the distance function on M. If
the ideal boundary is compact (with respect to the Tits-topolgy), then $(M(\infty), 1)$ is
obtained as the Hausdorff limit of normalized geodesic spheres around $p\in M$ :

$\lim_{t\rightarrow\infty}(S_{l}(p), d_{t})=(M(\infty), l)$ ,

where $l(z, w):=\lim_{t\rightarrow\infty}(d_{M}(\gamma_{pz}(t), \gamma_{pw}(t)))/t$ for any $z,$ $w\in M(\infty)$ .

If we consider a sequence of metric spaces $\{(S_{t}(p), (1/t)d_{p.t})\}$ , then we
obtain ($M(\infty)$ , Td) as its Hausdorff limit. Naturally, Td is the interior metric
of $l$ .

From the viewpoint above, when we study the relation between structure
of a manifold and that of its ideal boundary, we may deal with a sequence of
geodesic spheres around any fixed point with normalized metric. Then we
see that a Hausdorff approximation between metric spaces under consideration
induces one between their geodesic spheres.

Indeed, for a $\Delta$-Hausdorff a pproximation $\phi:M\rightarrow N$ between metric spaces
$M$ and $N$, we construct a map $\tilde{\phi}:S_{t}^{M}(p)\rightarrow S_{t}^{N}(q)$ for an arbitrarily fixed point
$p\in M$ and $q=\phi(p)\in N$ as follows:

$\tilde{\phi}(x)=x^{\prime}$ $:=\gamma_{q\phi(x)}\cap S_{l}^{N}(q)$ for $x\in S_{t}^{M}(p)$ ,

where $\gamma_{q\phi(x)}$ is the ray emanating from $q$ through $\phi(x)$ . Then, applying the
triangle inequality, the following lemma is obtained.

LEMMA 4.2. $\tilde{\phi}$ is a $ 5\Delta$-Hausdorff approximation.

Theorems A and $B$ can be obtained also by using the compositions of $\tilde{\phi}$

and maps giving the Hausdorff convergence.
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