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THE LIMITING AMPLITUDE PRINCIPLE FOR THE
ACOUSTIC WAVE OPERATORS IN
TWO UNBOUNDED MEDIA

By

Mitsuteru KADOWAKI

1. Introduction.

In our previous paper Kadowaki [3], we have proved the nonexistence of
eigenvalues and the limiting absorption principle for the acoustic wave operators
in two unbounded media. In the present paper we study the limiting amplitude
principle for these operators. We assume that the propagation speed is dis-
continuous at the interface and the equilibrium density is 1.

Let n=3 and x=(y, z)&R"*XR. We deal with the asymptotic behaviour
(as t—+4o0) of the solutions of the following Cauchy problem
(1.1 { fu(t, x)—a(x)'Au(t, x)=exp(—itvw)f(x)  (, x)ER,XR",

. u(0, x)=0,u(0, x)=0,
where w>0.

We make the assumptions for the interface separating two media and a(x).

Let ¢o(y)=aly| and ¢(y)e C'(R"*"*\0), where a=0. We assume that ¢(y)
describes the interface and satisfies

(A.0) IEsllyl“”la"‘(sb(y)—soo(y))I=0(|yl"9) (1y]—=00),

for some 6>0, and

(A.1) lyl'*'[a%e(»)I=0(y1"")  (y]-0),

layst

where 0<o<1/2. For ¢(y), we use the following notation
Q.={x=(y, 2): 2>¢()},
Q_={x=0, 2): z<p()},
S={x=(y, 2): z=¢(¥)}.

We denote the unit normal vector at the point x&S by v=(v, vs, ***, Va1, V)
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with »,>0.
The propagation speed a(x)>0 is assumed to satisfy following

(A.2) l/c<a(x)<c
for some c¢>1, and there exist a.>0, aj(x)eB'(£.) and as(x)e L>(R") such
that a(x) is decomposed as
a(x)=a.+ai(x)+as(x) (x€2.),
(A.3) Siais 20 i) =0 x]"")  (|x]>+0eo, xE£2.),
as(x)=0(|x|7")  (Ix]|—>+e0),

for some 6>0.

Under (A.0)~(A.3), we show the limiting amplitude principle of the acoustic
operator, —a(x)*A, for (1.1).

There are many works dealing with the limiting amplitude principle for
the acoustic operators. For example Eidus [2] has proved the limiting absorp-
tion and amplitute principle for two unbounded media problem with the interface
satisfying the following condition : for any x&S

(1.2) v,=C,>0
(1.3) ‘X')J|§C2
where C;>0(;j=1, 2), are independent of x&S. For example,

sin| y|
|31

e(y)E CHR™™), p(y)= (y>1), po(y)=0

satiafies [1.2) and [1.3), but not satisfies (A.0). We can also deal with the fol-
lowing interface not satisfying [(1.2),

eMN=1y|"°, ©o()=0

where, 0<a<1/2. The propagation speed considered in Eidus [2] is a piecewise
constant function while we can perturb the propagation speed. Tamura has
proved the limiting amplitude principle for the acoustic wave operators in in-
homogeneous media. Kikuchi and Tamura [4] have also proved this principle
for the acoustic wave operators in perturbed stratified fluilds.

In order to show the limiting amplitude principle for our operator, we need
a low frequency behaviour of the resolvent (see Eidus [1]). In [4] and [7],
they use Mourre’s method to show a low frequency behaviour of the resolvent
and show the limiting amplitude principle. We also use Mourre’s method to
show a low frequency behaviour of the resolvent of our operator (Theorem 1.1)).



The Limiting Amplitude Principle 177

We now define the acoustic operator L as
(1.4) L=—a(x)A
Under the above assumption, (A.0)~(A.3), L is symmetric operator in the Hibert
space L2(R"; a(x) ?d x) and admits a unique self-adjoint realization. We denote
by the same notation L this self-adjoint realization. Then L is a positive
operator (zero is not an eigenvalue) and the domain D(L) is given by D(L)=
H?*(R™), H*(R™) being the Sobolev space of order s over R*. We also denote
by R(z; L) the resolvent (L—z)"* of L for Imz=+0.

We need several notations to describe our results. Let L? be the usual L2
space defined on R™, with the inner product

Cu, v>=5u<x>mdx

and the corresponding norm |-|,. For a=R, let L2 be the weighted L? space
defined by

L2={u(x): {x>%u(x)es LAR")}, <x>=(14+|x|*"?,
with the norm
lu|§=S<x>2“]u(x)|2dx.

Let A: L3—L% be a bounded operator. We denote by ||All,.s the operator
norm considered as an operator from L} to Lj}. If, in particular, A: L*—L?
is considered as an operator from L? into itself, then its norm is denoted by
the simplified notation || A].

In Kadowaki [3], we have obtained the following result

THEOREM 1.0. Assume that (A.0)~(A.3). Then

(1) L has no eigenvalues.

(ii) Let 2,>0 and a>1/2. Then there exists some compact interval ICR,
containing A, and a positive constant C=C(A,, a) such that

[Kx>~*R(A+ik; LXx>™*[=C,

for A1, 0<k<1.
(iii) For every 1>0 and a>1/2, the following two limits

R(A+:0; L)zliglR(Ziz'/c; L),

exist in the uniform operator topology of B(LZ, L%,). Moreover R(A+10; L) are
locally Hilder continuous.
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The aim here is to prove the following.
THEOREM 1.1. Assume that (A.0)~(A.3), Let a>1and B>1/2. Then there
exists d, 0<d<1/2, such that
IR(2+£:0; L)lig~-a=0(2"9), (24— 0).
By and 1.1, we have the following theorem (see Eidus or
Tamura [7]).

THEOREM 1.2 (LIMITING AMPLITUDE PRINCIPLE). Assume that (A.0)~(A.3).
Let u=u(t, x) be the solution of (1.1) with fe L}, §>1/2. Then u(t, x) behaves
like

u=exp(—itvo ))Rw+i0; L)f+o(1), (t— )
strongly in L2,, a>1.
Acknowledgement. The author would like to express his sincere gratitute

to Professors M. Matsumura and K. Kajitani for their generous advice and
kind encouragement.

2. Reduction to main lemma.

We consider only the case 1=a~2<a;®. The other cases can be proved
similarly. We define the self-adjoint operator H(1) on L? by

{ HAD)=—A—Aa"%(x)—1)

DH(A)=H*R").
Then we have
R(A+irc; L)=Q(A, +ix; H(A))a *x),

where Q(A, +ix; HQA)= (H(Q)—AFika %(x))"'. Therefore, is ob-
tained as an immediate consequence of the following.
LEMMA 2.1. Let the pair (a, B) be as in Theorem 1.1. Then
1Q(A, £i0; HAg--a=0(2"%), (2A—0),
for some d, 0<d<1/2.

By the assumption (A.3), we can decompose a~*(x) as a~*(x)=FEi(x)+
E)x)x€8.) in such a way:

2.1) Iglﬂlxl“”Iaé'(Ef(JC)—a:”)l=0(Ix|"’) (Ix]—o0, xE4.),
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(2.2) Ex)=0(1x|""% (x| — ),
2.3 PIRCI [03(Ei(x)—a)| =0,  (x€82.),

for 9,>0 small enough, d, being fixed throughout.

LEMMA 2.2. Let H(A)=—A—AE«(x)—1), and a>1. Then, we have
(2.4) [(H(AD)—AFika™%(x)) Y gua=01), (4A—0),
uniformly in k>0 small enough, where E,(x)=Ei(x)(x<8.)

We show that follows from Lemma 2.2. We need the following
two lemmas to estimate an integral on the interface S.

LEMMA 2.3. Let s>1/2. For ueS(R") (Schwartz space), we define

(T, u)y)=uly, ¢(¥)
T, has an extension to a bounded operator from H*(R™) to L¥R"™').

For a proof of Lemma 2.3, see that of of Kadowaki [3].

LEMMA 2.4 (SOBOLEV’S THOREOM). Suppose that
1/2—1/m=1/q, 2<g< 0.
Then we have the embedding
HYR™ —_, LYR™).
PROOF OF LEMMA 2.1. We prove in the same way as in the

proof of Lemma 1.1 of Tamura [7]. We assume [2.4). Let a>1 and 8>1/2.
We assert that

(2.5) I(H(D—2Fika (%)) gaa=0(1""%), (21— 0),
(2.6) [(Hy(A)—AFika % (x) Y g p=02""), (A—0),
uniformly in £>0 small enough. By (2.5), and [Theorem 1.0(iii), we have

Lemma 2.1 (see the proof of Lemma 1.1 of Tamura [7]). We prove the asser-
tions (2.5) and [2.6). We consider the + case only. Let u=(H,(A)—A+ika %(x))"'f
with fe L% Then u satisfies

(2.7) (—A—2E(x)+ika " (x)u=f.

We take the L? scalar product of <{x)7u with equation [2.7), where y=0. In-
tegrating by part and taking real part, we have
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(2.8) x> u, Yud—1/2<u, (N{x>u)
=X Eu, <x>Tud-+Relf, {x>7Tuy.

Let d<min{6, ¢}, 0<d<K1, be fixed arbitrarily. Let X(x)={X'}s;s» be a real

smooth vector field such that
(1—1x1"%y,/| x| =123, -, n—1)
XY(x)= '
A—1x1"%z/1x]  (G=n)

for |x|>R and
suppX’c{|x|>R’},

where R>R’>1. We use the summation convention. Noting that

Bopaui=(1rr =z ) 10
+-%F%;élx?lajulz—ﬁé!x?lajulz (Ix|>R)

and

3 RedUo,udyu|

(o= )3, Sl (>R,
we have
(2.9) RedsX9,uduzColx> | Vul?,  |x|>R.
We take the L? scalar product of X-Vu-+(1/2)(V-X)u with equation [2.7). we have
(2.10) {=Au, X-Vu+1/2)N-Du)

—XEu, X-Nu+(1/2)N-LDu>
+ina~2(-)u, X-Vu+(1/2)(V-X)u)
=<f, X-VNu+1/2)N-Dyu).

First, we calculate the first term of left side of [2.10). Integrating by parts,
we have

(2.11) Re<—Au, X-Vu+1/2)N-Du
=Re<(3kxf)aku, 6,u>——1/4<(8§6,l’)u, u)

In orded to calculate the second term of left side of we set w,=z—¢(y)
and w'=(y,, ¥s ¥s, -, ¥n-1). Then we have
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1 0 0 0|
D,z _| 9 L0 Y
Dw’, wa) 0 0 o i 0 '
—01p(w’)  —0up(w’) - —u_ip(w’) 1

Thus, integrating by parts, we have (for detail, see the proof of
of Kadowaki [3])

(2.12) Re<Eu, X-Vu+1/2)(N-Xup=—1/2{Fu, u)

+1/25 2(y, o(¥))- V() =2y, gINET"—ETI) T ul*dy,

Rn—l(

where XY= {¥}1sjsn-1, F=%-VE(x)(x€£2.) and EF’=E(y, ¢(y)x0).
Noting that and (2.12), we take the real part of [2.10). Then we have

(2.13) Rel0:X)0ru, 0;u>—1/4<(030,7)u, up+A/2{Fu, u
—Z/ZSM_I(X?’(% () Vyo—=2", e(YMET—ET)T u(y)|*dy
=Relf, X-Vu+1/2)N-Dud+rImia=?(-)u, X-Vu),

We set a=1+6 and f=(1+0)/2. Assume that feL3. In order to prove (2.5),
we first estimate the fourth term of the left side of (2.13). Take 0<7,<1 and
R,>1 such that if |y|<r, or |y|>R,, we have |y|*+|¢(y)|>>R. Using 7,
and R,, we decompose the fourth term as

Sm_l(xy(y, e V=X, YNNET'—EI) T yul*dy

1— 2+ ) 2\—0/2 o » .
:g!yt<r0 ([(lzjl)zl—{—{g[;(pj(;j))li)l)/z (¥ Vyo—o)XET*—ET)IT ul®dy

Xy, eN-Vyp(y)—2"(y, p(YINET'—ET)| T yul*dy

STo<lyl<Ro

1— 2+ 2\-0/2 . L .
+S|y|>Ro (|(l)31’2l+|$|0(€3(,:;)|)2|)1)/2 y Vyo—)EP'—ET)NT ul?dy

:II+IZ+I3° ,
If |y| <7, there exist some C,>0 such that |¢(y)|>C,>0. Then we have

11— |2+ | (y)] )72
Iécg.y.m I ORE

ly-Vyo—ol | T ul?*dy

gcg ly|=2 @+ | T v|*dy,

171<7o

where p={x>~ 1+ /2y,
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If 0<o<1/2, there exist some s>1/2 and p>n—1 such that n—1—a(l+0)p
>0 and (n—1)/2p+s=1. Thus, by and Holder inequlity, we have

S |y~ | T v|*dy
171Ky

scfa+ef, 191770 @y, Olrdydt

(A}

<Crynimraronna( AL LI G, Ol s o-can-ndl

—oco

< Crynmieasonna| (4L @), Dl a-vipcn-ndl

SCry 1m0+ RP(|y |2, 5y e+ VUl 21hoy2),
where %,v(C)=(2n)“”S+°°e*‘<"v(z)dz. By and (A.0), we also have
the following

LeC(  ATuldySCllul o mt |Vl Zaorn),
To 0
ly'vu¢_§0l T tdy<C 2 2
L=C s (19 1 1) 7 I T, ulPdy<Culla.o 2+ 1Vul2aey ).

Thus, we have
@19 [, @0, 60D -Tu0() =2, pONNEF—ET T pul*dy|

SCUul2ar0v e+ I1Vul2aso et 1wl arary e+ VU 2a4ayr2)

Following Lemma 1.1 of Tamura [7], we estimate the other terms of (2.13).
By [2.9), we have

2.15) ReSIIDR(a,,X’)a,u?,_szxg_ c.,Slx'>R<x>—l-5|vu 12dx.
By we have

(2.16) [<(@%0)u, ud| <C|fl%.

By [2.1), we also have

(2.17) [{Fu, ud| =Clullui0)/z-

Noting we use with y=2a to obtain

(2.18) IVulo=Clfla-

It follows from and that
(2.19) |Re(f, X-Vu+(1/2YNV-Dud| <C| f1L.
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We again use with y=0 to obtain

(2.20) |Vul=KEu, up+Relf, uy,

(2.21) ka"¥(Hu, up=Imlf, uy.

By (A.2), and we have

(2.22) elul3=Clfla.

Thus and imply

(2.23) [kImla™2(:)u, X-Vuy| =C| f1%.

Since B<(14+8)/2, (1+0)/2, we have by (2.13)~(2.17), (2.19) and

(2.24) IVu|2p<CAu|2asor et ul2arar)+ClSf G-

Using and with y=28, we have

(2.25) AulZp<CAlu|2asprnt Ul 2arar)+ClfIE-

Again since $<(1+86)/2, (140)/2, (2.25) implies
Aul2s<Clfli

Considering the adjoint operator, we have (2.5). To prove [2.6), we repeat the
same argument as above. Assume that feL3. Then, by the same way as in
the proof of [2.24), we can show that

(2.26) IVu|2p< CA Ul 2ae0r0t U] 2ararse)
+Cul2a+1flg- IVul_g+1flp-lul-p).
Using (2.5) and with y=28, we have
(2.27) AulZg=C(Vu|2s+27" f13).
Noting that 8<(1+6)/2, (14+0)/2, we have by [2.26) and [2.27)
lul_p=CA7' | flp.
The proof of is now complete. W

3. Proof of

In this section we prove by making use of commutator method
developed by Mourre [5]. Let A be the generator of the dilation unitary group:

1
A_-“ézt‘(x'v—l-V‘X).

We define the commutator :[H;(2), A] as a form on H*R")N\D(A) as follows:
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For u, ve HX(R")YN\D(A),
GLHW(A), Alu, vy=iKAu, H\(Qv)—<H\(Au, Av)).

LEMMA 3.1. The form i[H\(R), A] defined on HXR")N\D(A) is extended to
a bounded operator from HY(R™) to H '(R") which is denoted by i[ H(Z), A]".
Moreover we have

i[Hi(2), A]’=—2A+AF\—T¥EL?"—ET)y-Vyo(3)—e(yNT,),
where Fi=x -NE,(x)(x€2.).

For a proof of Lemma 3.1, see that of of Kadowaki [3].
If |p¢l>1, (A4+ip)! sends H*(R™) into H*(R") and as an operator on
H*R"(k=0, +1, +2)

3.1) s— lim tp(A+ip) =1

Lptl—+
is valid (see of Weder [9]). Put A(p)=ipA(A+ip)™!. Using [3.1),
we can prove the following lemma in the same way as the proof of
2.4 of Weder [9].

LEMMA 3.2.

iTH(D), A(p)]=ip(A+ip) iTH(D), ALip(A+ip)™
and
s— lim (—A+1)"V%[H\(4), A(w)I(—A+1)7'2

| g —+oo

=(—A+1)""%[H\(4), A (—A+1)7'2

for all 2=(0, 1), as an operator on L°.
Using Lemma 3.2, we can also prove the following lemma in the same
way as the proof of Lemma 2.5 of Weder [9].

LEMMA 3.3. Let fC35(R). Then

(1) f(H(A) sends D(A) into D(A).

(ii) [f(H), A] defined as operator on D(A) is extended to a bounded
operator on L* which is denoted by [ f(H(A)), A]°.

LEMMA 3.4. Let 0< 2K 1, take f(p)e CHR), 0L 151 such that f; has
support in (A/3, 32) and f,=1 on [A/2, 22]. Then, there exists a positive constant
C which is independent of A such that

(3.2) fA(H(DY[H(D), AL f(H(A)= CAf 2(Hi(D)).

in the form sence.
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In order to show Lemma 3.4, we need the following lemma.

LEMMA 3.5. Let usHYR"). Then, we have

| T ulfern-1= ‘4:2Regg uo,udx .

+

PrROOF. Let u=S(R"). Noting that
S uéﬁ[dx:ig Sw ud,udzdy,
2. R -1)o(y)
we have by integrating by parts

Sei udud = iS lTsouIZdy—Sgiazuﬁdx

Rn -1

Thus we have

Sm_l|T¢ulzdy=¢2ReSQiu8,udx
This implies lemma because S(R") is dense in H(R"). ®

PrROOF OF LEMMA 3.4. We simply write f; instead of f;(H,(1)). For ues
L%, we have (for detail, see the proof of of Kadowaki [3])

(3.3 fHlH(R), Alfau, wd>=2fu, Vfiuy+XKFifau, fauy
—4{,, 0 Vo= gUEL—EDIT fiul*dy.
We estimate the second and the third term respectively. implies that

(3.4) [<Fifau, fauyl, |[K(Ei\—Eo)fu, faud>|=0olfauls,

where Ey(x)=az*(x.). Let r>0 small enough. We decompose the third
term as the following form

[0 0 Tup—UEL— BT T f1ul?dy
={, OV pXET—ED)I T, faul*dy
+Sm>r(y Vyo— X ET"—EO T faul?dy
Repeating the argument in the proof of Lemma 2.1, we have

35 || 0-TomgXBL—EDOIT,f1ul*dy| SCrom=omi((Tf,uli+| £119),

for some p, n—1<p<(n—1)/o.
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Noting that X,,,>-(¥)(¥-Vo—¢) is bounded, by Lemma 3.5, we have
[ 0T B =BT, fauldy | SCC faul, 10, aul>.
Moreover, let >0, small enough. Then we have
@8 || 0 Tp—pXEr—EOIT, faul"dy | Selfauli+C/eVf auld.

Using (3.3)~(3.6), we can estimate the following
falH(D), AL fau, up
Z@—=Car =P —CR/ )N frul§— Ao+ Cr 17224 1)| frul}
=@2—Carn=1=o22P — CA/T)XH Q) f 14, faiu)
+A2—Carn oI —CA/TN(E\—Eo) f au, faud+<(Eo—1)fu, faud)
— A0+ Cr 1P Pt 1)| foulf
ZA2—Caarn1=9PP—C2/7)/3| fau|E—0,A2—CArn=1=oPP_C2/7)| f u |}
+A2—=CAr = 1=oIP—CR/T)(Ey—1)fau, fiud—A0e+Cr=1"P/P4 1) fou|}
Noting 0<4, 7, 7, 0,&1, we have (3.2). ®
Following Tamura [8], we consider cut off functions, X,(x)C$(R") such

that X,(x) has support in {x&R": |x|<2} and %Z,=1 for |x|<1. For >0
small enough, we define

EL (2)=Eo(x)+Xn(ex)E(x)—Ey(x)),
VI=%y>r(9)Xn-1(e¥ Xy -V p(3)— ().
We further define an operator B(s; 1) as
B(e; A=—2A+AF, . —THET"—EI""WIT,
—(ROMET—ETDRY),

where Fy .=x-VE, (x)Xx&€2.), Ri=X\ i<+ (yXY -V 0(3)—p(y)'/T .

We can consider B(e; 1) to be a bounded operator from H'(R") to H (R"®)
(for detail, see the proof of of Kadowaki [3]). For ueH*R")N
D(A) satisfing AusH'(R"), we define the commutator :[B(s; A1), A] as follows

GUB(e; 2, Alu, up= ; GLBy(e; 2), Alu, u

:jé((Au, Bj(e; Dup>—<Bje; Au, Au)),
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where

Bi(e; A=—24+4F .,

By(e; D=—ATHEP—ETWVIT,,

Bi(e; H=—ARME{—~E)R].

Following Appendix of Kadowaki [3], we show that /[B(e; 4), A] is extended
to a bounded oparator H?*R") to H *(R"). By a straightforward calculation,
the form /[B,(e; A1), A] is extended to a bounded operator from H3(R") to
H~Y(R"). Moreover we have that

i[Bi(e; A), AL'=—4A+A(Fy, o5 -V+T* - xFy +nF. ).

implies that i[B,(e; A), A] is extended to a bounded operator from
H'YR") to H'"*(R"), where s>1/2. We also have

i[By(e; 4), AL
=—ATHEP—E?)WIy-T N, +(T VN )* y(E{*'—E?WITNV,
FTHET—ED)VIT 10, +(T 0% ET—ET)e)VT,
+nT¥EY—ET)WIT,).
We define operator P as
Pou=Xyi<r(3X( Vy@p(3)—0(yNe(y)"*T yu,

for ueS(R"). Then we can show that P; is extended to a bounded operator
from H'(R") to L*(R"') (see Appendix of Kadowaki [3]). Thus we have that
i[Bs(e; A), A]° is extended to a bounded operator from H:R"™) to H *(R").
Moreover we have

i[Bs(e; 2), AI'=—A(ROMET—ET)y RN, +H(RGV ¥ y(ET"—ET°)Rg
+(POMEY—ET)P L0, +(P 0, )(E{"—ET")P,
+n(Po*ET"—ETOP)
We define an operator [ B(e; A), A]° as
iLB(s; 2), AT'= 33i[B,(e; ), AL,

Thus the form 7[B(e; A), A]° is extended to a bounded operator from H3*(R")
to H % R"™).

LEMMA 3.6. Let M(e; A) = fi(H(A))B(e; Afi(H(A). Then [M(e; A), Al
defined as a form on D(A) is extended to a bounded operator on L* which is
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denoted by [M(e: 2), A]".

PROOF. The lemma is proved in exactly the same way as in the proof of
of Kadowaki [3]. We here give a brief sketch of the proof.

We write f; for f;(H(A). Since A(y) sends H*(R") into H*(R")(k=0,
1, +2), we have

@B.7  i[M(e; A, A(p)]

=fail[B(e; D, Awlfat+faB(e; Df2, Awl+Ifi, A(w1B(e; Afa.
Again, noting that A(y) sends H*(R") into H*(R"*)(k=0, +1, +2), we have
(3.8)  filB(e; A, Awlfi=faip(A+ip)'[B(e; A, Al%ip(A+ip)™ [
as an operator on L2 and (3.8) imply that
(3.9) s— lim fi[B(e; A), Aw)fi=fi[B(e; A, AI°fa

|‘u|-o+oo

-+

for all 2=(0, 1), as an operator on L% We also prove that

(3.10) s— lim (—A+1"*[fa, A@w](—A+1)"*

| g1~ +oo
=(—A+1)"2[f1, AI(—A+1)'2
for all A=(0, 1), as an operator on L? (for detail, see of Weder [9]).
(3.9) and [(3.10) imply that

(3.11) s= lim [M(e; 4), A(p)]

e

=fi[B(e; A), A fa+f1B(e; D[ fa, A1+ [f2, AI°B(e; Df2a

for all A=(0, 1), as an operator on L% We define [M(e; 1), A]° by the right
side of (3.11).
Finally, for u, v D(A), we have

{M(e; b, AL, v>:;,!i.irl+w(<A(”)u’ M(e; Dv>—M(e; Du, A(p)vd)
=(Au, M(e; Dvy—<M(e; Du, Av). m

We can prove the following lemma by a straightforward calculation.

LEMMA 3.7. As A—0, one has

(i) I(—=A+2V%(B(e; H—BAN—A+A)2=e’0(),

(i) I(—A+)V*((d/de)B(e ; AN—A+)*|=¢"10(1),

(iii) I(—A+D[B(e; D), AP(—A+D =<0 H+0Qa™),
where B(R)=i[H,(A), A]".
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and 3.7 (i) imply that
(3.12) M(e; D=7f3

for ¢>0 small enough, where 7y>0 is independent of ¢, 4. It follows from
that M(e; A) is non-negative and hence we define an operator, G.e; 1), on
L? by

Gule; HA=H(D)—A—ika*(x)—ieM(e; )™}
for k¥, 0<k<1 and >0 small enough.

LEMMA 3.8. There exists &,, 0<&,&1, independent of A such that for e, 0<
e ¢,
[Ge; D=0, (A—0)

uniformly in k, 0<k<l.

For a proof of see that of Lemma 5.3 of Kikuchi and Tamura
[4] or of Tamura [7].

We write
Fe; D=X,G(e; DX,,

where X;=(1+|x|%)~V2, ‘
Differentiating F.(e; A) in &, we have

(d/de)Fe; H=—iX\G:M(e; DG X,—ieX,G((d/de)M(e; 1)GX,.
We can show that
(3.13) Gi(e; AD(A)CD(A)NH*R™),
(3.14) Range(f:X,)CD(A),

(see Weder [9]).

Let gi(p)=1—f(p). We write in brief f; and g; for f;(H,(2)) and
g1(H,(2) respectively. Using [(3.13) and [3.14), we can decompose (d/d&)F(c; A)
as a form on Lt

(3.15) (d/de)Fde; D=2 YHe; A,

where
Yi=—iX\Gf1(B(e; H—B)f1G.X,,

YVi=iX.Gg1BAf1G Xy,
Vi=iX.G.g1B(A)giG.X,,
Y::Z'XIG,cle(Z)gj_G,ch ,
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YVi=—iX,f1G[H\(A)—A—ika(x)*—ieM(e; A), A)G.f 1 X:,
Yi=—iX,f1GBAGg1 Xy,

Yi=—iX,81G.B(N)G.g: X1,

Yi=—iX,8:G.B(AG,f 21X,

Yi=xX.fiGla(x)?, A1G.f 21Xy,
YP=—ieX,G((d/de)M(e; D)GX,,

Yi*=eX.f2G[M(e; ), A1G.f2X,.

We need the following two lemmas to estimate each term of the right side of

LEMMA 3.9. As A—0, one has:
(i) lgaGele; HI=0(17Y,
(ii) lg1Gle; A(—A+A*|=0(1""%),
(iii) [(—A+2A)"2g1G(e; A(—A+2)?|=0Q),
(iv) (—=A+D2f1Ge; DX |=e""2|F[I**0(1),
(v) I(—A+A)"2g,Ge; DX:|l=0(),
(vi) [|Fe; Dll=e710(1),
uniformly &, 0<x<l.

For a proof of Lemma 3.9/(i)~(iii), see that of of Tamura
or Lemma 5.4 of Kikuchi and Tamura [4]. Also, for a proof of (iv) and (v),

see that of of Tamura [7] or Lemma 5.5 of Kikuchi and Tamura
[4]. In order to prove (vi), we need the well-known inequality

(3.16) S<x>‘2|u(x)|2dx§CSIVu(x)l"dx.

(iv) and (v) imply (vi).

Noting the definition of [M(e; 1), A]° (see (3.11)) and Lemma 3.7/(iii), we
can prove the following lemma in the same way as the proof of of
Tamura [7] or Lemma 5.6 of Kikuchi and Tamura [4].

LEMMA 3.10. As 2—0, one has;
IIM(e; 2), A°ll=¢"10(4).

Using 3.9 and 3.10, we can evaluate the norm of Y, 1<;<11,
and obtain the following differential inequality (see Tamura [8]).

(3.17) I(d/de)F(e; DI=C(L+e 2| F[*/*+e’ | FD).
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Let &, 0<ee«1. Then by Lemma 3.9(vi), we have
(3.18) | Fi(eo; All=¢e3'0(1), (4—0).

and (3.18) imply
1F0; DI=0Q), (A—0),
uniformly &, 0<x<1. The proof of is now complete.
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