# A REMARK ON THE SECOND HOMOTOPY GROUPS OF COMPACT RIEMANNIAN 3-SYMMETRIC SPACES

By

### Takashi Koda

**Abstract.** In order to calculate the second Stiefel-Whitney class of a 1-connected compact Riemannian 3-symmetric space G/K by Borel-Hirzebruch's method, we have to know the second cohomology group  $H^2(G/K, \mathbb{Z}_2) \cong Hom(\pi_2(G/K), \mathbb{Z}_2)$ . In this paper, we shall describe precisely the connected Lie subgroup K and calculate explicitly the second homotopy group  $\pi_2(G/K)$  in terms of the roots of G.

#### 1. Introduction

A. Gray [3] introduced the notion of Riemannian 3-symmetric spaces which includes Hermitian symmetric spaces and he showed that every Riemannian 3-symmetric space is a homogeneous almost Hermitian manifold with the canonical almost complex structure associated to the Riemannian 3-symmetric structure. It is known that many compact Riemannian 3-symmetric spaces appear as the twistor spaces over even dimensional compact Riemannian symmetric spaces. So it is worth to study Riemannian 3-symmetric spaces.

An oriented Riemannian manifold (M, g) is a spin manifold if and only if the second Stiefel-Whitney class  $w_2(M)$  of M vanishes. There are many compact Riemannian 3-symmetric spaces which are spin manifolds and also many ones which are not. Hence it seems interesting to determine compact Riemannian 3-symmetric spaces which are spin manifolds.

In order to calculate the second Stiefel-Whitney classes of a smooth manifold M, we have to know the second cohomology group  $H^2(M, \mathbb{Z}_2)$ . If M is 1-connected,  $H^2(M, \mathbb{Z}_2)$  is isomorphic to the group  $Hom(\pi_2(M), \mathbb{Z}_2)$ . In this paper, we shall calculate the second homotopy groups  $\pi_2(M)$  of all 1-connected compact irreducible Riemannian 3-symmetric spaces M = G/K in terms of the roots of G, and in the course of its calculation, we shall describe presidely the

This research was partially supported by the Grant-in-Aid for Scientific Research (No. 03740022), the Ministry of Education, Science and Culture.

Received August 10, 1992. Revised January 13, 1993.

connected Lie subgroup K by the elementary method. We shall show the following theorem.

THEOREM A. Let M = G/K be a connected simply connected irreducible compact Riemannian 3-symmetric space with a G-invariant Riemannian metric, where G is a compact connected centerless simple Lie group and K is the connected Lie subgroup of G with Lie algebra  $\mathfrak{t} = \mathfrak{g}^{\theta}$  for some automorphism  $\theta$  of  $\mathfrak{g}$  of order 3. Then K, the second homotopy group  $\pi_2(M)$  and the second cohomology group  $H^2(M, \mathbb{Z}_2)$  are given by the following table.

REMARK. We can see that a 6-dimensional connected, simply connected irreducible compact Riemannian 3-symmetric space M is not a spin manifold if and only if  $M=SO(5)/\{SO(2)\times SO(3)\}$  or M=Sp(2)/U(2). We are going to calculate  $w_2(M)$  for all irreducible compact Riemannian 3-symmetric spaces in

Table 1

| G                                      | K                                                                                 | $\pi_2(G/K)$                                 | $H^2(G/K, \mathbf{Z}_2)$                    |
|----------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------|
| $SU(n)/\mathbf{Z}_n$ $(n \ge 2)$       | $S\{U(r_1)\times U(r_2)\times U(r_3)\}/\mathbf{Z}_n$ $0\leq r_1\leq r_2\leq r_3,$ | $Z \times Z$ if $r_1 = 0$ , $n = 2$          | $Z_2 \times Z_2$                            |
|                                        | $0 < r_2,$ $r_1 + r_2 + r_3 = n$                                                  | $Z$ if $r_1=0$ , $n\geq 3$                   | $Z_2$                                       |
|                                        |                                                                                   | $Z \times Z \times Z$ if $r_1 > 0$ , $n = 3$ | $Z_2 \times Z_2 \times Z_2$                 |
|                                        |                                                                                   | $Z \times Z$ if $r_1 > 0$ , $n \ge 4$        | $oldsymbol{Z_2}\!\!	imes\!\!oldsymbol{Z_2}$ |
| $SO(2n+1)$ $(n \ge 1)$                 | $U(r) \times SO(2n-2r+1)$ $(1 \le r \le n)$                                       | Z                                            | $Z_2$                                       |
| $\frac{Sp(n)/\mathbf{Z}_2}{(n\geq 1)}$ | $ \{U(r) \times Sp(n-r)\}/\mathbb{Z}_2 $ $ (1 \leq r \leq n) $                    | Z                                            | $Z_2$                                       |
| $SO(2n)/\mathbf{Z}_2$ $(n \ge 3)$      | $ \{U(r) \times SO(2n-2r)\} / \mathbf{Z}_2 $ $ (1 \le r \le n) $                  | $Z \times Z$ if $r=n-1$                      | $oldsymbol{Z}_2{	imes}oldsymbol{Z}_2$       |
|                                        |                                                                                   | $Z$ if $1 \le r < n-1$                       | $Z_2$                                       |
|                                        |                                                                                   | Z if $r=n$                                   | $Z_2$                                       |

| G                          | K                                                                         | $\pi_2(G/K)$                                             | $H^2(G/K, \mathbf{Z}_2)$                                                                                                         |
|----------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| $G_2$                      | U(2)                                                                      | Z                                                        | $Z_2$                                                                                                                            |
| $F_4$                      | ${Spin(7)\times T^1}/{Z_2}$                                               | Z                                                        | $Z_2$                                                                                                                            |
|                            | ${Sp(3)\times T^1}/{Z_2}$                                                 | Z                                                        | $Z_2$                                                                                                                            |
| $E_{6}/\boldsymbol{Z}_{3}$ | $\{Spin(10) \times SO(2)\} / \mathbf{Z}_4$                                | $Z_4 \times Z$                                           | $Z_2 \times Z_2$                                                                                                                 |
|                            | $\{[S(U(5)\times U(1))/\mathbf{Z}_3]\times SU(2)\}/\mathbf{Z}_2$          | $Z_2 \times Z_5 \times Z$                                | $Z_2{	imes}Z_2$                                                                                                                  |
|                            | $\{[SU(6)/\mathbf{Z_3}] \times T^1\}/\mathbf{Z_2}$                        | $Z_2{	imes}Z$                                            | $Z_2{	imes}Z_2$                                                                                                                  |
|                            | $\{ [Spin(8) \times SO(2)] / \mathbf{Z}_2 \times SO(2) \} / \mathbf{Z}_2$ | $Z_3 \times Z_2 \times Z_2 \times Z_2 \times Z \times Z$ | $egin{array}{c} oldsymbol{Z_2 	imes Z_2} \ 	imes oldsymbol{Z_2 	imes Z_2} \ egin{array}{c} oldsymbol{Z_2 	imes Z_2} \end{array}$ |
| $E_7/\boldsymbol{Z_2}$     | $\{E_6 \times T^1\}/\mathbf{Z}_3$                                         | $Z_3{	imes}Z$                                            | $Z_2$                                                                                                                            |
|                            |                                                                           | $Z_2 \times Z_2 \times Z$                                | $Z_2 \times Z_2 \times Z_2$                                                                                                      |
|                            | $\{[SO(2) \times Spin(12)]/\mathbf{Z}_2\}/\mathbf{Z}_2$                   | $Z_2{	imes}Z$                                            | $Z_2{	imes}Z_2$                                                                                                                  |
|                            | $S\{U(7)\times U(1)\}/\mathbf{Z}_2$                                       | $Z_2 \times Z$                                           | $Z_2{	imes}Z_2$                                                                                                                  |
| $E_8$                      | $SO(14)\times SO(2)$                                                      | $Z_2{	imes}Z$                                            | $Z_2{	imes}Z_2$                                                                                                                  |
|                            | $\{E_7 \times T^1\}/\mathbf{Z}_2$                                         | Z                                                        | $Z_2$                                                                                                                            |
| $G_2$                      | SU(3)                                                                     | 0                                                        | 0                                                                                                                                |
| $F_4$                      | ${SU(3)\times SU(3)}/\mathbf{Z}_3$                                        | $Z_3$                                                    | 0                                                                                                                                |
| $E_6/Z_3$                  | $\{SU(3)\times SU(3)\times SU(3)\}/\{Z_3\times Z_3\}$                     | $Z_3$                                                    | 0                                                                                                                                |
| $E_7/\mathbf{Z}_2$         | ${SU(3)\times[SU(6)/\mathbf{Z}_2]}/\mathbf{Z}_3$                          | $Z_3$                                                    | <b>(</b> 0                                                                                                                       |
| $E_8$                      | $\{SU(3)\times E_6\}/Z_3$                                                 | $Z_3$                                                    | 0                                                                                                                                |
|                            | $SU(9)/\mathbf{Z}_3$                                                      | $Z_3$                                                    | 0                                                                                                                                |

| G                                                                                                                       | K                                                                                      | $\pi_2(G/K)$ | $H^2(G/K, \mathbf{Z}_2)$ |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------|--------------------------|
| Spin(8)                                                                                                                 | $SU(3)/oldsymbol{Z_3}$                                                                 | $Z_3$        | 0                        |
|                                                                                                                         | $G_2$                                                                                  | 0            | 0                        |
| $\{L \times L \times L\}/Z$ where $L$ is compact simple and simply connected and $Z$ is its center embedded diagonally. | $L/Z$ where $L$ is embedded diagonally in $L \times L \times L$ and $Z$ is its center. | 0            | 0                        |

the forthcoming paper.

## 2. Preliminaries

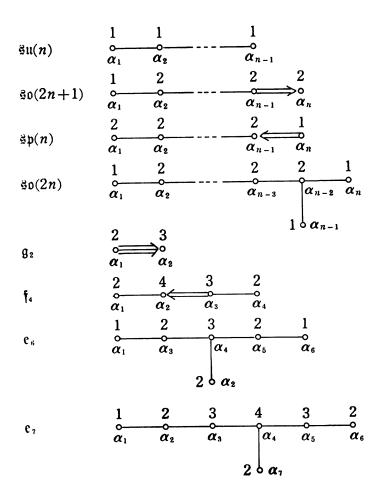
Let G be a compact connected centerless simple Lie group and T be a maximal torus of G. We denote by  $\mathfrak{g}$  and  $\mathfrak{t}$  the Lie algebras of G and T respectively. Let  $\Psi = \{\alpha_1, \dots, \alpha_l\}$  be a simple root system of  $\mathfrak{g}$  with respect to  $\mathfrak{t}$ . Let  $\sigma$  be an automorphism of order 3 on G and put

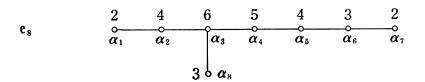
$$K=G^{\sigma}=\{g\in G\mid \sigma(g)=g\}.$$

We denote by  $\mu = \sum_{j=1}^{l} m_j \alpha_j$  the maximal root. Let  $v_0, v_1, \dots, v_l$  be the vectors in t defined by

$$v_0=0, \qquad \alpha_i(v_j)=\frac{1}{m_i}\delta_{ij}.$$

In this paper, the simple roots of simple Lie algebras are numbered as follows:





J. A. Wolf and A. Gray [10] has given the complete classification of (g,  $d\sigma$ , f).

THEOREM 2.1 [10]. Let  $\varphi$  be an inner automorphism of order 3 on a compact or complex simple Lie algebra  $\mathfrak{g}$ . Choose a Cartan subalgebra  $\mathfrak{t}$  and let  $\Psi = \{\alpha_1, \dots, \alpha_l\}$  be a simple root system of  $\mathfrak{g}$  with respect to  $\mathfrak{t}$ . Then  $\varphi$  is conjugate (up to inner automorphism of  $\mathfrak{g}$ ) to some  $\theta = Ad(\exp 2\pi \sqrt{-1}x)$  where  $x = (1/3)m_iv_i$  with  $1 \le m_i \le 3$  or  $x = (1/3)(v_i + v_j)$  with  $m_i = m_j = 1$ . A complete list of the possibilities for x is listed in the table below.

THEOREM 2.2 [10]. Let  $\theta$  be an outer automorphism of order 3 on a compact or complex simple Lie algebra g. Then (g, f) is one of Table 3.

Table 2

| g                                                                  | x                                  | $\Psi_x$                                                                                                        | g <sup>θ</sup>                                                                                            |
|--------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| §u(2)                                                              | $\frac{1}{3}v_1$                   | empty                                                                                                           | t <sup>1</sup>                                                                                            |
| §u(n) n≥3                                                          | $\frac{1}{3}v_i$                   | $\{\alpha_1, \cdots, \alpha_{i-1}, \\ \alpha_{i+1}, \cdots, \alpha_{n-1}\}$                                     | $\mathfrak{gu}(i) \oplus \mathfrak{gu}(n-i) \oplus \mathfrak{t}^1$                                        |
|                                                                    | $\frac{1}{3}(v_i + v_j)$ $i < j$   | $\{\alpha_1, \dots, \alpha_{i-1}, $ $\alpha_{i+1}, \dots, \alpha_{j-1}, $ $\alpha_{j+1}, \dots, \alpha_{n-1}\}$ | $\mathfrak{Su}(i) \bigoplus \mathfrak{Su}(j-i) $ $\oplus \mathfrak{Su}(n-j) \bigoplus \mathfrak{t}^2$     |
| $ \begin{array}{c c} \mathfrak{so}(2n+1) \\ n \geq 2 \end{array} $ | $\frac{1}{3}v_1$                   | $\{\alpha_2, \cdots, \alpha_n\}$                                                                                | $\mathfrak{so}(2n-1) \oplus \mathfrak{t}^1$                                                               |
|                                                                    | $rac{2}{3}v_i \ 2 \leq i \leq n$  | $\{\alpha_1, \cdots, \alpha_{i-1}, \\ \alpha_{i+1}, \cdots, \alpha_n\}$                                         | $ \begin{array}{c} \mathfrak{Su}(i) \oplus \mathfrak{So}(2(n-i)+1) \\ \oplus \mathfrak{t}^1 \end{array} $ |
| $\mathfrak{sp}(n)$ $n \geq 2$                                      | $\frac{2}{3}v_i$ $1 \le i \le n-1$ | $\{\alpha_1, \cdots, \alpha_{i-1}, \\ \alpha_{i+1}, \cdots, \alpha_n\}$                                         | $\mathfrak{su}(i) \oplus \mathfrak{sp}(n-i)$ $\oplus \mathfrak{t}^1$                                      |
|                                                                    | $\frac{1}{3}v_n$                   | $\{\alpha_1, \cdots, \alpha_{n-1}\}$                                                                            | $\mathfrak{gu}(n) \oplus \mathfrak{t}^1$                                                                  |

| g                              | x                                          | $\Psi_x$                                                             | g <sup>θ</sup>                                                         |
|--------------------------------|--------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|
| §0(8)                          | $\frac{1}{3}v_1$                           | $\{\alpha_2, \alpha_8, \alpha_4\}$                                   | <b>§</b> u(4)⊕t¹                                                       |
|                                | $\frac{2}{3}v_2$                           | $\{\alpha_1, \alpha_3, \alpha_4\}$                                   | §u(2)⊕§u(2)<br>⊕§u(2)⊕t¹                                               |
|                                | $\frac{1}{3}(v_1+v_3)$                     | $\{\alpha_2, \alpha_4\}$                                             | §u(3)⊕t²                                                               |
| $\mathfrak{so}(2n)$ $n \geq 5$ | $\frac{1}{3}v_1$                           | $\{\alpha_2, \alpha_3, \cdots, \alpha_n\}$                           | $\mathfrak{so}(2n-2) \oplus \mathfrak{t}^1$                            |
|                                | $\frac{1}{3}v_n$                           | $\{\alpha_1, \alpha_2, \cdots, \alpha_{n-1}\}$                       | $\mathfrak{su}(n) \oplus \mathfrak{t}^1$                               |
|                                | $\frac{\frac{2}{3}v_{i}}{2 \le i \le n-3}$ | $\{\alpha_1, \cdots, \alpha_{i-1}, \alpha_{i+1}, \cdots, \alpha_n\}$ | $\mathfrak{Su}(i) \oplus \mathfrak{So}(2n-2i)$ $\oplus \mathfrak{t}^1$ |
|                                | $\frac{1}{3}(v_{n-1}+v_n)$                 | $\{\alpha_1, \alpha_2, \cdots, \alpha_{n-2}\}$                       | $\mathfrak{gu}(n-1) \bigoplus \mathfrak{t}^2$                          |
| g <sub>2</sub>                 | $v_1$                                      | $\{\alpha_2, -\mu\}$                                                 | su(3)                                                                  |
|                                | $\frac{2}{3}v_2$                           | $\{\alpha_1\}$                                                       | $\mathfrak{su}(2) \bigoplus \mathfrak{t}^1$                            |
| f4                             | $\frac{2}{3}v_1$                           | $\{\alpha_2, \alpha_3, \alpha_4\}$                                   | ŝo(7)⊕t¹                                                               |
|                                | $v_{s}$                                    | $\{\alpha_1, \alpha_2, \alpha_4, -\mu\}$                             | §u(3)⊕§u(3)                                                            |
|                                | $\frac{2}{3}v_4$                           | $\{\alpha_1, \alpha_2, \alpha_3\}$                                   | §p(3)⊕t¹                                                               |
| e <sub>e</sub>                 | $\frac{1}{3}v_1$                           | $\{\alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6\}$               | §o(10)⊕t¹                                                              |
|                                | $\frac{2}{3}v_{s}$                         | $\{\alpha_1, \alpha_2, \alpha_4, \alpha_5, \alpha_6\}$               | §u(2)⊕§u(5)⊕t¹                                                         |
|                                | $\frac{2}{3}v_2$                           | $\{\alpha_1, \alpha_3, \cdots, \alpha_6\}$                           | §u(6)⊕t¹                                                               |
|                                | v <sub>4</sub>                             | $\{\alpha_1, \alpha_2, \alpha_3, \alpha_5, \alpha_6, -\mu\}$         | §u(3)⊕§u(3)⊕§u(3)                                                      |
|                                | $\frac{1}{3}(v_1+v_6)$                     | $\{\alpha_2, \alpha_3, \alpha_4, \alpha_5\}$                         | §0(8)⊕t²                                                               |

| g              | x                  | $\Psi_x$                                                                            | g <sup>θ</sup>                                                    |
|----------------|--------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| e <sub>7</sub> | $\frac{1}{3}v_1$   | $\{\alpha_2, \cdots, \alpha_7\}$                                                    | e <sub>6</sub> ⊕t¹                                                |
|                | $\frac{2}{3}v_2$   | $\{\alpha_1, \alpha_3, \cdots, \alpha_7\}$                                          | $\mathfrak{su}(2) \oplus \mathfrak{so}(10) \oplus \mathfrak{t}^1$ |
|                | $\frac{2}{3}v_{6}$ | $\{\alpha_1, \cdots, \alpha_5, \alpha_7\}$                                          | §o(12)⊕t¹                                                         |
|                | $\frac{2}{3}v_7$   | $\{\alpha_1, \cdots, \alpha_6\}$                                                    | $\mathfrak{gu}(7) \bigoplus \mathfrak{t}^1$                       |
|                | $v_3$              | $\{\alpha_1, \ \alpha_2, \ \alpha_4, \ \alpha_5, \\ \alpha_6, \ \alpha_7, \ -\mu\}$ | §u(3)⊕§u(6)                                                       |
| e <sub>8</sub> | $\frac{2}{3}v_1$   | $\{\alpha_2, \cdots, \alpha_8\}$                                                    | §o(14)⊕t¹                                                         |
|                | $\frac{2}{3}v_7$   | $\{\alpha_1, \cdots, \alpha_6, \alpha_8\}$                                          | e₁⊕t¹                                                             |
|                | $v_{\epsilon}$     | $\{\alpha_7, -\mu, \\ \alpha_1, \cdots, \alpha_5, \alpha_8\}$                       | Bu(3)⊕e <sub>6</sub>                                              |
|                | $v_8$              | $\{\alpha_1, \cdots, \alpha_7, -\mu\}$                                              | §u(9)                                                             |

Table 3

| g      | $\mathfrak{k}=\mathfrak{g}^{\theta}$ |
|--------|--------------------------------------|
| \$o(8) | $\mathfrak{g}_2$                     |
|        | <b>\$u(3)</b>                        |

## 3. Proof of the Main Theorem

By the universal coefficient theorem, we have an exact sequence

$$0 \longrightarrow Ext(H_1(M, \mathbf{Z}), \mathbf{Z}_2) \longrightarrow H^2(M, \mathbf{Z}_2) \longrightarrow Hom(H_2(M, \mathbf{Z}), \mathbf{Z}_2) \longrightarrow 0.$$

Since M is simply connected, we have  $H_1(M, \mathbb{Z})=0$ . Hence we have

$$H^{2}(M, \mathbb{Z}_{2}) \cong Hom(H_{2}(M, \mathbb{Z}), \mathbb{Z}_{2}).$$

Since M is 1-connected, by Hurewicz Theorem (cf. Whitehead [9], p. 169), we have

$$H_2(M, \mathbf{Z}) \cong \pi_2(M)$$
.

So, in order to prove our Main Theorem, we have only to calculate the second homotopy group  $\pi_2(M)$ .

The homotopy exact sequence of the principal K-bundle (G, K, M = G/K) is as follows:

$$(3-1) \qquad \pi_2(G) \longrightarrow \pi_2(G/K) \stackrel{f}{\longrightarrow} \pi_1(K) \stackrel{h}{\longrightarrow} \pi_1(G) \longrightarrow \pi_1(G/K) \longrightarrow \pi_0(K).$$

Let  $\tilde{G}$  and  $Z(\tilde{G})$  be the universal covering group of G and the center of G, respectively. Then G is isomorphic to the quotient group  $\tilde{G}/Z(\tilde{G})$ . Since the second homotopy group of a simply connected compact simple Lie group  $\tilde{G}$  is trivial and  $\pi_2(G) \cong \pi_2(\tilde{G})$ , the homomorphism f is injective and  $\pi_2(G/K) \cong \text{Im} f = \ker h$ . So we shall calculate the kernel of the homomorphism h.

Now we shall express  $\pi_1(G) \cong Z(\widetilde{G})$  in terms of the roots of  $\widetilde{G}$ . Let T and  $\mathfrak{T}$  be a maximal torus of  $\widetilde{G}$  and the Lie algebra of T, respectively. We denote by  $\Psi = \{\alpha_1, \dots, \alpha_l\}$  the simple root system of  $\mathfrak{g}$  with respect to  $\mathfrak{t}$ , and by  $\mathfrak{g} \to \widetilde{G}$  the exponential map. The central lattice  $\Lambda_1$  and the unit lattice  $\Lambda(\widetilde{G})$  of  $\widetilde{G}$  are defined by

$$\Lambda_1(\widetilde{G}) = \exp^{-1}(Z(\widetilde{G})),$$
  
 $\Lambda(\widetilde{G}) = \exp^{-1}(e),$ 

respectively, where e denotes the identity element of  $\tilde{G}$ . We choose an  $\mathrm{Ad}(\tilde{G})$ -invariant inner product (,) on  $\mathfrak{g}$ . For each linear form  $a \in \mathfrak{t}^*$ , the element  $\tilde{a} \in \mathfrak{t}$  is defined by

$$(\vec{a}, v) = a(v)$$
 for any  $v \in \mathfrak{t}$ ,

and for each root  $\alpha$ , we define  $\alpha^* \in \mathfrak{t}$  by

$$\alpha^* = \frac{2\vec{\alpha}}{(\alpha, \alpha)},$$

where the inner product (a, b) of two linear forms a and b is defined by  $(a, b) = (\vec{a}, \vec{b})$ . Then we have the following proposition (cf. [4] p. 479).

PROPOSITION 3.1. Let  $\tilde{G}$  be a compact semisimple Lie group and  $\Psi = \{\alpha_1, \dots, \alpha_l\}$  the simple root system of  $\tilde{G}$  with respect to a maximal torus T of  $\tilde{G}$ . Then

- (1)  $Z(\widetilde{G}) \cong \Lambda_1(\widetilde{G})/\Lambda(\widetilde{G})$ .
- (2)  $\Lambda_1(\tilde{G}) = \{v \in \mathfrak{t} \mid \alpha_j(v) \in \mathbb{Z}, \text{ for any } j=1, \dots, l\}.$
- (3) Furthermore, if  $\tilde{G}$  is simply connected, then  $\Lambda(G) = \mathbf{Z}\alpha_1^* + \cdots + \mathbf{Z}\alpha_l^*$ .

By a straightforward calculation, we have

PROPOSITION 3.2. The centers of SU(n), Spin(n), Sp(n),  $G_2$ ,  $F_4$ ,  $E_6$ ,  $E_7$  and  $E_8$  are given as follows;

$$Z(SU(n)) = \left\{ \exp\left(\frac{j}{n} \sum_{i=1}^{n-1} i\alpha_i^*\right) | j = 0, 1, \dots, n-1 \right\},$$

$$Z(Spin(2n+1)) = Z(Spin(2n))$$

$$= \left\{ \exp\left(\frac{j}{2} \sum_{i=1}^{n-2} i\alpha_i^* + \frac{j}{4} (n\alpha_{n-1}^* + (n-2)\alpha_n^*) + \frac{k(n-1)}{2} (\alpha_{n-1}^* + \alpha_n^*) \right) | j = 0, 1, 2, 3, k = 0, 1 \right\},$$

$$Z(Sp(n)) = \{e\},$$

$$Z(G_2) = \{e\},$$

$$Z(F_4) = \{e\},$$

$$Z(F_4) = \left\{ \exp\left(\frac{j}{3} (\alpha_1^* + 2\alpha_3^* + \alpha_5^* + 2\alpha_6^*) \right) | j = 0, 1, 2 \right\},$$

$$Z(E_7) = \left\{ \exp\left(\frac{j}{2} (\alpha_1^* + \alpha_3^* + \alpha_7^*) \right) | j = 0, 1 \right\},$$

$$Z(E_8) = \{e\}.$$

In the case where  $\tilde{G}$  is a classical Lie group or  $Z(\tilde{G})=1$ , then we may calculate  $\pi_2(G/K)$ . So we shall deal with the case where  $\tilde{G}=E_6$  or  $E_7$ .

First we shall show the following lemma.

LEMMA 3.3. Let  $\mathfrak{k}$  be the Lie algebra of a connected Lie group  $\widetilde{K}$ . Suppose  $\mathfrak{k}$  is a direct sum  $\mathfrak{k}_1 \oplus \mathfrak{k}_2$  of two ideals  $\mathfrak{k}_1$  and  $\mathfrak{k}_2$ . We denote by  $\widetilde{K}_i$  the connected Lie subgroup of  $\widetilde{K}$  of Lie algebra  $\mathfrak{k}_i(i=1,2)$ . Then  $\widetilde{K}$  is isomorphic to the quotient group  $\widetilde{K}_1 \times \widetilde{K}_2 / \widetilde{K}_1 \cap \widetilde{K}_2$ .

PROOF. For any  $X \in \mathfrak{k}_1$ ,  $Y \in \mathfrak{k}_2$ ,

$$\begin{aligned} \exp Y \exp X (\exp Y)^{-1} &= \exp (Ad(\exp Y)X) \\ &= \exp (e^{a d(Y)}X) \\ &= \exp X. \end{aligned}$$

Hence we have  $k_1k_2=k_2k_1$ , for any  $k_1\in \widetilde{K}_1$ ,  $k_2\in K_2$ . We consider the homomorphism  $\pi:\widetilde{K}_1\times\widetilde{K}_2\to\widetilde{K}$  defined by  $\pi(k_1,k_2)=k_1k_2$ . Since

$$\ker \pi = \{ (k_1, k_2) \in \widetilde{K}_1 \times \widetilde{K}_2 \mid k_1 k_2 = e \}$$

$$= \{ (k, k^{-1}) \in \widetilde{K}_1 \times \widetilde{K}_2 \mid k \in \widetilde{K}_1 \cap \widetilde{K}_2 \}$$

$$\cong \widetilde{K}_1 \cap \widetilde{K}_2$$

we obtain the lemma.

In the sequel, we shall adopt the following notation. Let  $p: \widetilde{G} \to G$  be the universal covering group of compact Lie group G, and  $\widetilde{K}$  (resp. K) the connected Lie subgroup of  $\widetilde{G}$  (resp. G) generated by the Lie subalgebra  $\widetilde{f}$ . We denote by  $\pi: \overline{K} \to \widetilde{K}$  the universal covering group of  $\widetilde{K}$ . Let  $\overline{f}: I \to \overline{K}$  be a path with  $\overline{f}(1) \in (p \circ \pi)^{-1}(e)$ . We define a loop f at f in f by f is the unique lifting property, the curve f is the lifting of f starting at the identity of f.

Case (E6-1)  $g = e_6$ ,  $x = (1/3)v_1$ .

Take a direct sum decomposition of t by the following two ideals;

$$\mathbf{f}_1 = [\mathbf{f}, \mathbf{f}] \cong \mathfrak{So}(10)$$
,

$$\mathbf{f}_2 = \mathbf{R}(4\alpha_1^* + 3\alpha_2^* + 5\alpha_3^* + 6\alpha_4^* + 4\alpha_5^* + 2\alpha_6^*).$$

Put

$$v_{1} = \frac{1}{2}(\alpha_{2}* + \alpha_{3}*),$$

$$w_{1} = \frac{1}{4}(3\alpha_{2}* + 5\alpha_{3}* + 2\alpha_{4}* + 2\alpha_{6}*),$$

$$v_{2} = 4\alpha_{1}* + 3\alpha_{2}* + 5\alpha_{3}* + 6\alpha_{4}* + 4\alpha_{5}* + 2\alpha_{6}*.$$

Then  $\{w_1\}$  forms a basis of  $\Lambda_1(\widetilde{K}_1)$ . We have

$$Z(\widetilde{K}_1) = \{ \exp(kw_1) | k=0, 1, 2, 3 \} \cong \mathbb{Z}_4,$$
  
 $\widetilde{K}_1 = Spin(10).$ 

Since the intersection  $\widetilde{K}_1 \cap \widetilde{K}_2$  is equal to  $\{\exp(k/4)v_2 | k=0, 1, 2, 3\}$ , we have

$$\widetilde{K} = \{Spin(10) \times SO(2)\}/Z_4$$
.

If we put  $\Gamma = Z(G) \cap \widetilde{K}$ , then K is isomorphic to  $\widetilde{K}/\Gamma$ . In our case,

$$K \cong \{ [Spin(10) \times SO(2)] / \mathbf{Z}_4 \} / \mathbf{Z}_3$$
$$= \{ Spin(10) \times [SO(2) / \mathbf{Z}_3] \} / \mathbf{Z}_4$$
$$= \{ Spin(10) \times SO(2) \} / \mathbf{Z}_4.$$

Thus we have  $\pi_1(K) = \mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}$ . We define paths  $\overline{\gamma}_j(j=1, 2, 3)$  in  $\overline{K} = Spin(10) \times \mathbb{R}$  by

$$\bar{\gamma}_1(t) = \left(e, \frac{t}{3}v_2\right),$$

$$\vec{\gamma}_2(t) = (\exp(tw_1), 0),$$
  
 $\vec{\gamma}_3(t) = (e, tv_2),$ 

so that the corresponding paths  $\tilde{\gamma}_1$ ,  $\tilde{\gamma}_2$  and  $\tilde{\gamma}_3$  represent the generators (1, 0, 0), (0, 1, 0) and (0, 0, 1) of  $\pi_1(K)$  respectively. It is easily seen that  $\gamma_2$  and  $\gamma_3$  are null-homotopic and  $\gamma_1$  is not. Therefore we have  $\pi_2(G/K) \cong \ker h = \mathbb{Z}_4 \times \mathbb{Z}$ .

Case (E6-2)  $g = e_6$ ,  $x = (2/3)v_3$ .

Take a direct sum decomposition of t by the following two ideals;

$$\mathfrak{t}_1 = [\mathfrak{t}, \mathfrak{t}] \cong \mathfrak{su}(2) \oplus \mathfrak{su}(5),$$

$$\mathfrak{t}_2 = \mathbf{R}(5\alpha_1^* + 6\alpha_2^* + 10\alpha_3^* + 12\alpha_4^* + 8\alpha_5^* + 4\alpha_6^*).$$

Put

$$v_{1} = \frac{1}{2}\alpha_{1}^{*},$$

$$w_{1} = \frac{1}{5}(4\alpha_{2}^{*} + 3\alpha_{4}^{*} + 2\alpha_{5}^{*} + \alpha_{6}^{*}),$$

$$v_{2} = 5\alpha_{1}^{*} + 6\alpha_{2}^{*} + 10\alpha_{3}^{*} + 12\alpha_{4}^{*} + 8\alpha_{5}^{*} + 4\alpha_{6}^{*}.$$

Then  $\{v_1, w_1\}$  forms a basis of  $\Lambda_1(\widetilde{K}_1)$ . We have

$$Z(\widetilde{K}_1) = \{\exp(jv_1) | j = 0, 1\} \times \{\exp(kw_1) | k = 0, 1, 2, 3, 4\}$$
  
 $\cong \mathbb{Z}_2 \times \mathbb{Z}_5$   
 $\cong Z(SU(2) \times SU(5)),$   
 $\widetilde{K}_1 \cong SU(2) \times SU(5).$ 

Since the intersection  $\widetilde{K}_1 \cap \widetilde{K}_2$  is equal to  $\{\exp(k/10)v_2 | k = 0, 1, \dots, 9\} = \{\exp(j/5)v_2 | j=0, 1, 2, 3, 4\} \times \{\exp(k/2)v_2 | k=0, 1\}$ , we have

$$\widetilde{K} \cong \{SU(2) \times [SU(5) \times U(1)] / \mathbf{Z}_5\} / \mathbf{Z}_2$$
  
 $\cong \{SU(2) \times S(U(5) \times U(1))\} / \mathbf{Z}_2.$ 

If we put  $\Gamma = Z(\tilde{G}) \cap \tilde{K}$ , then K is isomorphic to  $\tilde{K}/\Gamma$ . In our case,

$$K \cong \{ [SU(2) \times S(U(5) \times U(1))] / \mathbf{Z}_2 \} / \mathbf{Z}_3$$
$$= \{ SU(2) \times [S(U(5) \times U(1)) / \mathbf{Z}_3] \} / \mathbf{Z}_2.$$

Thus we have  $\pi_1(K) = \mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_5 \times \mathbb{Z}$ . We define paths  $\overline{r}_j(j=1, 2, 3, 4)$  in  $\overline{K} = \{SU(2) \times SU(5)\} \times \mathbb{R}$  by

$$\bar{\gamma}_1(t) = \left(e, \frac{2t}{3}v_2\right)$$

$$\bar{\gamma}_2(t) = \left(\exp\frac{1}{2}v_2, \frac{-t}{2}v_2\right),$$

$$\bar{\gamma}_3(t) = \left(\exp\frac{1}{5}v_2, \frac{-t}{5}v_2\right),$$

$$\bar{\gamma}_4(t) = (e, tv_2),$$

so that the corresponding paths  $\tilde{\gamma}_1$ ,  $\tilde{\gamma}_2$ ,  $\tilde{\gamma}_3$  and  $\tilde{\gamma}_4$  represent the generators (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1) of  $\pi_1(\tilde{K})$  respectively. It is easily seen that  $\gamma_2$ ,  $\gamma_3$  and  $\gamma_4$  are null-homotopic and  $\gamma_1$  is not. Therefore we have  $\pi_2(G/K) \cong \ker h = \mathbb{Z}_2 \times \mathbb{Z}_5 \times \mathbb{Z}$ .

Case (E6-3)  $g = e_6$ ,  $x = (2/3)v_2$ .

Take a direct sum decomposition of t by the following two ideals:

$$\mathbf{f}_1 = [\mathbf{f}, \mathbf{f}] \cong \mathfrak{Su}(6),$$

$$\mathbf{f}_2 = \mathbf{R}(\alpha_1^* + 2\alpha_2^* + 2\alpha_3^* + 3\alpha_4^* + 2\alpha_5^* + \alpha_6^*).$$

Put

$$\begin{aligned} v_1 &= \frac{1}{6} (5\alpha_1^* + 4\alpha_3^* + 3\alpha_4^* + 2\alpha_5^* + \alpha_6^*) \in \mathfrak{f}_1, \\ v_2 &= \alpha_1^* + 2\alpha_2^* + 2\alpha_3^* + 3\alpha_4^* + 2\alpha_5^* + \alpha_6^* \in \mathfrak{f}_2. \end{aligned}$$

Then  $\{v_1\}$  forms a basis of  $\Lambda_1(\widetilde{K}_1)$ . We have

$$Z(K_1) = \exp \Lambda_1(\widetilde{K}_1)$$

$$= \{ \exp(jv_1) | j = 0, 1, \dots, 5 \}$$

$$\cong \mathbf{Z}_6 \cong Z(SU(6)),$$

$$\widetilde{K}_1 \cong SU(6).$$

Since the intersection  $\widetilde{K}_1 \cap \widetilde{K}_2$  is equal to  $\{\exp((j/2)v_2)|j=0, 1\} \cong \mathbb{Z}_2$ , we have  $\widetilde{K} \cong \{SU(6) \times T^1\} / \mathbb{Z}_2$ .

If we put  $\Gamma = Z(\tilde{G}) \cap \tilde{K}$ , then K is isomorphic to  $\tilde{K}/\Gamma$ . In our case,

$$K \cong \{ \lceil SU(6)/\mathbf{Z}_3 \rceil \times T^1 \} / \mathbf{Z}_2.$$

Thus we have  $\pi_1(K) = \mathbb{Z} \times \mathbb{Z}_3 \times \mathbb{Z}_2$ . We define paths  $\overline{\tau}_j$  (j=1, 2, 3) in  $\overline{K} = SU(6) \times \mathbb{R}$  by

$$\bar{r}_1(t) = (e, tv_2),$$

$$\bar{r}_2(t) = (\exp(2tv_1), 0),$$

$$\bar{r}_3(t) = \left(\exp\frac{1}{2}v_2, -\frac{t}{2}v_2\right),$$

so that the corresponding paths  $\tilde{\gamma}_1$ ,  $\tilde{\gamma}_2$  and  $\tilde{\gamma}_3$  represent the generators (1, 0, 0), (0, 1, 0) and (0, 0, 1) of  $\pi_1(\tilde{K})$  respectively. It is easily seen that  $\gamma_1$  and  $\gamma_3$  are null-homotopic and  $\gamma_2$  is not. Therefore we have  $\pi_2(G/K) \cong \ker h = \mathbb{Z} \times \mathbb{Z}_2$ .

Case (E6-4) 
$$g=e_6$$
,  $x=v_4$ .

The center of f is 0, and f is semisimple. We denote by  $\alpha_0 = -\mu$  the negative of the maximal root. Then we have

$$Z(\tilde{K}) = \left\{ \exp \frac{j}{3} (\alpha_1^* + 2\alpha_3^*) | j = 0, 1, 2 \right\} \times \left\{ \exp \frac{k}{3} (\alpha_5^* + 2\alpha_6^*) | k = 0, 1, 2 \right\}$$
  

$$\cong \mathbf{Z}_3 \times \mathbf{Z}_3,$$

$$\widetilde{K} \cong \{SU(3) \times SU(3) \times SU(3)\} / \mathbb{Z}_3$$
,

If we put  $\Gamma = \mathbf{Z}(\widetilde{G}) \cap \widetilde{K}$ , then K is isomorphic to  $\widetilde{K}/\Gamma$ . In our case

$$K \cong \{SU(3) \times SU(3) \times SU(3)\} / \{Z_3 \times Z_3\}.$$

Thus we have  $\pi_1(K) \cong \mathbb{Z}_3 \times \mathbb{Z}_3$ . We define paths  $\bar{r}_j(j=1, 2)$  in  $\bar{K} = SU(3) \times SU(3) \times SU(3)$  by

$$\bar{\gamma}_1(t) = \left(\exp\frac{t}{3}(\alpha_1^* + 2\alpha_3^*), \exp\frac{t}{3}(\alpha_0^* + 2\alpha_2^*), \exp\frac{2t}{3}(\alpha_5^* + 2\alpha_6^*)\right),$$

$$\bar{\gamma}_2(t) = \left(\exp\frac{t}{3}(\alpha_1^* + 2\alpha_3^*), e, \exp\frac{t}{3}(\alpha_5^* + 2\alpha_6^*)\right),$$

so that the corresponding paths  $\tilde{\gamma}_1$  and  $\tilde{\gamma}_2$  represent the generators (1, 0) and (0, 1) of  $\pi_1(\tilde{K})$  respectively. It is easily seen that  $\gamma_1$  is null-homotopic and  $\gamma_2$  is not. Therefore we have  $\pi_2(G/K) \cong \ker h = \mathbb{Z}_3$ .

Case (E6-5) 
$$g = e_6$$
,  $x = (1/3)(v_1 + v_6)$ .

Take a direct sum decomposition of t by the following two ideals:

$$\begin{split} & \mathbf{f}_{1} = [\mathbf{f}, \, \mathbf{f}] \cong \mathfrak{so}(8) \,, \\ & \mathbf{f}_{2} = \mathbf{R}(4\alpha_{1}* + \alpha_{2}* + 3\alpha_{3}* + 2\alpha_{4}* - 2\alpha_{6}*) \\ & \oplus \mathbf{R}(-2\alpha_{1}* - \alpha_{3}* + \alpha_{5}* + 2\alpha_{6}*) \,. \end{split}$$

Put

$$v_{1} = \frac{1}{2}(\alpha_{2}^{*} + \alpha_{3}^{*}),$$

$$w_{1} = \frac{1}{2}(\alpha_{2}^{*} + \alpha_{5}^{*}),$$

$$v_{2} = 4\alpha_{1}^{*} + \alpha_{2}^{*} + 3\alpha_{3}^{*} + 2\alpha_{4}^{*} - 2\alpha_{6}^{*},$$

$$w_{2} = -2\alpha_{1}^{*} - \alpha_{3}^{*} + \alpha_{5}^{*} + 2\alpha_{6}^{*}.$$

Then  $\{v_1, w_1\}$  forms a basis of  $\Lambda_1(\widetilde{K}_1)$ . We have

$$Z(\widetilde{K}_1) = \{\exp(jv_1) | j = 0, 1\} \times \{\exp(kw_1) | k = 0, 1\}$$

$$\cong \mathbf{Z}_2 \times \mathbf{Z}_2$$

$$\cong Z(Spin(8)),$$

$$\widetilde{K}_1 \cong Spin(8).$$

Since the intersection  $\widetilde{K}_1 \cap \widetilde{K}_2$  is equal to  $\{\exp(j/2)v_2 | j=0, 1\} \times \{\exp(k/2)(v_2+w_2) | k=0, 1\}$ , we have

$$\widetilde{K} \cong \{ \lceil Spin(8) \times SO(2) \rceil / \mathbb{Z}_2 \times SO(2) \} / \mathbb{Z}_2.$$

If we put  $\Gamma = Z(G) \cap \widetilde{K}$ , then K is isomorphic to  $\widetilde{K}/\Gamma$ . In our case,

$$K \cong \{\{[Spin(8)\times SO(2)]/\mathbb{Z}_2\times SO(2)\}/\mathbb{Z}_2\}/\mathbb{Z}_3$$

$$= \{[Spin(8)\times SO(2)]/\mathbb{Z}_2\times [SO(2)/\mathbb{Z}_3]\}/\mathbb{Z}_2$$

$$= \{[Spin(8)\times SO(2)]/\mathbb{Z}_2\times SO(2)\}/\mathbb{Z}_2.$$

Thus we have  $\pi_1(K) \cong \mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z} \times \mathbb{Z}$ . We define paths  $\bar{\tau}_j(j=1, \dots, 5)$  in  $K = Spin(8) \times \mathbb{R} \times \mathbb{R}$  by

$$\bar{\tau}_{1}(t) = \left(\exp(v_{1} + w_{1}), 0, -\frac{t}{6}w_{2}\right), \\
\bar{\tau}_{2}(t) = \left(\exp(v_{1}, -\frac{t}{2}v_{2}, 0)\right), \\
\bar{\tau}_{3}(t) = \left(\exp(w_{1}, -\frac{t}{2}v_{2}, -\frac{t}{2}w_{2})\right), \\
\bar{\tau}_{4}(t) = (e, tv_{2}, 0), \\
\bar{\tau}_{5}(t) = (e, 0, tw_{2}),$$

so that the corresponding paths  $\tilde{\gamma}_1$ ,  $\tilde{\gamma}_2$ ,  $\tilde{\gamma}_3$ ,  $\tilde{\gamma}_4$  and  $\tilde{\gamma}_5$  represent the generators (1, 0, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0) and (0, 0, 0, 0, 1) of  $\pi_1(\tilde{K})$  respectively. It is easily seen that  $\gamma_2$ ,  $\gamma_3$ ,  $\gamma_4$  and  $\gamma_5$  are null-homotopic and  $\gamma_1$  is not. Therefore we have  $\pi_2(G/K)\cong \ker h=\mathbf{Z}_2\times\mathbf{Z}_2\times\mathbf{Z}\times\mathbf{Z}$ .

Case (E7-1)  $g = e_{\tau}$ ,  $x = (1/3)v_1$ .

Take a direct sum decomposition of t by the following two ideals:

$$\mathbf{f}_1 = [\mathbf{f}, \mathbf{f}] \cong \mathbf{e}_6,$$

$$\mathbf{f}_2 = \mathbf{R}(3\alpha_1^* + 4\alpha_2^* + 5\alpha_3^* + 6\alpha_4^* + 4\alpha_5^* + 2\alpha_6^* + 3\alpha_7^*).$$

Put

$$v_{1} = \frac{1}{3} (\alpha_{2}^{*} + 2\alpha_{3}^{*} + \alpha_{5}^{*} + 2\alpha_{6}^{*}),$$

$$v_{2} = (3\alpha_{1}^{*} + 4\alpha_{2}^{*} + 5\alpha_{3}^{*} + 6\alpha_{4}^{*} + 4\alpha_{5}^{*} + 2\alpha_{6}^{*} + 3\alpha_{7}^{*}).$$

Then  $\{v_1\}$  forms a basis of  $\Lambda_1(\widetilde{K}_1)$ . We have

$$Z(\widetilde{K}_1) = \{\exp(jv_1) | j=0, 1, 2\} \cong \mathbb{Z}_3 \cong Z(E_6),$$
  
 $\widetilde{K}_1 \cong E_6.$ 

Since the intersection  $\widetilde{K}_1 \cap K_2$  is equal to  $\{\exp(k/3)v_2 | k=0, 1, 2\}$ , we have

$$\widetilde{K} \cong \{E_6 \times T^1\} / \mathbb{Z}_3$$
.

If we put  $\Gamma = Z(\widetilde{G}) \cap K$ , then K is isomorphic to  $\widetilde{K}/\Gamma$ . In our case,

$$K \cong \{ [E_6 \times T^1] / \mathbf{Z}_3 \} / \mathbf{Z}_2$$
$$= \{ E_6 \times [T^1 / \mathbf{Z}_2] \} / \mathbf{Z}_3$$
$$\cong \{ E_6 \times T^1 \} / \mathbf{Z}_3 .$$

Thus we have  $\pi_1(K) \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}$ . We defined paths  $\bar{\gamma}_j(j=1, 2, 3)$  in  $\bar{K} = E_6 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times$ 

$$\bar{\gamma}_{1}(t) = \left(\exp\frac{1}{3}(\alpha_{2}^{*} + 2\alpha_{3}^{*} + \alpha_{6}^{*} + 2\alpha_{6}^{*}), \frac{t}{6}v_{2}\right),$$

$$\bar{\gamma}_{2}(t) = \left(\exp\frac{1}{3}(\alpha_{2}^{*} + 2\alpha_{3}^{*} + \alpha_{5}^{*} + 2\alpha_{6}^{*}), -\frac{t}{3}v_{2}\right),$$

$$\bar{\gamma}_{3}(t) = (e, tv_{2}),$$

so that the corresponding paths  $\tilde{\gamma}_1$ ,  $\tilde{\gamma}_2$  and  $\tilde{\gamma}_3$  represent the generators (1, 0, 0), (0, 1, 0) and (0, 0, 1) of  $\pi_1(\tilde{K})$  respectively. If is easily seen that  $\gamma_2$  and  $\gamma_3$  are null-homotopic and  $\gamma_1$  is not. Therefore we have  $\pi_2(G/K) \cong \ker h = \mathbb{Z}_3 \times \mathbb{Z}$ .

Case (E7-2) 
$$g = e_7$$
,  $x = (2/3)v_2$ .

Take a direct sum decomposition of t by the following two ideals:

$$\mathbf{f}_1 = [\mathbf{f}, \mathbf{f}] \cong \mathfrak{su}(2) \oplus \mathfrak{so}(10),$$

$$t_2 = R(2\alpha_1^* + 4\alpha_2^* + 5\alpha_3^* + 6\alpha_4^* + 4\alpha_5^* + 2\alpha_6^* + 3\alpha_7^*).$$

Put

$$v_{1} = \frac{1}{2}\alpha_{1}^{*},$$

$$w_{1} = \frac{1}{4}(\alpha_{3}^{*} + 2\alpha_{4}^{*} + 2\alpha_{6}^{*} + 3\alpha_{7}^{*}),$$

$$v_{2} = 2\alpha_{5}^{*} + 4\alpha_{2}^{*} + 5\alpha_{5}^{*} + 6\alpha_{4}^{*} + 4\alpha_{5}^{*} + 2\alpha_{6}^{*} + 3\alpha_{7}^{*}.$$

Then  $\{v_1, w_1\}$  forms a basis of  $\Lambda_1(\widetilde{K}_1)$ . We have

$$Z(\widetilde{K}_1) = \{\exp(jv_1) | j=0, 1\} \times \{\exp(kw_1) | k=0, 1, 2, 3\}$$

$$\cong Z_2 \times Z_4$$

$$\cong Z(SU(2) \times Spin(10)),$$

$$\widetilde{K}_1 \cong SU(2) \times Spin(10).$$

Since the intersection  $\widetilde{K}_1 \cap \widetilde{K}_2$  is equal to  $\{\exp(k/4)v_2 | k=0, 1, 2, 3\}$ , we have

$$K \cong \{ [SU(2) \times Spin(10)] \times T^1 \} / \mathbf{Z_4}$$

$$\cong \{ SU(2) \times [Spin(10) \times T^1] / \mathbf{Z_2} \} / \mathbf{Z_2}.$$

If we put  $\Gamma = Z(\tilde{G}) \cap \tilde{K}$ , then K is isomorphic to  $\tilde{K}/\Gamma$ . In our case,

$$K \cong \{ [SU(2) \times (Spin(10) \times SO(2))/\mathbb{Z}_2]/\mathbb{Z}_2 \}/\mathbb{Z}_2 .$$

Thus we have  $\pi_1(K) \cong \mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}$ . We define paths  $\gamma_j(j=1, 2, 3)$  in  $\overline{K} = SU(2) \times Spin(10) \times \mathbb{R}$  by

$$\bar{\gamma}_1(t) = \left(\exp(v_1), \frac{t}{2}v_2\right),$$

$$\bar{\gamma}_2(t) = \left(\exp(v_1 + w_1), -\frac{t}{4}v_2\right),$$

$$\bar{\gamma}_3(t) = (e, tv_2),$$

so that the corresponding paths  $\tilde{\gamma}_1$ ,  $\tilde{\gamma}_2$  and  $\tilde{\gamma}_3$  represent the generators (1, 0, 0), (0, 1, 0) and (0, 0, 1) of  $\pi_1(\tilde{K})$  respectively. It is easily seen that  $\gamma_2$  and  $\gamma_3$  are null-homotopic and  $\gamma_1$  is not. Therefore we have  $\pi_2(G/K) \cong \ker h = \mathbb{Z}_4 \times \mathbb{Z}$ .

Case (E7-3)  $g = e_7$ ,  $x = (2/3)v_6$ .

Take a direct sum decomposition of t by the following two ideals:

$$\mathbf{f}_1 = [\mathbf{f}, \mathbf{f}] \cong \mathfrak{so}(12),$$

$$\mathbf{f}_2 = \mathbf{R}(\alpha_1^* + 2\alpha_2^* + 3\alpha_3^* + 4\alpha_4^* + 3\alpha_5^* + 2\alpha_6^* + 2\alpha_7^*).$$

Put

$$v_{1} = \frac{1}{2} (\alpha_{1}^{*} + 3\alpha_{3}^{*} + 3\alpha_{5}^{*}),$$

$$w_{1} = \frac{1}{2} (\alpha_{5}^{*} + \alpha_{7}^{*}),$$

$$v_{2} = \alpha_{1}^{*} + 2\alpha_{2}^{*} + 3\alpha_{3}^{*} + 4\alpha_{4}^{*} + 3\alpha_{5}^{*} + 2\alpha_{6}^{*} + 2\alpha_{7}^{*}.$$

Then  $\{v_1, w_1\}$  forms a basis of  $\Lambda_1(\widetilde{K}_1)$ . We have

$$Z(\widetilde{K}_1) = \{\exp(jv_1) | j=0, 1\} \times \{\exp(kw_1) | k=0, 1\}$$

$$\cong \mathbf{Z}_2 \times \mathbf{Z}_2$$
 $\cong Z(Spin(12)),$ 
 $\check{K}_1 \cong Spin(12).$ 

Since the intersection  $\widetilde{K}_1 \cap \widetilde{K}_2$  is equal to  $\{\exp(k/2)v_2 | k=0, 1\}$ , we have

$$\widetilde{K} \cong \{Spin(12) \times T^1\} / \mathbb{Z}_2$$
.

If we put  $\Gamma = Z(\tilde{G}) \cap \tilde{K}$ , then K is isomorphic to  $\tilde{K}/\Gamma$ . In our case,

$$K \cong \{ [Spin(12) \times SO(2)] / \mathbb{Z}_2 \} / \mathbb{Z}_2.$$

Thus we have  $\pi_1(K) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}$ . We define paths  $\bar{\gamma}_j(j=1, 2, 3)$  in  $\overline{K} = Spin(12) \times \mathbb{R}$  by

$$\bar{\gamma}_1(t) = \left(\exp\frac{t}{2}(\alpha_1^* + \alpha_3^* + \alpha_7^*), 0\right),$$

$$\bar{\gamma}_2(t) = \left(\exp\frac{1}{2}v_2, -\frac{t}{2}v_2\right),$$

$$\bar{\gamma}_3(t) = (e, tv_2),$$

so that the corresponding paths  $\tilde{\gamma}_1$ ,  $\tilde{\gamma}_2$  and  $\tilde{\gamma}_3$  represent the generators (1, 0, 0), (0, 1, 0) and (0, 0, 1) of  $\pi_1(\tilde{K})$  respectively. It is easily seen that  $\gamma_2$  and  $\gamma_3$  are null-homotopic and  $\gamma_1$  is not. Therefore we have  $\pi_2(G/K) \cong \ker h = \mathbb{Z}_2 \times \mathbb{Z}$ .

Case (E7-4) 
$$g = e_7$$
,  $x = (2/3)v_7$ .

Take a direct sum decomposition of f by the following two ideals:

$$\mathfrak{t}_1 = [\mathfrak{t}, \mathfrak{t}] \cong \mathfrak{su}(7)$$
,

$$\mathbf{f}_2 = \mathbf{R}(3\alpha_1^* + 6\alpha_2^* + 9\alpha_3^* + 12\alpha_4^* + 8\alpha_5^* + 4\alpha_6^* + 7\alpha_7^*).$$

Put

$$v_{1} = \frac{1}{7} (\alpha_{1}^{*} + 2\alpha_{2}^{*} + 3\alpha_{3}^{*} + 4\alpha_{4}^{*} + 5\alpha_{5}^{*} + 6\alpha_{6}^{*}),$$

$$v_{2} = (3\alpha_{1}^{*} + 6\alpha_{2}^{*} + 9\alpha_{3}^{*} + 12\alpha_{4}^{*} + 8\alpha_{5}^{*} + 4\alpha_{6}^{*} + 7\alpha_{7}^{*}).$$

Then  $\{v_1\}$  forms a basis of  $\Lambda_1(\widetilde{K}_1)$ . We have

$$Z(\widetilde{K}_1) = \{\exp(jv_1) | j=0, 1, \dots, 6\} \cong \mathbb{Z}_7 \cong Z(SU(7)),$$
  
 $\widetilde{K}_1 \cong SU(7).$ 

Since the intersection  $\widetilde{K}_1 \cap \widetilde{K}_2$  is equal to  $\{\exp(k/7)v_2 | k=0, 1, \cdots, 6\}$ , we have

$$\widetilde{K} \cong \{SU(7) \times T^1\} / \mathbb{Z}_7 \cong S\{U(7) \times U(1)\}.$$

If we put  $\Gamma = Z(\tilde{G}) \cap \tilde{K}$ , then K is isomorphic to  $\tilde{K}/\Gamma$ . In our case,

$$K \cong S(U(7) \times U(1))/\mathbb{Z}_2$$
.

Thus we have  $\pi_1(K) \cong \mathbb{Z}_2 \times \mathbb{Z}_7 \times \mathbb{Z}$ . We define paths  $\bar{\gamma}_j(j=1, 2, 3)$  in  $\overline{K} = SU(7) \times \mathbb{R}$  by

$$\bar{\gamma}_1(t) = \left(e, \frac{t}{2}v_2\right),$$

$$\bar{\gamma}_2(t) = \left(\exp(3v_1), -\frac{1}{7}v_2\right),$$

$$\bar{\gamma}_3(t) = \left(e, tv_2\right),$$

so that the corresponding paths  $\tilde{\gamma}_1$ ,  $\tilde{\gamma}_2$  and  $\tilde{\gamma}_3$  represent the generators (1, 0, 0), (0, 1, 0) and (0, 0, 1) of  $\pi_1(\tilde{K})$  respectively. It is easily seen that  $\gamma_2$  and  $\gamma_3$  are null-homotopic and  $\gamma_1$  is not. Therefore we have  $\pi_2(G/K) \cong \ker h = \mathbb{Z}_2 \times \mathbb{Z}$ .

Case (E7-5)  $g=e_{\tau}$ ,  $x=v_{s}$ .

The center of f is 0, and f is semisimple. We denote by  $\mu = -\alpha_0$  the maximal root  $\alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4 + 3\alpha_5 + 2\alpha_6 + 2\alpha_7$  of g. Put

$$v_{1} = \frac{1}{3} (\alpha_{1} + 2\alpha_{2}),$$

$$w_{1} = \frac{1}{6} (\alpha_{0} + 2\alpha_{6} + 3\alpha_{5} + 4\alpha_{4} + 5\alpha_{7})$$

$$= \frac{1}{6} (-\alpha_{1} - 2\alpha_{2} - 3\alpha_{3} + 3\alpha_{7}).$$

Then  $\{w_1\}$  forms a basis of  $\Lambda_1(\widetilde{K})$ . We have

$$Z(\widetilde{K}) = \{ \exp(kw_1) | k = 0, 1, \dots, 5 \} \cong \mathbf{Z}_6,$$
  
 $\widetilde{K} \cong \{ SU(3) \times SU(6) \} / \mathbf{Z}_3,$ 

If we put  $\Gamma = Z(G) \cap \widetilde{K}$ , then K is isomrphic to  $\widetilde{K}/\Gamma$ . In our case,

$$K \cong \{ [SU(3) \times SU(6)] / \mathbf{Z}_3 \} / \mathbf{Z}_2$$
$$= \{ SU(3) \times [SU(6) / \mathbf{Z}_2] \} / \mathbf{Z}_3.$$

Thus we have  $\pi_1(K) \cong \mathbb{Z}_2 \times \mathbb{Z}_3$ . We define paths  $\bar{\gamma}_j(j=1, 2)$  in  $\overline{K} = SU(3) \times SU(6)$  by

$$\bar{\gamma}_1(t) = (e, \exp(3tw_1)),$$

$$\bar{\gamma}_2(t) = (\exp(tv_1), \exp(2tw_1)),$$

so that the corresponding paths  $\tilde{\gamma}_1$  the  $\tilde{\gamma}_2$  represent the generators (1, 0) and (0, 1) of  $\pi_1(\tilde{K})$  respectively. It is easily seen that  $\gamma_2$  is null-homotopic and  $\gamma_1$  is not. Therefore we have  $\pi_2(G/K) \cong \ker h = \mathbb{Z}_3$ .

**Acknowledgement** The author wishes to express his sincere thanks to Professor K. Sekigawa for his hearty guidance and many valuable suggestions and to the referee for many valuable suggestions.

#### References

- [1] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207.
- [2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces 1, Amer. J. Math. 30 (1958), 458-538.
- [3] A. Gray. Riemannian manifolds with geodesic symmetries of order 3, J. Differential Geom. 7 (1972), 343-369.
- [4] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.
- [5] T. Koda, The first Chern classes of compact Riemannian 3-symmetric spaces, Math. Rep. Toyama Univ. 12 (1989), 113-138.
- [6] T. Koda, The first Chern class of Riemmanian 3-symmetric spaces: the classical case, Note di Matematica 10 (1990), 141-156.
- [7] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, 1972.
- [8] M. Takeuchi, On Pontrjagin classes of compact symmetric spaces, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 9 (1961-63), 313-328.
- [9] G.W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, New York, 1978.
- [10] J.A. Wolf and A. Gray, Homogeneous spaces defined by Lie group automorphisms I, II, J. Differential Geom. 2 (1968), 77-114, 115-159.

Department of Mathematics, Faculty of Science, Toyama University, Gofuku, Toyama 930, Japan