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ON THE NEUMANN PROBLEM OF LINEAR HYPERBOLIC
PARABOLIC COUPLED SYSTEMS

By

Wakako DAN

Abstract. We prove the unique existence of solutions to some
mixed problem of hyperbolic parabolic coupled systems with Neu-
mann boundary condition, and we investigate how the constant in
the first energy estimate depends on the coefficients of the opertors.

§1. Introduction.
Let 2 be a domain in an n-dimensional Euclidean R", its boundary [’ being
a C~ and compact hypersurface. Let x=(x,, -+, x,) and ¢ denote a point of
R™ and a time, respectively ; d,=0,=d/dt and 0;,=d/dx; (j=1, ---, n). In this
paper, we consider the following mixed problem ;
( Ap@[Ua)=0%g— A4, x, Diug— Ak, x, 0)0, U x
—AYp(t, x, Dap=1 ult, x) in [0, TIX R,
Ap[a]=Ap(t, x)0.8p— AR, x, 0)lp— ARn(t, x, 0)iin
—Abut, x, Dddn=1pt, x) in [0, TIXQ,
(N) BuO[U]=By{, x, O)iug+Bup(t, x)lip+By{E, x)0.in
=g u(t, x) on [0, TIXT,
Bpt)[]=Bpt, x, Dip+Bput, x, )iu+Bpu(t, x)0.4n
=gp(t, x) on [0, TIxT,

Un(0, x)=uno(x), 0.4u(0, X)=Um(x), #p(0, x)=0py(x) in 2,

where
%I(ty X, a)ﬁH:ai(Ag(t’ X)aﬂj]{), }-I(t: X, a)ﬁH:A}g(t; x)aii}H)

;IP(t: X, a)ﬁP:AbP(t, x)aiﬁPy Alz’H(t, X, a)i}H:A}’JH(t; x)aiajﬁli’
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2, x, 0)0p=0AF(t, x)0,0p)+ Ap(t, x)0:Vp,

Abu@t, x, 0o n=Ay(t, X80,
H@, x, u=v(x)AY(t, x)0;0u, Bpu(t, x, 0)0u=Bhu(t, x)0:0n,
A, x, 0)op=v(x)AF(t, x)05p+ Bpt, x)p,

T is a positive constant; #y, #p, ¥y and @p are real valued functions: #i=

(g, p), Ug="(ugy, -+, UHmy), Up="(Upi, -+, Upmp) (‘M means the transpose of
M). The vi(x) (=1, ---, n) are real valued functions in C3(R") such that u(x)
=(vi(x), -+, vp(x)) represents the unit outer normal to /" at x/. The sum-

mation convention is understood such as the sub and superscripts 7, ; take all
values 1 to n. Let us introduce assumptions (A.1)-(A.4) which coefficients of
the operators satisfy.

(A.1) AY are myXmpy matrices, Ayp are myXmp matrices, AP, A¥ and A}
are mpXmp matrices, AYy and A¥y are mpXmpy matrices, and the ele-
ments of these matrices are in B=([0, T1x 2). ALY are myXmpy matrices
whose elements of these are in 8°([—«, T+£1X2). Byp is an myXmp
matrix, Bp is an mpXmp matrix, Bpy and Bjy are mpXmpy matrices
whose elements of these are in @=([0, T1XI). Y% is an muyXmy
matrix whose elements of this are in @<([—«&, T+«£]1X7I'). And all ele-
ments of these matrices are real-valued.

B=(G) denotes the set of functions in C=(G) whose derivatives of any order
are all bounded in G. For any function space S, we denote a product space
SX -+ XS by also S.

(A.2) ‘A=A (E=H, P), 'Ap=Ap, ‘'Ap=A}, 'By=Bj.
(A.3) There exist positive constants ¢,, 0, and 9, such that
B, x)=colmp;
(AE(t, -)0,ile, 0:g)20, | telli—0ol tix)®
for any iizeH'(Q), te[0, T], x€2 (E=H, P).

H*(G) denotes the usual Sobolev space on G of order s with norm | -||;, ¢ for
se€R. Put ||-|ls.0e=I-ll: and ||-[lo.e=|-ll. We denote the usual inner product of
LX(Q)=H) by (,). I, is an mXm identity matrix.

(A4 %, x)—%ui(x)/l}'?(t, x)=0 for any (¢, x)e[—«&, TH+x]Xx T

The purpose of this paper is to prove the unique existence of solutions of (N)
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and to investigate how the constant in the first energy inequality depends on
the coefficients of the operators. Our proof of the existence theorem is almost
parallel to Shibata [6]. In §2, we state the basic notation and main results.
In §3, we refer to the result on some elliptic boundary value problem. In §4,
assuming that

(A.4) BY(t, x)——%yi(x)A}'}](t, xX)=e for any (¢, x)[0, TI1X I, >0,

instead of (A.4), we prove the existence theorem. In §§5 and 6, reducing the
problem to the case where £ is a half space, and using the former result and
the estimate of Kreis-Sakamoto type, we derive an a priori estimate of original
problem, and then the existence theorem is obtained. The argument of §5 is
not needed when n=1, so that we mention the case that n=1 in §7.

§2. Notation and main results.

First of all, we explain our notation. We always assume that functions
are real-valued except for §5. For any integers L, M =0, we put

D i=(3401, k+|al=L),  D'u=(0}02%, k+|a| <L),
=932, |a|=L), gtu=(934, la|<L).

If J is an interval of R and G is a domain, we put
X1M(] 5 Q)= (\ CH(J 5 HE (G
=0
L-1
ZEM(J 3 G)y=CE(J ; H*{GHN N CHJ 5 HE K GY).
=0
Let G’ be a set in R* (k=1) and X, Y represent points of R*. For any integer

(=0 and (0, 1)
U], 1,60= 2 sup [(@"u)X)| a=(a;, -+, a;);

lalsl XeG!

@ u)(X) =@ u)¥)|

lu|oo,l+o‘,G':|uloc,l,G'+laz‘;;l X,%‘lélg' |X__Y|G
XY
Put
BUCY={ucC{C)| |tw 1 ¢ <o} ;
B(C)={ucCHG")| | Ulw, 1106 <},
We write l I°°.l+a,1:i : |oo,l+cr.1><.Q and <'>oo,l+o‘,I:" |oo.l+a,1><['- Let us define the

space of solutions EZ(J; 2) by
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EXNJ; Q)= {uns X" (J; DIoF D'ins L] ; H-VXI")
X{dpeZE (] ; D)o ipe LA(] ; HY())}.

H*I") is a Hilbert space equipped with the norm (-),=|-|l., for s€R, and
put {-)=¢-D. <,> denotes the usual inner product of L* I )=H°I'). When
n=1, {-), stands for the absolute value |-| for any s€R. As the norm of
EX(J; ), we put

7 @OIf= D& (] + ] Z O
+\ (D (Nt ads+ Is)ltds
IO = D (®)]*+ 13~ (O] *+ | D**0)]
+\ (0 D (W 2ueds+ | N0FaA)ltds  for L22.
For the space of right members, for L=2 we put
RH(J 3 D= {f(t, DEXE(] ; DI ¢, DELXTO, T1; LD ;

RE(J 5 I)=A{gCt, x)eXt=>1*(]; INor~'g@t, x)e LX[0, T1; H*I")}.

Let ¢ be a small positive number (0, 1). For I=[0, T] and J=[—«, T+«],
put

M= 3 3 |Agf|m.,.,+|Aﬂ|m,,,,+”i: | At o1, 1
Jj=1

E=H,P i.j=1

+ X (AR e .o+ 1 Akplo 1t | Abloo i1+ 1 APt w1, 1)
i=1

+<{Bupde,1. 1Bl e, 1,0+ {Bple,1, 1+ é | Bbblo 1, 1xr;
i=0

HA+ @)= D (AF v 1+ 1 AF oo+ | bl ls )+ ARl
j=
+ S UAR et s+ | Alrplos 11 ABsy leor, 14| Ablar, 1)
1=1
+{B b1, 1+<{B% w1, 54+ <BpYu 1. 1+ ; (Bbuder.1;

M= 2 3 |A¥|wg 1+ | ABlwr. s

E=H.P t,j=1

+ ;E:uA;‘;’lm,w.JJr|A;,p|,,,,1,,+ VAble s 1A | )

+<Bupdo.s, 1+<{BY w2, 7+<BPVo2. 1+ 2 (Bbude o1 -
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Second of all, we shall explain the compatibility condition, which #,, % g1,, #po,
J?E and gx (E=H, P) should satisfy in order that solutions to (N) exist. Fora
moment, we assume that solutions #=(ily, #p) to (N) exist and that

2.1) U=(ly, Up)=sEX[0, T]; 2) for L=2.
Put
(2.2) Up,=0%up(0) (0<k<L), Upy=05ip(0) (0=k<L-—-1),

which are represented in terms of initial data, right members fa f p and their
derivatives. For example ‘

= AY(0, %, )i m+ Ak, x, Nim—+Akp0, x, Diip+ 7 u0, x);
iLpy=AR0, x)" {A2(0, x, )il po+ Ap (0, x, )il o+ Apu(0, x, ) mi+ 7 (0, )},
and so on. It follows from that
(2.3) Ugr,€HE Q) 0sksL,
UprcHL#Q2) 0Zk<L-—-2, Upr€L¥ D).

In view of the trace theorem to the boundary, the boundary condition in (N)
requires that

(2.4) 0Bk, x, 0)in+Bupt, x)ip+Bult, x)0:dn)l1=0=0{n(0) on I';
{(Bp(@, x, )iip+Bpu(t, x, O)in+ Bpu(t, x)0:48n)|1=o=02p(0) on T,

for 0<k< L —2. Such conditions are also represented in terms of initial data,
right members J?E, gr (E=H, P) and their derivatives. When (2.4) holds, we
say that @no, #m, ip, [z and gg (E=H, P) satisfy the compatibility conditions
of order L-—2.

Now, we shall state our main results.

THEOREM 2.1. Let T>0. Assume that (A.1)-(A.4) are valid.

(1) If dgecHXQ), imeH RQ), ipcsH¥Q), fe=RY[0, T1;2) and @z
R%[0, T1; I, and if (2.3) and (2.4) are satisfied for L=2, then there exists a
unique solution u=(ily, up)=E¥[0, T]; 2) to (N).

(2) Assume that n=2 and let p be a small positive number (0, 1). Then,
there exists a constant C=C(HM(1+p), T)>0 such that for any 1[0, T] and i<
(g, ipeX?°XZVY[0, T]; £2) the following estimates hold :

(2.5) @< C{llﬁ‘ﬁn(0)|l2+ 17Z£0)]|*

3 [ AT BV}
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(2.6) 0t a(NE N2 ()G ey + 1N o)

<! 192 a1+ 17 5O o+ 2O 3o
+C 13 A+ DA D)

HIEH+HD En(s )i ds]|
where

(2.7) 1% @) 56y =(AH(5)057p(t), 0:%n())+ 0ol u(®)]?;
1 Z ()N 5oy =(AB(S)Hp(t), Up(t)).
(3) When n=1, the estimate and (2.6) are valid with p=0.

THEOREM 2.2. Let T>0 and L be aninteger =3. Assume that (A.1)-(A.4)
are valid. If g, cHY(R), iz e H- (), ippcHX(Q), feeRY[0, T]; Q) and
Ze€RY[0, T]); I'), and if (2.3) and (2.4) are satisfied, then there exists a unique
solution 4= (iiy, ip)cEX[0, T]1; 2) to (N).

REMARK. (1) We do not need the estimate (2.6) in this paper. But to
prove the existence theorem of nonlinear problem, (2.6) is needed. (cf. [4], [5]).

(2) By a suitable extension of the coefficients of the operators with respect
to t, we know that the assumptions (A.1)-(A.4) are equivalent to the following
assumptions (a.1)-(a.5).

(a.1) AY and AY¥ are mpyXmy matrices, Ayp are myXmp matrices, AP, A¥
and Ap are mpXmp matrices, A¥y and A¥y are mpXmpy matrices, and
the elements of these matrices in 8°(RX Q). Byp and BY are myXmpy
matrices, Bp is an mpXmp matrix, By and B}y are mpXmpy matrices,
and the elements of these matrices are in 3*(RX[");

(a.2) 'AY=Af (E=H, P), 'Ap=AY, ‘Ap=Ap, 'By=DBY;
(a.3) there exist ¢, 0, and 9, such that
2, x)Z2colnp;
(AE(t, )0;1g, 0,15)Z0:UE]i—d0ltkl?
for any izeH'() and teR, xQ, (E=H, P);
(a.4) %, x)—%vi(x)/l}?(t, x)=0 for any (¢, x)eRX[;

(a.5) if we write AY=(AYY), then there exists T,>0 such that A¥2=4,,0.,
(E=H, P) and other functions vanish for [¢|>T,.
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§3. On an elliptic boundary value problem.

Our purpose in this section is to solve the following elliptic boundary value
problem in @ with parameter t<[0, T]:

(3.1a) — A%, -, Nig—Ayp(t, -, Dip+iniip=Fal) in Q,
(3.1b) — AR, -, Nip—Apu(t, -, Oig+Apip=1 p(f) in 2,
3.1¢) By, -, in+Brup, )ip=gn(t) on I,
3.1d) B, -, Q)p+Bhut, -, D)ig=8p{) on I

where Ay and Ap are constants determined below, and 7;;, fre CY[0, T7: L3
and gx, gp=C%[0, T1; HY*(I")). First we consider the following problem :

{ —AY(t, -, Nin+igipg=F in 9,
Y(t, -, dip=¢ on I

(3.2)

Let us define the bilinear form Dy(¢, -, -) associated with by

(3.3) Du(t, Wa, 95)=(AY0; n, 0D u)+An(Wn, D) for iy, dp=HYRQ).
By Schwarz’s inequality and (A.3), we have

(3.4) |Du(t, Wr, V)| SCQAu, HONND=l:lDal.;

(3.5) ' Dy(t, Wn, Wag)=0,]0 |3 as Ap=0, .

By the Lax and Milgram theorem, we know that for any fe L¥) and g
H'Y*(["), there exists a unique solution wWxsH'(2) of variational equation:

36)  Dult, Wu, 9m)=(f, 0x)+<&, 95>  for any sxcHYAQ).

To prove wxzsH*{2), straightening the boundary locally, we study the case
that Q=R?%, where Rt={x=R"|x,>0} (cf. [6], §3). For any A+0 such that

|h| is small, put
y

3.7 (Waln=A{Wa(y+hé,)—wu(y)}/h  where é,=(0, -, \1/, e, 0)
for p=1, ---, n—1. By [3.5),
(3.8) Dxu(t, [ a1, 0a)< 148N 10+ C(HY) 0" x|} 16D allr7 .

Here, we have used that H[wyjhllgggllélwglikg. Putting o p=[Wx ], in by
we have

(3.9) 1640 1wl 2 < CCHA Fl+4@Dase+ 16" wl)

which implies that d,wnr=H'(R%}), p=1, ---, n—1. Noting that A}* is non-
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singular and &, satisfies in the distribution sense, we see 0iwnp< LA(R?)
and we have

(3.10) 18°3 ull < C(HL), SN FI+(@N e+ ).

From [3.5) and [3.6), it follows that

(3.11) 10 121l < CCHONA T +4ED12) -

By [3.10) and [3.11), we have

(3.12) 140 slle < CCHDYF I +4@Di10)

Moreover, by integration by parts we see that @, is a strong solution to [3.2).
In particular, if we substitute f;,(t) for f and gx(t) for g, there exists a uni-
que solution ayH¥2) to satisfying the estimate:

(3.13) 173112 < CCHDNU T @)l +48 n(t)rse) -

And if we substitute Ay, -, 0)iip for f and —Byg(t, -)ip for g, there exists
a unique solution #gx(p)sH*(2) to satisfying the estimate:

(3.14) % n(ip)le= C(HD)Epll: ,

which implies that #y(#p) is a bounded /linear operator of #p=H(2) to #x(iip)
eH¥f). Put ip=a%-+an(iip). #y is a solution to (3.1a) and (3.1c) for given
upesHY (). Noting the above facts, we consider the following problem:

— AR, -, Dup—Abu(t, -, )i n(iip)+Apip

(3.15) =7 o)+ Apnlt, -, D)y in 9,

Il’(t) ) a)ﬁP+BI£H(t) ) a)ﬂH(ﬁp):gP(t)—B}l’H(t) y a)ﬁ(}I on l-'o
The associated bilinear form is
(3.16) Dp(t, iip, p)=(AE0;itp, 0:0p)—(A¥H0:0;i n(iip), Up)

—(Ap0;lp, Vp)+<{Biy0iitu(lip), Vpy+<{Bpiip, Up).

From Schwartz’s inequality and it follows that
(3.17) | Dp(t, @p, 9p)| S C(HA)| @pll:|dp], for any #p, 9pHY(Q);

3.18) D, s, i= 2|52 for any ZpeHYQ),
2

provided that Ap is sufficiently large.

The Lax-Milgram theorem vyields that there exists a unique #psH () such
that
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(3.19) Dplt, tip, 9p)=(F p(t), Up)-+(AFu(t)0:0;1iY, Vp)
+<8p(t), Dpy—<Bpu(t)d, %y, Vp> .

Furthermore, employing the same argument as above, we see UpsH* ) and
obtain

(3.20) 17 plle < CCHANUF PO+ (E Y1+ 0% ) -
Combining [(3.13), [(3.14) and [3.20), we have
(3.12) Hiiullz+llﬁpllzéc(ﬂ4<l))E§1 P(IIfE(t)ll+<<§E(t)>>1/z).

#=(ilg, up) is a unique solution to (3.1a)-(3.1d). Moreover, #=(iiy, #p) depends
on time ¢, so that we write % =1u(t, x)=u(). By (3.21), we have

18 () — % @)l | B p () — Bt
< C(H_ 3 P(Hﬁ(t)—fg(t')n+<<g'E<t>—g'E<t'>>>1,2>

+1t=t"[(|Z 2@+ 172 )2} -

Therefore, we see that %y and #p=C%[0, T]; H*2)). In the similar manner,
we can get the higher regularity of the solutions. Namely, we have following
theorem :

THEOREM 3.1. Assume that (A.1)-(A.4) are valid

(1) For any fr=C([0, T]; LX) and gr=C[0, T]; H''*I") (E=H, P),
there exist constants Ay and Ap depending only on M(0) such that (3.1) admits a
untque solution U=l g, Up)=C*[0, T]; H¥)) satisfying (3.21).

(2) Let L and K be integers =0. If freCX([0, T]; HXQ)) and Gz
CE([0, T]; HE*Y*(I")) (E=H, P), then ui=(iig, up)cCX([0, T]; HL**(Q)).

§4. An existence theorem under the assumption (A.4).

In this section, assuming that
(A4) ¥, x)—~—é—y,-(x)A}}’(t, x)=e for any (¢, x)[0, T]X I, ¢>0,

in stead of (A.4), we shall prove the existence theorem of (N). At first, we
calculate the energy estimate.

LEMMA 4.1. Assume that (A.1)-(A.4) hold. For any uyzcsX*°[0, T]; 2)
and upsZ* ([0, T]; Q), the identity
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1
2

| &

(4.1) N0t n@ON*+ 118 e 5 cor H 1T BB G0}

QU

¢
(B~ 5 v ASO)au (D), (D) +(ABD,25(0), Bitsl0)

+<{Bup®)iip(t), 0:t u(t)>+<{Bpu(t)0:% n(t)+ Bpu()0:i n(t), Ur(t))
=(Au(®LU®)], 0.8 u())+(ApBOLU®D)], ©pd))
+Ba®LA®)], 0. n()>+<Bp®OLAW)], Up(t)
holds for t[0, T], where A=B means that
(4.2) | A—B| < C(HD)II D& u@)*+ 11 60| 2+ 1 76O i p(2)))
+ D@ a@®I18" ZADI) -

ProOF. If we calculate (Ag(t)[#(t)]+00ik s, 0.8 u(t)) and (ApE)[A()], ip(t))
and combine the resulting formulas, we have (4.1). =

LEMMA 4.2. Assume that (A.1)-(A.2) hold. Let B(t, x)=B(t) is an mpXmpy
matrix of functions in B=([0, TIXI). Let upcsX®*[0, T]; L) and urc
Z"Y[0, T]; 2). Then the following estimates are valid :

4.3) | <B(8)d4i 1), Up(t)>|
= C(M(0), o)l @ a@ONF+117EpO)*+ (B a(OLUE@IN21/2)
+oll@p®li+0(a:an®))*  for any ¢>0;
(4.4) (€0:th #®))-1/2 = C(HONN & 1+ (B U@ ]D-1/2
HUp(E)) 172 (0 H@)) -112) -
PrROOF. Put gux(t)=a8x@)[u()]. Using the local coordinates, we can straigh-

ten the bouundary locally, so that it is sufficient to prove the lemma in the
case that 2=R?. Since A}" is invertible, we write on [':

4.5) Oniigy(t, x', =A%, x’, 0)"{—gu(t, x’, 0)+Bgp((t, x)up, x’, 0)

L BY(G, x)0. G nt, ¥, 00— 33 AY(E, &7, 0358 n(t, ', O)}.
Jj=1

By (4.5) we can prove [4.3) and [(4.4) easily. m

LEMMA 4.3. Assume that (A.1)-(A.4") are valid. For any T>O0, the follow-
ing estimates hold: (E.1) there exist C;=C (M), €) t=1, 2 such that

NEOIEZ CreCet {I| D*a (0)|2+ [ 2(0)]|?
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+ 3 | (s[RI Ba() L) DE)ds]

for any g X?°([0, T,]; 2); upsZV ([0, T,1; 2) and for any T,=(0, T].
(E.2) there exist C;=C (M), ¢) i=3, 4 such that

108 a2+ Z a5 g+ 1@ o

< e Dt [Tt 3eap+ LA e
+C0, 3 | (AstLa(s) ]I st AU ds}

for any te(ty, t,], dpeX>([t,, t.1; D), upsZ' ([t t2]; Q) and to, t, t,=[0, T]
(. <ts).

PrROOF. By Lemmas 4.1 and 4.2 and (A.4’), we have
d R R R
(4.6) ds {1055 m(s)N12+ 3 m(S)I5 ) + 1RSI G sy}

+&(0s u(s))* 0,7 p(s)IIT

=C(a(), é,, 3){E=§,P(”<—’4E(s)[ﬁ(s)]f12+<<$E(S)[ﬁ(s)]>>¥/2>
118 g (311057 m()I*+ 1 @p(I®
4.7 gs- {1052 s(S)IP+ 1% 5 () 5 ey + 18 p() S ex o}
=C(m), ) {E=§'P(Ilda(to)[fi(3)] 1P+ (Bt #(s)IDE/2)

+11053 5 (N4 | % (S o+ 18R G2} -

Combining and and integrating the resulting formula on [0, t], we
obtain (E.1) by Gronwall’s inequality. And also (E.2) can be obtained from

4.7 =
Now, we shall prove
At )1=Fult, x), Al)AE, x)]=F#{, x) in [t,, t,]X2,
4.8)  Bat)Al, x)1=0, Bt A, x)]=0 on [t;, t,1x T,

Ua(ty, X)=Uwo(x), 0:hu(ts, X)=Um(x), Up(t;, x)=MUp,(x) in Q.

Here and hereafter, ¢, ¢, and ¢, are always any fixed times on [0, 7] such that
1 <t,. Let HY(2)X L3(Q2)X L* ) be Hilbert space with norm

(4.9) MU= 112 moll 3+ 12 1 1°+ | E o ®
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for U=(iln,, i, dp)cH(Q)X LAQ)X LXQ). Put
(4.10a) (U, Vst oy =(AF )05 110, 0 110)+04(T 110, ¥ 110)
+ (i, D)+ (AR@)ip, Up);
(4.10b) 1UN% o, =(U, Wacor=Ntwolldcor Fildml2+pl ;e ,
where U=(ilno, lm1, Up), V=>0no, V1, Ip)EH (Q)X LXQ)X L¥). By (A.2) and
(A.3), we know that (,)«, is a bilinear form and
(4.11) min (1, 8, MUV o) = CHODIIUI|?

for any UeH' ()X L¥(2)X L*2), t=[0, T]. Let J4(t) denote the Hilbert space
HY (2)X LA(2)X L¥2) equipped with inner product (,)4«,. Put

U
(4.122) A@MU= Ay@, -, Do+ Ak, -, Dy +Akp(t, -, Oilp
(AR)H{ARG, -, Diip+ARu(t, -, Dilno+Abult, -, Otim}
u(t, -, Odno+Bupt, )ip+Byt, )iu
Kt -, Dip+Bin(t, -, Dlne+Bput, )il
for U=H* Q)X H(Q)XH*Q);

’

(4.12b) _fB(t)‘iJ:[

(4.12¢) PYy={UeH(Q)XH(Q)XH )| Bt)U=0 on I'}.

LEMMA 4.4. Assume that (A.1)-(A.4") are valid. Then there exists a C=
C(HQ)) such that

(4.13) HAI=AB Ul s, 2(A—ONUll s o

for any A>C and U< D(t). Here, I is the identity operator.

PrROOF. Since

NQAT— AN U oy =AU %oy + IAGU N 0y — 2AAR)U, V),
if we have

(14.4) ANV, Vawy SClIlUN%«wy  for any UVe®),

where C=C(M(1)), we can get [(4.13) immediately. Since B({)U=0 on [, by
integration by parts we have

(A®U, ‘U)m:é—<(35’q(l‘)—--"‘;—wflﬁ?(t))ﬁm, ﬁm>—(Az‘="(t)ajﬁp, 0.l p)

+C(o, HNIUl s, +ollipli+ ol
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for any ¢>0. Here we have used the same idea as in to estimate
the boundary terms. Therefore, by (A.3) and (A.4’), we have (4.14), which
completes the proof. =

LEMMA 4.5. Assume that (A.1)-(A4") are valid. Then, there exists a C=
C(M(L), €) such that for any A>C, AI—A(t) is a bijective map of D(t) onto H(t).
If we denote its inverse by (AI—A())™?Y, then

(4.15) NAL—=AB) " Ul ey =(A—C) N Ullaeco
for any A>C, U D).

PrRooOF. In view of Lemma 4.4, it is sufficient to prove the bijectiveness.
Namely, for given SV=0py,, v, Vp)EIH(t) we shall prove the unique existence
of U=(ly,, g, Up)€D(t) such that AT—A@)U=<V. If we use the relation
of the first components: A% y,— g, =0, We rewrite the relation of the second,
the third components and the condition that U< 9(t) as follows:

4.16) —AY(t, -, Dilgo—AAY(, -, Nim—As@, -, 0)ip+hm=1 ult) in Q,
— ARG, -, O)ip+AARE, Viip—ARu(t, -, ime—AAbH(E, -, Dim=]pE) in 2,

u(t, -, OUue+Bup(t, )ip+ABu, )idu=8u{) on [,

B, +, )ip+Bput, -, )lduy+ABRu(t, )ldu,=8p() on [,

where
Fut)y=—A4(t, -, 0 m+A0mot+ome LH(Q),

FA)=Abp—Apult, -, Dbme LAQ),
Gu()=BY()WmcH(RQ),  gpt)=Bul)imcH ().

If we prove that there exists a constant C such that for any 4>C the problem
(4.16) admits a unique solution (g, ip)= H*(2)XH*(§2), then U=(# gy, Al go—
Vo, p) is a required vector. At first, for given #p=H'(L) we consider the
following problem:

— AY(t, -, )ikgo—AAYL®, -, )Ty A2 o
(4.17a) =Fult)+ Akpt, -, Dilp in 2,
Y(t, -, )il me+ABY(t, Vime=8n({)—Bupt, )ip on I
The associated bilinear form is
(4.18)  Du(t, i, 9m)=(AY)0;n, 0:bu)— (AR Tin, 01)
22Ty, D)+ A BYWDiy, > for iy, dpsHYRQ).
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By Schwaltz’s inequality, (A.3) and (A.4’), we have
(4.19) |Du(t, tn, V)| SCQA, MOl N0l ;
(4.20)  Du(t, tig, hg)Z 0. ulli—0l ul*+ At g )*+ 22|t 4 ||*— AC(HMAN | # ||

20| uall}+ % I al*+Aeh )20l n i}

for any large A. Therefore, employing the same arguments as in the proof of
[Theorem 3.1, we see that there exist a unique solution #% < H?(2) and a unique
solution #% y(ip)eH* L) such that

—AY(t, -, DUy —AAL(E, -, DAY+ AAY=F4(t) in Q,
(4.17a.1)
L, -, )iy +ABY()aY=Fu(t) on I,
(4.17a.2) { — A%t -, DU n(lip)—AAY(t, -, D) g(iip)+ A u(lip)=AYp(t, -, dip in 2,
. a.
u(t, -, O)uy(llp)+ABYy()u y(iip)=—Bup(t)ilp on [

In particular, #y(#p) is a bounded linear operator of ZpcH' Q) to Wy(iip)c
H¥Q), and #%y=u%+i,y(ip) satisfies (4.17a). By (4.20) and (4.17a.2) we see
that there exists Ax(.#(1)) such that

(4.21) 0./l 4 n(ip) I3+ %RZH un(up)l*+ % (@ u(ip))®

C .. c .
22—2“1@“?‘*‘ E«ul’»z for any A>Aux(H(1)),
where C=C(#(0)). Now, we consider the following:

—AB(t, -, Dup+AAR)Up— ARu(t, -, 0)iiu(lip)

(4.17b) —AApu(t, -, i g(ip)=F p(t)+ ARu(t, -, D)UY+ AAbu(t, -, DaYy in 2,
B, -, Dup+Bpu(t, -, 0)lu(ilp)+ABRu(t, -)un(ip)
=gp(t)—ABRa(t, YUy —Bpu(t, -, )iy on [

The associated bilinear form is

(4.22)  Dp(t, ip, 5p)=(AF(t)0lp, 0.0p)—(Ap(t)0siip, Up)+A(AR)ilp, Up)
+(AFu ()05 n(ilp), 0.0p)+(0:AFu(1))d;i n(ilp), Vp)
— A(ABu(8)0:8 u(li p), Vp)—<v; AFp(t)0;i u(ip), Vp>+<{Bpt)ilp, Vp)
+ < Bpu(t)0:it n(tp)0p)+ABEu(t)i n(iip), vp> .

In the same way as in Lemma 4.2, we have,
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(4.23) {Bhu®)—v: ABu()0;t n(ilp), vp) |
= C(4, A p){Dp)+ (i u( )0 p)+17 a(lp)ll:Dp]L) -
From (4.22) and [(4.23), it follows that
(4.24) | Dp(t, tip, vp)| =C(4, M), e)llipllvpl,
for any #up, vp=H' (). Furthermore, we see that there exist a constant C and
Ap=Ap(M(1)) such that
(4.25) Dp(t, ip, up)z=C|upl?  for any A>1p, dipcsHY(42).

Employing the same argument as before, we see that there exists a unique
solution #eH*2) to (4.17b). Therefore, (i%+#x(iip), %p) is a unique solution
to (4.16), which completes the lemma. m

LEMMA 4.6. Assume that (A.1)-(A.4") are valid. Then, D) is dense in
H(t).

PROOF. Since H=(f) is dense in H'(2) and C3(Q) is dense in L% ), for
any U=(#l g, Uy, Up)cHK(), there exist vy, H(2), Ul =CY L) and vp=CH(2)
such that

10ko—tmollit+ 18k —dmll+19p—8pll —> 0 as [—oo.

6}10' and o5 will be modified so that the boundary condition can be satisfied.
Let @Yy, be a vector of function satisfying the following:

(4.26a) By, x, 0)ho=—DBut, x, vk, Whe=0 on [,
lWholl =1/1.

The existence of wy,=H>(£2) is guaranted by Lemma 3.8 of [6]. And let w}
be a vector of functions satisfying the following:

(426b) Il’(ty X, a>w;’:~B}’(t: X, a)vlp—d Il’H(ty X, a)<{)ll‘10+w}{0) on 1—')

wp=0 on [, lwpl| <1/1.
The existence of wheH=(Q) is also guaranteed by Lemma 4.8 of [6]. If we
put U'=(iily,, 9k, Up) where Ulyo=0h,+who and #p=0vh+wh, V' satisfies that
BU'=0 on [ and |[|U'—Uljxu,—0 as [—oo, which completes the proof of the
lemma. W

In view of Lemmas and 4.6, an application of the Hille-Yoshida theorem
yields the following theorem ;
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THEOREM 4.7. Assume that (A.1)-(A.4") are valid. Let t,, t, and t,=[0, T]
such that t,<t,. Then, for any U,=D(t,) and F()= CO)[t,, t,]; J(t,)) there exists
a unique UR)eC([t,, ta]; H@ANINCU[1,, tod; D(t,) such that

(4.27) %“U(t)ZJ(lo)cU(t)Jrg(t), UBED()  for any (€[t t:],
U(t,)=U, .

If we put Uo=(iigo, i, dp) and F()=(0, fu(t), fp(t)), then the first and
the third components of U(t) of are solutions to [(4.8). Summing
up, we have proved the following theorem.

THEOREM 4.8. Assume that (A.1)-(A.4’) arevalid. Let t,, t, and t,=[0, T]
such that t,<t,. If g H¥RQ), iy cH\Q), ipecHXR), fu, fre C([t, t,];
L¥8)) and
(4.28) 34 (te, -, Ol go+Bup(te, -)ipo+ By, )in,=0 on I';

B}:(to, ) a)ﬁPo“‘B}’H(to, Yy a)ﬁpo+B;)>H(to, ')17111:0 on [',

then there exists a unique solution U=(iy, ip)SX? ([t} t,]; QYXZVY([t,, t.]; 2)
to (4.8). =

Next, we shall get the estimate of the second energy.

LEMMA 4.9. Assume that (A.1)-(A.4’) are wvalid. For U= (g, ip)c
EX[0, T1; 2), we put [felt, x)=Az®)[i(t, x)] and gx(t, x)=B@)[i(t, x)] (E=
H, P). If feeR¥[0, T]; Q) and e R¥[0, T]: ') (E=H, P), then there exists
a constant C>0 independent of # such that

(4.29)  llEMIE= C {17 n(O)3+10.1 n(O)12+ 112 (0) 112
+ 3 (1748002

+, 3 S| o)+ @z Wdst  for 0st=T.
E=H,P k=1J0

LEMMA 4.10. Assume that (A.1)-(A.4’) are valid. Let t,, t, and t<[0, T]
such that t,<t,. For i = (iy, up)cX¥'([t, t,]; QDXZ ([t t.]; 2), we put
Fet, x) = Ast)U(t, x)] and Za(t, x) = Bxt)U¢, x)) (E=H, P). If fze
R¥[t,, t.]; 2) and Ge=R¥[t,, t.]; ") (E=H, P), then
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(4.30) 1032 |I° + 102 O % ey +18: 8 p(D)| 5 0,

e H108h (DI 11008 5@ DN oo+ 107 pEDN Gy

+Co 3 | TP +@ZesNt)ds)  for any 1<[1,12].

=H,P

PROOFS OF LEMMA 4.9 AND 4.10. In the case that #=(#y, #ip) is smooth
in t, differentiating the equations once with respect to ¢, applying (E.1) to the
resulting equations and using to estimate the second derivatives
with respect to x, we have (4.29). To remove the smoothness assumption with
respect to ¢, we use the mollifier with respect to t. can be obtained by
use of (E.2) instead of (E.1) in the same manner. For details, see Lemmas

and 4.2 of [6]. m

By and Lemma 4.10, we can prove an existence theorem for
Ag(ty) and Bg(t,) (E=H, P) with the inhomogeneous boundary condition.

LEMMA 4.11. Assume that (A.1)-(A.4’) are valid. 1, t, and t,[0, T] such
that t,<t,. If BmecHYQ), meHYD), ip,=HYD), e R¥[t, t.]; Q) and gr<
R¥[ty, t,]; I') (E=H, P), and they satisfy the compatibility condition of order O
in the following sense:

(4.31) By(to, +, OUm+Buplts, )ipe+ By(ts, im=gnu(t:, x) on I';
B, -, a)ﬁPo“f"B;’H(to, *y a)ﬁHO'{"BIO’H(tO, DU =gp(t;, x) on I,

then there exists a unique solution U=(#y, Up)SX>°([t,, t,]; D)YXZ Y[ty t.]; 2)
to the equations:

(4.32) Apt)UL(t, O]1=Fut, x)  in [t, ,]1XQ (E=H, P),
Betolu(t, x)]=8x(t, x)  on [t, t,1XI' (E=H, P),
Un(ty, x)=tgx), 0:dnlt, x)=lm(x), #Uplt, x)=Up(x) in Q.

PrOOF. Since we know that (E.2) holds from Lemma 4.3, employing the
same argument as in of [6], we can prove the lemma. m

LEMMA 4.12. Assume that (A.1)-(A.4") are valid. If fEeRZ([O, T]:; Q) and
Zz=R¥[0, T]; ') (E=H, P) satisfy
(4.33) 750, x)=0 in 2, 20, x)=0 on I' (E=H, P),

then there exists a unique solution i=(y, up)=EX[0, T]; 2) to (N) with zero
initial data and right members fE and gz (E=H, P).
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PROOF. Since we see that (E.1) and (E.2) are valid by Lemma 4.3, using
and the method of Cauchy’s polygonal line, we can prove the
lemma in the same manner as in of [6]. m

Using Lemmas 4.9 and .12, we can complete the existence theorem under
the additional condition (A.4’).

THEOREM 4.13. Assume that (A.1)-(A.4") are valid. If g, csHY), me<
HY D), pcHYR), fr=R¥[0, T1; Q) and ge=R¥[0, T]; ), and if they satisfy
compatibility condition of order 0, i.e.

(4.34) B}(0, -, d)iingo+Bup(0, )ipo+ By, )t =g n(0) on I';
5O, -, ipy+BEu0, -, Do+ Bpu(0, )idm=gp0) on I,

then (N) admits a unique solution u=(iiy, up)= E*[0, T]; 2).

PROOF. Since the uniqueness follows from (E.1), we have only to prove
the existence. First, assuming that

*) U, U, Gp€HQ),  Fu, FreC[0, T]; H(2)).

Put g, ="(ugn, -+, Ugpimy) for 0<I<kg (E=H, P), where ky=2and kp=1. By
up, we denote the extension of ugz,, from £2 to R*. We put
kE

Osalt, ©)=_ 33 (expv/=1an(l-+ 81" )bmittiua X1+ 181272,

rm=

where a, and b,, are chosen in such a way that 3£, (v —1an)*bn; =04, for
0<h, [<kg. Obviously, 0!Ug.0, x)=ugre(x) for 0< h < kg, and Ug, €<
CR; H*(R™) (E=H, P). Put U=(Upy, Up), Un="Wn, -, Utny), Up=
Wepy, -, Upmp). Let 0=y, vp)=EX[0, T]; 2) be a solution to the following

problem:

4.35)  Au®01=Fn—Au®U], Ap®)01=Fp—Ap@)[U] in [0, TIXQ,
Bu)[01=8n—Bu)[U], Bp®)#]1=Fp—Bpt)[U] on [0, TIXT,
10, x)=0,04(0, x)=0, vp(0, x)=0 in Q.

By the definitions of sy, iip, U and [@.34), fr—Ag(-)[T1€CY[0, T]; LAR)),

0 (fe—Ax(LUD) € L¥[0, T1; LARQ), gz—B:(-)[U]e CA[0, T1; H'XI") and

0:(8r— Be(H[UDe LY[0, T]; L") (E=H, P) and is satisfied. There-

fore the existence of the solution ¢ is guaranteed by Lemma 4.12. If we put

i=9+U, then # is in E¥[0, T]; 2) and a solution to (N) with initial data # g,
U, Up, and right members fE and gz (E=H, P). Employing the same argu-
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ment as in Theorem 4.5 of [6], and using [Theorem 3.1 and Lemma 4.9, we
can remove the additional assumption (*), which completes the proof of the
theorem. W

THEOREM 4.14. Let L be an integer L=3. Assume that (A.1)-(A.4") are
valid. If GmeeHHQ), imeHE D), ipeHYQ), freRY[0, T]; Q) and gz
RY[O0, T1; ), and if (2.3) and (2.4) are satisfied, then the problem (N) admits
a unique solution U=(Uy, ip)=EL([0, T]; Q).

PROOF. We can prove this theorem in the same manner as in Ikawa [[2],
p. 364-367] or [[1], p. 604-607], so that we may omit the proof. m

§5. A priori estimate in half-space.

From now to §6, we assume that n=2. Our purpose in this section is to
derive some a priori estimate for the following problem:

(5.1) Pul@]=Fn, @[i]=fr in RXRL
Qul#]l=8u, Op[u]=gp on RXR3,
where R!={xcR"|x,>0} ; Ri={xesR"| x,=0} ;
Puli]=—D2Ug+Dy P, x)Dpiig)+Pit, x)D;D,tiyg—iP}p(t, x)Djip;
Pp[U]=iPy(t, x)Ddip+Di(PE(E, x)D,ilp)—iPht, x)Djilp
+ Pk (t, x)D;iDyit g+ Py(t, x)D;D,liy ;
Qulu]l=—iP3#¢, x)Driin+Qupt, x)Up+iQ%(t, x)Diiin;
Qpl#]=—iPp*t, x)Dpip+iQpu(t, x)D;in+iQpu(t, x")Djiln;
i=+/—1, D,=—i9/0t, D;=—i0/0x;, x'=(xi, =+, Xn_1).

From now, the functions in general are assumed to be complex-valued and
D'‘u=(D.u, Dyu, ---, Dyu). Let y be an any real number =1, and ¢ and » be

—

integers [1, n—17]. For any integer L =0, s=R, scalar functions, #, ¢ and

-

vector valued functions #, #, put

Hr={l="(us, -, Unp) |l U:EHL(RXRY), ut, Y)EeHXRY) for all tER,

|i2|L,r:

e~ | 50212, x)|2dtdx < oo} ;

E+ialsL SRXRQ

Hyt={u=", -, Unp) U €CR; H*(RY)), 0,u:E Lio(RXRY),

|321‘2|3,7—i— |atﬁl(2),r<°°} ’
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Dtulx=@ayen| e g eaEde
where & =(&, -+, &,_,) and # denotes the Fourier transform of uw(x’). Put
(D u(x)="LD" > u(x"), -, <D >un(x’));

<u>§,r=j e DS U, 1) Pdtd x

RM

w0 =| e~ rut, O, Ddtdx, <, v=|

+

ne‘”"u(t, xNv(t, x)dtdx’,

]

m m
(@, )= 23 (Ua, va)y,  <H, U= 23 {Ua, Vadr,

lale={ , l21vdx, wCey=ue, 0, w=Cus, o un;
+

n . m i
B(l): 2 ,2 U)fn:kloo.z.n;-«nﬁ+lpzn’loo.z.kxnﬁ-l*,z |vak11 oo, I, RxRY
E=H.P j k=1 Jik=1

+j2_1(|P]}?]oo,z.RxRﬁ+IP';ip|w,z.RxRQ+]Pf5|oo,z,kxn_’;+|P';>°H|oo,z,lzx1c2>

+|QHPIw.l,Rn+|Q91Im.l,Rn+j2 | Qbx o, 1, R7 for (=0, 1;
=0

B(1+#): 2 §=l(|Pﬁ|m.1+y.RxRQ+|P{Dk|oo,1.kxnﬁ+IP{’kHIeo,x,RxRﬁ)

E=H.P j

n .
+§1(|P;?Ioo,l+,u,kxﬂi+!P';IPIOO.I.RXR?-}_]P'[”Icc,1,R><R2+IP';’0H|°°,1,R><R1")

+IP10’]m.1,R>:RZ+IQIIPIJO,I,R”_*_lQ?Iloo.l,Rﬂ_*_j;o | Q% oo, 1, R1

for 0<pe<1.
Throughout this section, we assume that:

(A.5.1) P} and P} are myXm; matrices, Pjp are myXmp matrices, P2, P}
and P} are mpXmp matrices, Pl and P}y are mpXmy matrices and
the elements of these matrices are real valued functions in 8*(RXR?).
Qup is an myXmp matrix, BY is an myXmy matrix, Qfx and Qby
are mpXmy matrices, and the elements of these matrices are real-
valued functions in @<(R"™);

(A.5.2) ‘P=P¥ (E=H, P), ‘PR=P}, 'Pp=Pp, 'Q%=Q%;

(A.5.3) there exist positive constants d,, 4, and d, such that
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Py(t, x)=d,1;
| PEE DD DaTa(D d 2 |34z~ dol
r
for any izpcH'R?), teR, xR (E=H, P);
(A.5.4) Q%(, x’)+—%P?,°(t, x' 0)=0 for any (¢, x)eR";

(A.5.5) P, x)=06;40., (E=H, P), P}, x) is a positive constant matrix and
other matrices vanish for |#|>7, with some T,>0.
At first, we get the following Green’s formula.
LEMMA 5.1. . Assume that (A.5.1)-(A.5.4) are valid. For any U=(ilg, lp)e
EX Iy, the following identities are valid ;
5.2) —i{(@ultt], Dalha)y—(Dalln, Pualil)y}
=L Dl g D3+ PE' Dyt u’, ‘DalinDy—'PY Dyitn', ‘Dol u');
—PYDiiy’, ‘Ditig'>,
42y {(Dsh g, Dyplig)y+(Datig, Diig)y—(PEDolly, Dypiin)y} ;
6.3 —i{(@plil, Dillm)y—(Dilhn, Luli]))
=27 {| Do |3, v+ (P¥Dwily, Dilim)e} +<2Q%+PH)'Diiin’, ‘Diiln;
—i{{'D iy, ‘Qula]>y—<‘Qul#]’, ‘Dilin'Dy
+<{Qup'iip', ‘Dilin'dy—<‘Diiin‘, Qup'lip'y} ;
6.4) (@pli], Up)r+(Up, PplU]);
=27(Ppiip, Up)y+2(P¥D;jiip, Diilp),
+< e’ ‘Qpl U]y —<0p[#]", “Up*Dr
+i{KQpu'Diily’, ‘Up'r+Uip', Qbu'Dillu‘)y
+<Qbu‘ Dy, “Up >+ hp’, Qpu‘Dsliu‘dy
+ PRy Datin’, ‘Up'dr+<"Up’, ‘PPEDnlin)y
+ PRy Dy, ‘Up' >y +< Up', ‘PPuDlur},
where in (5.2) and (5.3), A= B means that
|A—B|=CBU){|#alt+tinly|0'Uplo,r}

and in (5.4), A=B means that
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|A=B| <CB){1upld +10"Uplo | iplor+itdnl 10 plos}.

Proor. By the integration by parts, we get

(5.5a) (Deu, v)y=—2i7(u, v);+(u, D)y ;
(5'5b) (Dnu) v)7:1.<u) v>7’+(u) Dn”)?’;
(5.5¢) (Dqu, v);=(u, D)y .

Using (5.5) and (A.5.2), we can obtain [5.2), (5.3) and [(5.4). =

LEMMA 5.2. Assume that (A.5.1)-(A.5.4) are valid. Then, the following
estimates are valid.
(1) There exists a 7,=1 depending only on d,, d,, d. and B(1l) such that

(5.6) 7 dul}+18p8 )+ 10 Up13
=C{rt|@aluld|f+r 1 @e[@118 1 +< QP %] D21/2,y
+1<Qul#]’, ‘Dilia'>y| + |KQup‘tip’, ‘Diiln‘dr]
+1<Qbu‘Diiin, ‘Up>r|+ |<Qbu‘Djiku’, “Up*Dr]
+ | PBEDR U, ‘Up' >y + [ PRy Dl u’, ‘UpHr|}
for any r=7, and U HiX Iy, where C=C(B()).
(2) For any y=1 and 4 I X K},

6.7 DD+ PHDyiiy’, ‘Daind;
SCBUW){rtenla]ld +r 10 Upl +rduli,}
+C(BON{ Dl 10,1 Dtk 5* D0, 1+ Dol g*>8 1} .

Proor. (1) Combining [5.3) and [5.4) implies that
(5.8 2 min(d,, D71#a|t,+2rd,|iplt +2d,|16'Up|3 ;

<2|@uli]o.r| Dittnlo,r+21Ppl#] o,y Uplo,y+2<'QpL U D 1s2.710Upl0.r
+C(B(), do){|tuliy+|dp|d +18ul1 10" Eplo.r+ Hplo, 0" plo,r}
+2rde | |3, +21<Quli], ‘Ditin>r| +21<Qup'tlp’, ‘DiilunDrl
+2<Qpu‘Ditiy’, “Up>|+2|<{Qpu‘Djikn’, ‘UpDy|
+2|PRE Dy, ‘Up' Dy | +2| PRy D lln’, ‘UpDyl.
Noting that e ‘=—(2y)"(d/dt)e”?*, by integration by parts we have

(5.9 [ Zalo =7 Ditinloy-
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Applying to (5.8), we have [5.6).

(2) Noting that |{‘PYD.iig’, ‘Dein‘dy] = C(BO)‘Deiig>i, and that
[CPEDGiy’, ‘Diipyy| SCBON Dyl o, 7 DTz’ de,r, We can obtain from
5.2). m

THEOREM 5.3. Assume that (A.5.1)-(A.5.4) are valid. Let y,=1 be the same
constant as in Lemma 5.2, and p=(0,1). Then, there exists a constant C=
C(y, BA+p)>0 such that

(5.10)  y(1&g|2 4+ dp|3 )+ 10%pl 8+ DY D20
SC{r | @glulld ;+r 1 PplU]18, 7+ <OulU]1D%)2. r+< Op[ ] D21 )2.7},
for any r=y, and i HIX K.
PROOF. Regarding x, as a parameter, we use weighted pseudo- differential
operators. Let x be a small number determined later, and choose ¢.(a, 7, &)

and ¢,(0, 7, §)=C~R**'—{0, 0, 0}) (we will consider the case of r=7,=1) so
that 0=¢,, ¢:1=1, @o+¢,;=1 and

¢.1D supp oo {(a, 1, §)126%(0*+79)21€'1%} ;
supp ¢ {(o, 7, &)X (e*+7r)=1€"]%}.

Let @, and @, be weighted pseudo-differential operators with symbols ¢, and
¢, respectively. Namely

@zuz(Zx)‘"ef‘gge“x'"y')é'”“‘s"’gol(a, 7, ENeTu(s, v, x,)dy’dsd& do

:(277:)‘"5@“”'5'”‘”"7"gpl(o, 7, (o —ir, &, xn)dods =0, 1.

Let A; be weighted pseudo-differential operator with symbol (a%47%4[&"[2)%/2.
Put @,4=4®,ii,, -, P,iin), {=0, 1. We shall estimate ‘D'%y‘>_,;5.;. At first,
we shall consider <D'@,lz), ;. Since PJ* is non-singular as follows from
(A.5.3), we have

(56.12) Pyl @ u]=PH'Q(PE) 'Pylu]+F, in RXR},

where
Fy=P3[ @0, (PE) 1D —PE (G0, (PE) " (PH-+PH)1DnDylln

—PE [ Do, (PF) 'PY¥1D.D ik u—PH'[Do, (PF)'PYI1Dslln
— P [ Do, (PF) ' PRID;D i p+iPE [ Do, (PE)*PhrlDjiip,
and [A, B] means a commutator of A and B, i.e. [A, Bli=A(Bu)—B(An).
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For (=0, 1, -, n—1,
|[Do, B1Dyii o, ;< |Do(D:B)il o, s+ |[PoD:, Blidlo,r,

where D,=D, and B 8=(BXR?). Since the order of @, is zero, by Theorem
Ap.5 of [6] we have

(5.13) \[DoDy, Bltlo ;= C()| Bleo, 14 rxr? % o.7-
Therefore,
(5.14) | Folo.y<C(p, BA+p){|%alir+10'%plo.r}.

Applying [5.7) to [5.12) and noting that there exists a d >0 such that Pj"d-0
=d|o|? for any 9 R™H, we have

(5.15) DDt g3 7 +d DDl a5y
<C(p, BA+p){r 1 @pladli +r7" 10" Rp 8 +710ult)
+C(BONY{ D@t D0,y D Dot 5t Do, 7+ D@l uD3.7} .
From it follows that
(5.16) (D@ ;1 t ;S Cu¥ D Dol )i,y for ¢=1, ---, n—1.
Substituting [5.16) into [5.15)] and choosing #>0 so small, we have

(5.17)  (D'@oimds =C(y, BA+p){r | @ald]|8 +r7"10"Up|8 +71dalis)

Next, we shall estimate <(D'@,iiyg>_y/..,. Considering [5.11), we have

(5.18) <D DUin>t 0y

(52 ) A+ 1) n(o, 7. €)Ml o —ir, &, O da g’

=CwWEm ™ |1+1819 " ialo—ir, €, 0|*dodg’

=C&)}Xunlp, r<c(’5)|uH| 17 -
And
(5.19) {D@liyg) 12,y S Dilig)1e SC g1y

From the fact that (|&"|*4+1)"2<(14+1/£)Y%(a® 472+ |£715)7Y% on supp ¢, it
follows that

(5.20) <‘Dn¢11711‘>21/2 r_C(’C)< A 12D @1u}1‘>o r

= C(K)Szoan<A;l/2Dn¢1ﬁH( ) xn)>g.7’dxn
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ézc(’f:)'S:<-A;1/2an)lﬂll(', xn), A;I/ZD%@JZH('; xn)>§.7’dxn

SCWIDptdmlo | A7 Ditig o,y .

We have

(6.21) | A7 D3ty o, SC{r 1 PrlU] o+ gl r+7710"p 0.1},
where C=C(B(l)).

Since

D3t g=(P¥" ) {Puli]+ Dt uy— PY DoD:th u— (P +Pi)DeDrii n
—(D;P§)D i p—PRD;D il y+i Py pDjiip} ;
| A7 ADvu o, r = | A7 Di(Aw) o,y + | A7H (D Ao,
gClAlm_l,RxRQIulo,r for any A= 3°(RXR?Y);
[Ayulo y=Cr~*ulo for any weighted p. d.o. A; of order —1,
we can get immediately. Applying to (5.20), we have
(5.22) Dp@ili' Y2110,y =Clk, BA){|n|3+7 721 @Lul#]18,+7720"Upl5, 1} -
From (5.18), and (5.22) it follows that
(5.23) D@yly' Y20, =Cle, B {|8ulf 7172 @uld]ls +77?10%plE,}.
By (5.17) and (5.23) we have
(5.24) CDg'y 1y SCrliig| b+ | Prld]13 4774 3'Ep 12 1},
which together with implies (5.10). =
By using [Theorem 5.3, we shall get the energy estimate of the same type
as (E.1). Note that we can rewrite the operators as follows:
P [ #]=0% 1 —0,(P%04il 1) — P30,0,1l y— P p0,iip ;
Pp[]=P20,1 p—0;(P#0 il p)— Ph0o;ii p— P}40,0 .1 y— P00, 1 ;
Quli]=—P0orti g+ Qupiip+ Q% ;
Qpl8]=—Pp*0,ilp+ Qpu0:li u+ Qb n0sly .
Let e<[0, 1] and put
Pu()[U]—2e0,0. 4y if E=H,
_@g(t)[ﬁ]:{ . .
Ppt)[4] if E=P,

PR O)=PRM®)+2el,,,  PR®O=PR®, ¢=1, -, n—1.
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Hereafter, we assume that all functions are real-valued, and we use the nota-
tion D'u=(0,u, 0,u, ---, 0,u) again.

LEMMA 5.4. Let T>0. Assume that (A.5.1)-(A.5.5) are valid and that 0<
e<1. Then, for any #<C>=([0, T]; H¥R%) such that 0u(0, x)=0 in R} for
any k=0, there exists a constant C=C(B(14p))>0 such that

625 [UDaaI+1arIDds+| Dhu(s)2inds

S AR O IO R EXOICION

+(Qu(s)[U(s)INT /2 +4Qp(s)[U(s)IN21 2t ds  for any 0<t<T,
where C is a constant independent of «.

PrROOF. Let ¢, be any time in [0, T] and fixed. Put

S Py(s)Lu(s, x)]  for 0=s=t,,
S u(s, x)={
for s<0,
Qr(s)[u(s, x)]  for 0=s=t,
gE(S, x):{
for s<0 (E=H, P).

We known that fzeC'(—oo, #,]; L¥RY) and greC'(—oo, t,]; H*RE) (E=
H, P). Choose a,, a,, b, and b, such that by,(—ay)*+b,(—a,)*=1 for £=0, 1.
(i.e. a,=1, a,=2, by,=3, by=—2). If we put

frt, x) for t<t,,
(5.26a) Fult, x)= )

D=0 bif ete—a,t—t,), x) for t>t,,
get, x) for t<t,,

(5.26b) G, x):{
D=0 biZe(te—ai(t—to), x) for t<t, (E=H, P),

we know that

(5.27a) FeeCY(R; L*R})), GeeCYR; H'*(RY}) (E=H, P);
(5.27b) Fe(t, x)=2E®)[u(t, x)], Ge(t, x)=Qe®[u(t, x)] for 0=t<t,;
(5.27¢) Fg(t, x)=0, Ge(t, x)=0 (E=H, P) for t<0, or t=2t,.

Let 9=y, 9p)=X>°([0, ) ; R})XZ"([0, «); R}) be a solution to the following
problem:

(5.28a) Py®)[0]=Fn, Pp()[0]1=Fu in [0, o)X R%,
(5.28b) QuO[9]=GCGu, Op[7]=GCp on [0, )X R3,
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(5.28C> 2)'11(0, X)"——aﬂjy(o, X):O, ij((), X):O in R.’,"

In view of [5.27c), (5.28) satisfies the compatibility condition of order 0. If >0,
then the assumptions of § 4 ((A.1)-(A.4")) are satisfied. Therefore, the existence
of o is guaranteed by [Theorem 4.13 Put #°¢, x)=09(, x) for t=0 and =0 ¢<0.
Since we know that 0%y(0, x)=0, 9,550, x)=0 from and (5.28¢), 7%
X*(R; RY) and 9= ZV (R ; R?). Put T,=max(T,, 2t,). By (A.5.5) we have

(5.29a) agag,—-éi: 0%y — 260,005 =0  in [T, o)XRE,
—0,0%=0 on [T, co)XRE,
(5.29b) a,ﬁg-—é 332 =0 in [T, «)XR?,
—3,98=0 on [T, «)XRE.

Multiply and 9% by 0.0%, and [5.29b) by #%. Integrating the resulting
formula, by Gronwall’s inequality we have

(5.30a) | D% @2 <exp t—THIDDY(T|>  for t>T,;
(5.30b) log@®I2<exp ¢—TOIog(TDIIE  for ¢>T,.
Differentiating (5.29) with respect to f, we have
(5.31a) D0, 0% @)?<exp ¢t—T)|D*:9%(T1)|* for t>T,;
(5.31b) l0.0p@I° sexp ¢—T)I0:.0x(T >  for t>T,.
From the properties of Laplacian, we have
(5.32) 195 Ol < C {10705 O+ 10:05 O+ 155D},

196Dl = C {10020 ||+ 1521} for t>T),.
Combining (5.30)-(5.32), we have
(5.33) D255 #)]|2+ 1185801 *+ 158)]l2

= C(exp (t—T ) {| D*0%(T ) 11*+118:05(T DI+ 193(T 1%}

for any t>T,. Therefore, for any y>1, we see that "€ A RXR})X I3 (RXRY).
From [5.27c) and [(5.28a), it follows that @%[9°]=Fr in RXR?, Qg[#°]=Gg on
RXR" (E=H, P). By [Theorem 5.3, we obtain

(5.34) 7U% 13+ 19213 )+ 150812+ < D0% D210,
= {7"1 { Fy | 3,7'*‘7’_1,FPI%.r+<GH>%/2,r+<GP>31/2.r} ’

for any y=7,. By the definition of Fy, Fp, Gux, Gp, we have
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t to

Ful$;<C| I@nMue1ds 5 1Fls,=C| Iesorac)ids;

t

Gt r=C| (QuHSDinds;

t

(Ge>2us.rSC\ (QHIES)I)21ads

By (5.27b) and the uniqueness of solutions, we see that #i(¢, x)=iig(¢, x) for
0=t<t, (E=H, P). Therefore, the lemma follows from [(5.34). m

To get the same estimate as in for any # = (g, ip) =
X®[0, T]; RHYXZYY[0, T]; R?) such that % 4(0, x)=0,# (0, x)=0, %p(0, x)=0
in R}, we need the approximation of i :

LEMMA 5.5. Let d=(y, ippcX?>°([0, T]; RHXZ"Y[0, T]; R?) be a pair
such that uy0, x)=0,ix(0, x)=0, #p0, x)=0 in R%. Then, there exist U*=
(%, up)e=C=([0, T]; HXR?Y) k=1, 2, --- satisfying the following properties;

(a) ot *(0, x)=0 for any k=1 and [=0;
(b) I DYk () —idn@)|—> 0  as k—oco, for any t<[0, T];
0" (e (t)— il p(t)) || —> O as k—co, for any te[0, T];

© S:”Dz(ﬁn(t)—1'2,,(1‘))“2dt — 50 as koo

[ a8.@s0— 2o+ 1@~ dt —> 0 as koo,

PROOF. In the same manner as in Lemma 6.7 of [6], we can construct #*,
so that we may omit the proof. m

‘THEOREM 5.6. Assume that (A.5.1)-(A.5.5) are valid and that 0<e¢=<1. Then
for any uU=(iy, up)eX>*%[0, T]; RH)XZ"Y([0, T]; RY) such that #gyx(0, x)=
0.4 50, x)=0, #p0, x)=0 in R? and for any T >0, there exists a C=C(B(1+p))
>0 such that

(5.35) Na@iE-+ 154 n(s) 1 ds

=Ce| {leuE a1+ |2 eI’

+4Qu(s)[Uu(s)INt . +LQp(s)[U(s)INE1/2} ds
for O0Zt<T.
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PROOF. For ¢=(0, 1], by Lemmas and B.5, we have

(5.36) | D P+ NN (D T (5)) 2110
= Ceot| {l@ula®I+Ieplaes) e

HOR[USO Wi+ (QelU() N2t ds 0=t=T

for any pair #=(Gx, Lp)eX>([0, T1: RDX Z“Y[0, T]; R?) satisfying #z(0, x)
=0, x(0, x)=0, p(0, x)=0 in R?. Since the constant C in [5.36) is independent
of ¢, letting ¢ |0, we have that is also valid for e=0. Calculating
(PyLUM)]+ddyg@), 0,8 5(1) and (Pp[u()], #p(t)) and combining the resulting
formulas, we have

6.30) 0@ a®*+ 4 a®lt -+ O

=C S:{HEP%W(S)]IIZ+HEPP[17(S)]II2+<<Qn[l'i(s)]>>?/z+<<Qp[17(3)]>>3uz} ds

+C S: 1D & w()|2 4118 p()F+(D e p($)) 2110 ds

where C=C(H(1)) (0<e<1). Combining [5.36) and (5.37), we obtain [5.35]. =

Considering the adjoint problem, we can get the estimate in the case of
non-zero initial data. At first, the following Green’s formula is got.

LEMMA 5.7. Assume that (A.5.1)-(A.5.4) are valid. For any pair u=(l g, Up)
and V=g, 0p)=X*°([0, T]; RY), we have the following identity :

639 | (@), dsus)ds+| (@e(s)Li(s)], pls)ds

= (0.4 u®), 0.05(1))—(0:41(0), 0,05(0))
+(P¥@®)0 i u(t), 0;0 (1)) —(PH#(0)0 % 1(0), 0,9 1(0))
+(Ppt)up(t), vp(t)—(Pp0)ip(0), p(0))

—| @i n(s), PR Dds+| @rls), PEHO(Dds
—'@iuts), OB Dds+] <ns), QBB ds

| <ns) 8], Bn(s)rds = QRO vos)>ds

for 0<t<T, where
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L OO ]=050 u(t) —0,(PH!)0x0 (1)) — PH<(1)0,0.01(t) ;
LEOO()]=— PR(1)8.0 p(t)— 05 PE()0,Vp(1))
+EPE1)0,0p(t)+ Pl p()0,0:01(1) ;
QM) ]=—P¥ )00 1) —(QY + PF*)(1)0.9 1)+ Q% p(t)05(t) ;
QFO[I)]=— P (1)0,05(t)— Q¥u(t)0:0u ;
Q¥rlt, x)=[—"PEy—"(Qru(PEF) QW) —"(PF(PE)'QWIC, x);
pult, X)=[—'Php—"Qupl(t, x)

and where A= B means

A= =CBO([1D4nlrds) " +([1arids) " (( caeras) ™

+(| coutads) “p{([ 1Dl as) "+ ([ 1or11as) "}

PROOF. NOtlng that P?{kakﬁH:Q}II:ﬁ]—-Qypﬁp—QgiazaH and —ngakﬁl’:
QplU]—Qpu0iin—Qhudsiy on I', we can obtain (5.38) by integration by parts.
]

THEOREM 5.8. Assume that (A.5.1)-(A.5.5) are valid and T>0. Then, for
any d=(ly, up)€X*°([0,T]; RH)XZ"}0,T]; R:) there exists a C=C(B(1+pu), T)
such that

(5.39) llZ@IE< C {I| D' #(0) |2+ || p(0) | ®
AR O IO SN PN IO
+Qu(s)Lu(s) Mt +4Qp(s)[U(s)[d(s)IN21/2)d s}
for t[0, T] and 0<Le<1.

t
PrOOF. To estimate S(&tﬁ u(s)>2%,,.ds, we solve the problem for @¥, ®¥%,
1]

Q¥ and QF from t=t, to 0. Namely for any g,t)eC%([0, t,]XR?), t,c[0, T]
and 0<e<1, we solve

(5.40) PEOLD@B)]=0, PEOLOOI=0  in [0, t,1X RS,
FOLOGI=gu), QF®[3®)]=0 on [0, t,]X RE,
Uu(te)=0:01(t,)=0, Up(to)=0 in R}

Since gu(t,)=0 on R}, the compatibility condition of order 0 is satisfied at t=¢,,
i.e.
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FOOO]1 =, =8 n(t)=0, QE®LV(B) ] 1=t,=0 on [

Therefore, if we put w()=0v(t,—t), we can rewrite (5.40a) as follows:

(5.40b) P¥Lw@)]=0, PEHLw®)]=0 [0, ti]XRE,
O OLw®)]=gut,—1t), 0FO[w®]1=0  on [0, t,]XR3,
W (0)=0,1 g(0)=0, wp(0)=0 in RZ,

where

B OLw ()] =08 u(t) —0;(PHt—1)0, W u(t)) — P (to—1)0,0:% n(t) ;

P [w(t)]=—Pp(t,—1)0:w p(t) — 0;(PF(t,—1)0: W r())
+EPh(te—1)0; p(t)+ Pl p(t—1)0,0: 8 u(?) ;

OF OLw ) ]=—P¥H (t,—1)0,1 u(t) — (Q¥y + PH*)(to—1)0:w u(t)
+ Q% (e — 1w p(1) ;

Q[ W) ]=—Pp (t,—1)0;@ p(t) — Q¥ (to—1)0: 10 1 .

satisfies the compatibility condition order 0 at t=0, i.e.
OEOLw®)] ime=8r(t)=0, O¥®OLW®Ile==0 on I".

From the fact that

(54.1) Qb+ PEIt— 1)+ o (— PEt—)Z¢

401

and so on, (A.5.1)-(A.5.5) are valid for (5.40b). Assume that ¢>0, then (A.l)-
(A.4") are valid. Therefore, by [Theorem 4.13 there exists a solution w=
(m, WpEX>*"'XZ ([0, t,]; R?) to (5.40b) for any Zx=CF([0, t,]XR*™') and
¢>0. Moreover, by there exists a constant C=C(B(1+u))>0

independent of ¢ such that

t t
(5.43) lllw(t)HIHSOHD%H(S)Hst gCecﬂgo«gn(to—s»ﬁxzds .
Since w(t)=v(t,—1t), if we put t=t,, we have

[2

(5.44) SO (1D ()14 19 p(s) |34 ( D O u()) 21 12)ds

1D 3O+ 1550 1s= Ceo| (@u()tinds

Since ¢, is arbitrary, we can replace t, with ¢ in [5.44). Substituting the solu-
tion s@)=w{,—t) of into (5.38), and combining the resulting formula

(5.44), we have
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¢
645 || <@in(s), gus)>ds|

=10 @)+l +(] 125 tads)

1/2

+(nesoruaeicds ) +({ a3 0ds)

1/2

+([(oretaezinds) “+(| 10T n(s)1ds)

1/ 1/2

¢ 1/2 t 2 t
+(naenas) (] arnras) “px(( (@nsmiads)
for 0<t<T and ¢>0, where the constant C is independent of . Since
C3([0, t]1XR*") is dense in L2*([0, t]; HV*(R"™")), since L*([0, t]; HY*R"™"))
and L¥[0, ¢t]; H Y*R" ")) are dual, and since

[ @t 2inds = CBON| (QuT N1 10ds

+| @ nsntds+ @2+ an(o)ltds)
we have

646) | (D Tu()2ndsS CeT (D ERO) I+ EpO))?
AL I P Al (e a R (eX CAPLRALE

+H] D Ea I+ [T+ () st for e>0.

On the other hand, calculating (L[ U@ ]+ doti 17, 0.7 (1)) and (LpH[UR)], Up(t))
and combining, for 0<e=<1 we have

% ..(.‘.}. {1052 #(s) 1|2+ (PH($)0 & 1 11($)05% () + do|  1(5) |

(5.47)
o dai o,
R OLEOR FONERILROT

< CBONULHLRIN*+ L[+ (Qula N +(Qe 1) 210

+ 1D i ()24 Zp() 24 (D i (s)) 21 2) -
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Integrating from 0 to ¢, and combining the resulting formula and [5.46),
by Gronwall’s inequality we have for 0<t<T and 0<e<l. When ¢t=0,
obviously is valid. Since the constant C is independent of ¢, letting ¢ | 0,
is also valid, which completes the proof of the theorem.

§6. A proof of Theorem 2.1 and 2.2.

In this section, we consider the case that n=2, too. Let us introduce the
following notation:

(O[] =An(O[E]+26 3 ve(x)9deiln

AR t)=ARW) —2evi(X) Iy, A¥(t, x, 0)0:2 yn=AR*(t)0:0: 1 s .

When we replace Ax(t) with A%(#) in problem (N), we call the problem (N)..
Using the local coordinate system, we can reduce the problem (N). to the case
that @=R?, so that applying [Theorem 5.8, we have the following theorem.

THEOREM 6.1. Assume that (A.1)-(A.4) are valid. Then, there exists a con-
stant C=C(MA+p), I', T) such that

(6.1) IZ@IE< C (1D % (0)|12+ ) 2 (0)) 2
+SZ(HJ§1(8)W(S)]H2+HJIP(S)W(S)]HZ
H(Bu()[U(s) M2+ (B p(s)[U(s)IN12)d s}

for any i=(iig, ip)=X>*[0, T1: @)X Z [0, T]; 2) and 0<e<l1.

Next theorem is concerning the higher order estimate.

THEOREM 6.2. Assume that (A.1)-(A.4) are valid. Let L be an integer =2.
For fi=(lpn, ip)cEL[0, T1:Q), we put s, x)=Ax@[i@¢, x)] and Zx(t, x)=
Be)[Ut, x)] (E=H, P). If fz=R¥[0, T]; Q) and gz=RY[0, T1; ") (E=
H, P), then we have

(6.2) @z = C[||E1a,,(0)||2+ | D==22 p(0) |3+ | 0F 2 p(0)®

{1D==2F 5(O)|*-+( D* 22 5(0))%2

, P

+

E=

+jz (1347 0] 3-s- -+ (LB DOV s-sr2

+ 108 Fas) P+ @2 a(s )T ds! |
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for 0t<T.

PrOOF. In the case that L =2, employing the same argument of the proof

of Lemma 4.9, we have by use of instead of (E.1). In the case that
L=3, we can prove by induction on L. m

Now, we shall prove the existence of solutions ts (N) by using the existence
theorem for (N). with ¢>0 which was obtained in §4 and the high order esti-
mate of [Theorem 6.2. To this end, at first we give an approximation for
itial data and right members of (N). Such approximation was given by
Ikawa [3].

LEMMA 6.3. Assume that tUp,cH*Q), i, €HY D), ip,c H¥ Q) and fge
R¥[0, T]; 2), 8e=R¥[0, T]; ) (E=H, P), and that they satisfy the compati-
bility condition of order 0 of (N), i.e.

(6.3) B30, x, 0)t po+ B%(0, x)% 71+ By p(0, x)il py=g (0, x) on I';
HO, x, O)ipy+Bpu(0, x, Ol go+ Bpr(0, x)iig,=gp0, x) on I

Then, there exist Bk, W4, €H=(Q), ipcH™(Q), [4, f4=C=([0, T]; H*(2)) and
8%, 8= C=([0, T]; H=(I")) satisfying the compatibility condition of order 1 of
(N), i.e.

(6.4(0)) 40, x, Ditkyo+ By, Xk i+ Blp0, x)ihe=g%(0, x) on I':
BA6, x, )b+ Bpu(0, x)i%,+ Bhn(0, x, 0)itk,=g%(0, x) on I';
6.40)) 40, x, )itk + B0, X)W+ BYp(0, x)ihi+ B, x, )k,
+BYD(0, )iy, +BYRO, x)ib=0:840, x) on I,
BAWO, x, 0)ulb,+Bu(0, x)ith,+Biu(0, x, 0)it%,+ BP0, x)it%,
+BED(0, x, d)tipo+ ByH (0, x, 0)it,=0.2%(0, x) on I,
where B0, x, d)ii(x)=0i[B(t, x, 0)i(x)]|:=0 and
(6.5) =740, x)+ A%, x, Ditko+ A4 (0, x, ik,
+ A0, x, Dby e H (D) ;
A0, )70, x)+ARO, x, )i+ Apr(0, x, ity
+Apu0, x, U4, €HYR).

Il

>k
Upi1

Moreover we have
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(6.6) @570 — U mol| 3+ 181 — U i 13+ 18 Bo— U ol

+.3 1 sup 1750 —Fr01*+ sup (@hO—2=0)h

E=H,P \tel

1 T - -
+.3 2| (80— Fse) 1P+ @Esn—2s@))de}
=H,Pl=0J0
—> 0 as k—oo .,
PROOF. We can choose i, B, 0be = H=(R), Ry, hbe C=([0, T]; H*(2))
and g%, 8= C>([0, T]; H=(I")) such that d#%,—uy, and db—p, in HAQ), ¥%,—

i in H(Q), hy—Fs in R*[0, T]; 2) and gt—gr in R¥(0, T1; ') (E=H, P)
as k—oo. Let W%, and wh,cH>() be solutions to the equations:

(6.7) —0,(AF(0)0;®%0)+Anibl, =0 in 2,
—0y(AF(0)0;i0%0) + ApiW =0 in Q,

B(0, -, )i+ Brr(0)iwhs
=Zgx(0)—(Bx(0, -, 0)0ko+Brr(0)oki+ By (0)0%:) on I,

BII)(O, *s a)wP0+BF1’H(0) °s a)w%O
=g5(0)— (B0, x, 0)0bo+Bpu(0, -, )04+ Bpr(0)0%,) on I

guarantees the existence of W%, and Wh=H>(2), and using the
estimate of implies that

(6.8) |@0%0 a4 |0 %]l —> 0 as k—oo,

Put @4, =%, ik, and G, =0%,+ ik, Then illy, ik, Py HQ), hecC>([0,T7;
H>(2)) and gt=sC=([0, T]; H>(I")) (E=H, P) satisfying the compatibility con-
dition of order 0 of (N) such that #%,—uy,, #by—HUp, in H¥Q), ?%4,—Uy, in
HYD), ht—Fe in R¥[0, T1; Q) and gi—gz in RX[0, T1;T) (E=H, P) as
k—co, Put

(6.9) Uy =R%(0, x)+ A%, x, ))itho+ A4, x, D)dm+ Ayp0, x, D)k, ;
Db =AY(0, x)7 {h(0, x)+ AR, x, )b+ ARn(0, x, )ik,
+Abn(0, x, 0)05}.
Let w%, and @%, be functions such that
(6.10) By(0, x, )ik, =(3:8%)0, x)— {Bx(0, x, 0¥+ Bu(0, x)ik,
‘ +Bgp(0, x)0% 4+ BEV(0, x, 0k,
+ By (0, x)d%,+ Byp0, x)ik} on I,
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wWhil r=0,  [lwinl,<1/k;
(6.11) p0, x, )wp, =20, x)—{BEO0, x, O)vp,+Bpu(0, x)ith,
+Bpu(0, x, 0)(0%,+wh )+ BE(0, x, 0)iih,
+ B¥R (0, x)(@+wh)+BEY O, x, d)ith,} on I,
Wh | r=0,  |loglL=1/k.

The existence of %, and wh,eH>(L) is assured by Lemma 3.8 of [6]. We
put @, =0y, +wh,, U =0k + 0}, f’fi(t, x>:;’§1(t, x)— Ay (0, x, 0“)w}%, and f’lz’(t, x)
=h&(t, x)— Abu(0, x, 3wk, + AL, x)wh,. Since wh,|r=0, ik, ik, i, F&and
g% satisfy (6.4,,). By the definition of f’;, and f’;,, we see that #%, and %,
satisfy [6.5), and by and (6.9) we know that (6.4.,,) and are valid.
Therefore, these il%,, 4, ik, ib, @b, f4% and g& (E=H, P) are required
approximations. =

PROOF OF THEOREM 2.1. First, we assume that i zjo& H=(), lig,cH*(R),
ipcH=(Q), fr=C=([0, T]: H*(2)) and gesC=([0, T]; H*(I")) (E=H, P) satisfy
the compatibility condition of order 1 for problem (N). Put

/?%(t, x):]_‘:n(t, x)+2e é Ui(x)aiﬁ o1«
i=1

Then @ gy, %y, Upo, fﬁq, fp, g and gp satisfy the compatibility condition of
order 1 for problem (N), for 0<e<1l. Then, for ¢>0 by Theorems and
we see that there exists a solution #‘eX*°([0, T]; 2)xZ*([0, T]: 2) of
problem (N). with initial data #,, %, #p, and right members f% and gp (E=
H, P). Since

1D Fs I+ 10:F 55O < 1D F @) |+ 10 F 5@ |+ Cellimlle
by we have
(6.12) | D% @) ])2+ | %amnwg 18i25)113-.;

< C{moll3+ I m 3+ mal+ 1 F RO
+ 3 (D' fs(O)*+(D'Zx))ie)

1

3 (101 F s))2- ;4 (B )2 re-))

E=H.P j=0

+

M

1327 5(5)1H (@) ) s

E=H.PSO

+
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Since the constant C 1s independent of ¢, the right-hand sice of is inde-
pendent of . Let us observe that #°—i¢" satisfies the following equations:

(6.13) Ji,(t)[ﬁewi’ﬁ']=2(s’~s)i§ ()00 05+ for— 1% in [0, T]X®Q,
Ap)[HF—1*']=0 in [0, TIXQ,
Ba®)[U—1]=0,  Bp@)[H—u*]=0 on [0, TI1x T,
Uy —u5)(0)=0,(Uy —uy)(0)=0,  (dp—ug)(0)=0 in L.

Since Fy—Fo=2(c—e) 2%, v:(x)0:¥ a1, applying to (6.13) implies
that

(6.14) Ill(ﬁs—ﬂe')(t)lllﬁéC(6’~6)2{Ilfimf|2+Ilazﬂi}(t)ll2+S:I13§17§}(S)H?ds},

where C is independent of ¢ and ¢’. From [6.12), letting ¢ and ¢’ | 0 in (6.14),
we see that the right-hand-side of (6.14) tends to 0. Therefore {#¢} is a
Cauchy sequence in E*[0, T]; 2), so that there exists a #=(l g, Up)E*0,T]; Q)
such that #*—# as ¢ |0 in E¥[0, T]; 2). The limit # satisfies (N).

To remove the additional assumption, we use the approximation constructed
in Lemma 6.3: o, Uy, T EH7(Q), fr=C=([0, T1; H=(2)) and gt C=([0, T1;
H>(I")) (E=H, P), which satisfy (6.3)-(6.6). Then, we already know that there
exists a #*=(%, uk)eE¥[0, T]; 2) satisfying (N) with initial data #%,, #%,,
%, and right members f% and g% (E=H, P). Let us apply with
L=2 to #*—u*, and then we have

6.15)  |i@*—u* )lE< C[H Uhyo— ol 3+ i — Wil 3+ 8o — Uoll3

+

E

HI(Fe—FE)OI L@ —B5) ()

=M

RGOS O

!

+ 2 [ (o Fa— NI+ @H@s—2E)sNTds } .

From [6.6), it follows that the right-hand side of (6.15) tends to 0 as 2 and
k’—oo. Therefore {#*} is a Cauchy sequence in E¥[0, T]; £2) so that there
exists a Imit =iy, Up)=EX[0, T]; Q) satisfying (N) with initial data #%g,=
H¥D), imeHNQ), ipocHXR) and right members fz=R¥[0, T]; 2) and gz
R¥[0, T]; ) (E=H, P). The uniqueness follows from [6.1I). Hence the asser-
tion (1) in has proved. in was already proved
as [Theorem 6.1, and (2.6) in can be obtained from (4.1) immediately,
which completes the proof of [Theorem 2.1 with n=2.
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can be proved by in the same manner as in [[2],
p. 364-p. 367] or [[1], p. 604-p. 607]. m

§7. Energy estimate for n=1.

When n=1, we may assume that 2=(0, 1) or =R, (={x=R|x>0}). The case
that 2=(0, 1) can be reduced the case that 2=R,, so that we consider the
case that 2=R,, below. We can write the problem (N) as follows.

Ar@®[1]1=83 1(t)—8:( AR )01 1 (t) — AR ()3 -0:% (?)

— Al p(t)3: 7 ()= u(t) in [0, TIXR,,
Ap) (8] = AL)D. T p(t) — D AR 11 p(t)) -+ AB1)3 = L p(t)

— A (1)028 (1) — ABn (0800 u(®)=1 p(t) in [0, TIXR,,
B n(O[#]=— AY®)9:8 u(t)+ B up®)il p(t) -+ B30, n(2)

=Zxu(t) on [0, T],
Bp®O[U4]=— AP ()0 %p?)+ Bpil p(t)+ Bpu(t)d:i n(?)

+ B u(t)0:% u(t)=2p(t) on [0, T7,
Ug(O)=tm, 0Udn(0)=tm, Up(0)=iip, in R,.

Theorem 6.1 is a key to prove Theorem 2.1 for n=2. But, when n=1, we
replace Theorem 6.1 by the following theorem.

THEOREM 7.1. Assume that (A.1)-(A.4) are valid. Then, there exists a con-
stant C=C(H(), T) such that

(7.1) Hit'(t)|1§§C{IID‘fin(O)II”-FHﬁP(O)H2

+ U ORI+ APO LRI+ B uOL] w0l BoOLE] | mol D}

for any =y, UpeX*¥([0, T]; QX Z"Y[0, T]; Q). Here, Ax®O)[id]=An(t)[#]
—2e0.0.%, 0<e<1.

By Theorem 7.1 we get Theorem 2.1 (3). Replacing Theorem 6.1 by Theo-
rem 7.1, we can prove Theorem 2.1 with n=1 by the same argument as in §6.

PROOF OF THEOREM 7.1. Calculate (Ag#)[# ]+ 0ol , 0:% 5r) and (Ap@)[ %], U p)
by iteration by parts and combine the resulting formulas, then we have
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1d

T2 g

{”atun(t)” +(AR®0: U 1), 024 1))+00[|Zr@)|*+(Ap®UP®D), Up))

—Hafp(t)ll +BuE O+~ A 7(t, 00)0:% 1i(t, 0)-0.2 n(t, 0)

< 3 [ AOIRTI* C(H), 8 {18:k nOI*+ [ n@E+ 101

+C(HD)(upt, DID UL, 0+ Ut 0)]?)
+ 1 Ba®)[8] | 2=oll0cthut, 0)| 4| BpO[A] | 2=0lldp(, 0)].
Calculating (Ax(#)[#]. 0:% ) by integration by parts, we have

73 2@, i)~ (AYODeit (), 3220}

5 A, 00.1ut, 0)-0.1ut, 0+ 13n(t, O

=< IlJlH(t)[u]ll +C(HD) @ a®NIi+ ”a:cuP(t)” 02 & (@I} -

Multiplying by ¢>0 and combining the resulting formula and (7.2), we
have

(7.4) {”atuH” + (AR08 u(t), 021 p(£))+0,l| % n(®)]|*+ (ARB)LL(E), ©Lp(t))

+0@cn(0), il nlt)+ 5 (AB O n(®), D:Tm(®))]

D | 2uitutt, 01+ 10calt, 0)1*+ L 12D

éE:;_‘. P(IIJE(t)[ﬁ] 1241 Be@[8]] 20| D+ Ax@®[#]]*
+C(HM(L), 01, o) {l|0:un®)*+IZu®OIT+ZD]%} .
Here we have used that

(7.5) [, OIP=Cla-amIE®l -

Applying Gronwall’s inequality to and taking ¢>0 sufficiently small, we
have (7.1) in the case that e=0. When 0<e<1, by the same argument we can
prove the theorem.

Theorem 2.2 with n=1 can be proved by in the same manner
as in [[2], p. 364-p. 367] or [[1], p. 604-p. 607], too.
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