TSUKUBA J. MATH.
Vol. 18 Nol 1 (1994), 145—163

A REMARK ON THE SECOND HOMOTOPY GROUPS OF
COMPACT RIEMANNIAN 3-SYMMETRIC SPACES

By

Takashi Kopa

Abstract. In order to calculate the second Stiefel-Whitney class of
a l-connected compact Riemannian 3-symmetric space G/K by Borel-
Hirzebruch’s method, we have to know the second cohomology group
H*G/K, Z,)=Hom(n,(G/K), Z,). In this paper, we shall describe
precisely the connected Lie subgroup K and calculate explicitly the
second homotopy group 7,(G/K) in terms of the roots of G.

1. Introduction

A. Gray introduced the notion of Riemannian 3-symmetric spaces which
includes Hermitian symmetric spaces and he showed that every Riemannian 3-
symmetric space is a homogeneous almost Hermitian manifold with the canonical
almost complex structure associated to the Riemannian 3-symmetric structure.
It is known that many compact Riemannian 3-symmetric spaces appear as the
twistor spaces over even dimensional compact Riemannian symmetric spaces.
So it is worth to study Riemannian 3-symmetric spaces.

An oriented Riemannian manifold (M, g) is a spin manifold if and only if
the second Stiefel-Whitney class w,(M) of M vanishes. There are many compact
Riemannian 3-symmetric spaces which are spin manifolds and also many ones
which are not. Hence it seems interesting to determine compact Riemannian
3-symmetric spaces which are spin manifolds.

In order to calculate the second Stiefel-Whitney classes of a smooth mani-
fold M, we have to know the second cohomology group H*M, Z,). If M is
l-connected, H*M, Z,) is isomorphic to the group Hom (wm,(M), Z,). In this
paper, we shall calculate the second homotopy groups 7,(M) of all 1-conncted
compact irreducible Riemannian 3-symmetric spaces M =G/K in terms of the
roots of G, and in the course of its calculation, we shall describe presicely the
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connected Lie subgroup K by the elementary method. We shall show the fol-
lowing theorem.

THEOREM A. Let M=G/K be a connected simply connected irreducible
compact Riemannian 3-symmetric space with a G-invariant Riemannian metric,
where G is a compact connected centerless simple Lie group and K is the connected
Lie subgroup of G with Lie algebra Y=g? for some automorphism 6 of g of order
3. Then K, the second homotopy group m(M) and the second cohomology group
H*M, Z,) are given by the following table.

REMARK. We can see that a 6-dimensional connected, simply connected
irreducible compact Riemannian 3-symmetric space M is not a spin manifold if
and only if M=SO®5)/{SO@)XS0O(3)} or M=Sp(2)/U(2). We are going to
calculate w,(M) for all irreducible compact Riemannian 3-symmetric spaces in

Table 1
G K n(G/K) H¥G/K, Z,)
SUn)/Z, | S{UG@)XU@)XU(rs)} / Z, ZXZ Z:XZ,
(n=2) 07, <7, <75, if »,=0, n=2
0<72’ Z Z2
Titretra=n if =0, n=3
ZXZXZ Z X Z, X2,
if »,>0, n=3
ZXZ ZyXZ,
if »,>0, n=4
SOo@2n+1) Ur)XSo@n—2r+1) VA Z,
(nzl) A1=r=n)
Sp(n)/Z, {UnXSp(n—n)t/Z, Z Z,
(nz1) (1=r<n)
SOo@2n)/Z, {Ur)XS0@2n—-2r)}/Z, ZXZ Zy X2,
(n=3) (15rn) if r=n—1
Z Z,
if 1<r<n—1
Z Z,
| if r=n
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K

G  7(G/K) | HYG/K, Z.)
G. | U® z Z,
F, (SPin(TYX T}/ Z, z Z,
{SpAIXT}/Z, Z Z,
EdZ, | {Spin(10)xSO2)}/Z. ZXZ Z.X Z,
([SWUG)X UMY/ Z] X SU@)}/ Zs ZXZXZ | ZuX Z,s
([SU6)/ 251X T}/ Z, Z,}Z Z.} Z,
{[Spin®) X SO@)1/ Zyx SOQ)} | Z: ZXZoX Ly | ZoX 2
XILXZ XLy XLy
Ei/Z, | (EsxT}/Z, Z,}Z Z,
([SU@)X (Spin(L0)X SO/ Zs1/ Zo} [ Zs | ZoX ZoX Z | ZoX ZyX Z,
([SO@)X Spin(12)1/ Z2} | Z: Z,XZ ZyX Z,
S{UMXUD) /2, Zxz Z.xZ,
E, |So14)xso@) Z.}Z Z.X} Z,
{EXTY} ) Zs z Z.
G. |SU@®) 0 0
F. | sU®xsu@)y/ z, Z, 0
Eo/Zs | {SURXSUBR)XSUB) /{ZsX Zs) Z, 0
E./Z, | {SUR)X[SU®6)/Z:1}/ Zs Z, "0
Es | SUB)XEd/Z, Z, 0
SU©)/ Z, Z, 0
G | K 7(G/K) | HXG/K, Zy)
Spin(8) SUG)/ Zs Z, 0
G, 0 0
{LXLXL}/Z L)z 0 0

where L is compact simple
and simply connected and
Z is its center embedded
diagonally.

and Z is its center.

where L is embedded
diagonally in LXL XL




148 Takashi Kopa

the forthcoming paper.

2. Preliminaries

Let G be a compact connected centerless simple Lie group and 7 be a
maximal torus of G. We denote by g and t the Lie algebras of G and T
respectively. Let ¥={a,, ---, a;} be a simple root system of g with respect
to t. Let ¢ be an automorphism of order 3 on G and put

K=G°={geGl|a(g)=g}.

We denote by p=3>Xj_,m;a; the maximal root. Let v, vy, -+, v, be the vectors
in t defined by

1
0o=0, a(v)= Eau .

In this paper, the simple roots of simple Lie algebras are numbered as follows:

1 1 1
3u(n) a a7 awa

1 2 2 2
80Qr+l) o T a0

1 n- n

2 2 2 1
8p(n) o——o——---—oc—0

a, a, a; ., Ap
. hatadind "‘r — O
oem g - [z 2

loan-

2 3 '
g: o=—=0

a, as

2 4 3 2
f, o———0%

al [+ ¢} s a,

2 3

€ o= o ? " P

a, as Ay as Qg

20 a;

1 2 3 4 3 2
¢, o——o———=2° B o a

a, as as [a‘ as &

20a,
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2 3
Ay a

J.A. Wolf and A. Gray has given the complete classification of
(g, do, ¥).

THEOREM 2.1 [10]. Let ¢ be an inner automorphism of order 3 on a com-
pact or complex simple Lie algebra g. Choose a Cartan subalgebra t and let
U={a,, -+, a;} be a simple root system of g with respect to t. Then ¢ is con-
jugate (up to inmer automorphism of g) to some O=Ad(exp2r~/—1x) where
x=(1/3)m;v; with 1=m;<3 or x=1/3)w:+v;) with m;=m;=1. A complete list
of the possibilities for x is listed in the table below.

THEOREM 2.2 [10]. Let 6 be an outer automorphism of order 3 on a compact
or complex simple Lie algebra g. Then (g, ¥) is one of Table 3.

Table 2
g x v, g®
1
gu(2) U empty {*
su(n) 1, {as, -, @iy, 8u()Psu(n —i) Pt
n=3 3 Qi Qn_1}
%@iﬂj) fas, =, @i, su@)Psuli—)
. . Aip1, "ty Aoy, @Qu(n"])@tz
1<y Ajia, , On_1}
?:0(22—2{—1) %vl {as, -+, an} 80(2n—1)pt!
n= PR
2, {as, =, @iy, 8u()D302(n—1)+1)
3. Aiv1, ", an} @il
25ign
gp(?’l) _2_2)1: {aly ey, Qg ?’u(z)@g‘p(n—z)
n=2 3 @isr, 5 On} pt!
1<:€n—1
1 1
_3'7)71 {ab Tty an—l} §u(n)@t




150

Takashi Kopa

g x v, g’
20(8) %vl (@, @, ot} su(4)t*
2 ’s {a,, as, a.} gu(2)Psu(2)
3 Pau(2)Ppt!
SOt {ar, @ su(3)r*
30;2:5 %vl (@, as, -, an) 80(2n—2)Pt*
—%—vn {ai, as, -+, an_} gu(n)pt!
—?'-vi {ay, -+, ay_y, 8u(?)Pso(2n —2z)
zgz‘;n—s B 7 o) o
FOnaton) | @y @, @l | Sue—D@E
82 2 {az, —p} gu(3)
%vz {a) su(2)Pt*
fo _§.v1 {as, s, s} 80(7)Pt*
vs {ar, as, @i, —p2) su(3)D3u(3)
%m {a:, as, as} ap(3)Dt!
e %vl {as, as, ai, as, ag) 80(10)cbt!
%vs {a, @, @y, a5, ad | BuR)DEuUG)DY!
2 (@, as, -, ad su(E)Pt!
Ve {ai, as, as, as, as, —p}| 8u(3)P3u(3)Psu(3)
| %(vl—i—vs) {as, as, a,, as} 30(8)cpt?
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8 x v, g’
€ %Ul {ag, -+, aqt esDt!
v, (e, s, o, al Su(2)Ds0(10DH
%vs {ay, -+, as, aq} 80 (12)pt!
20 e, ) ) su(7) Bt
Us {as, as, a4, as, gu(3)PHsu(6)
g, Qn, _‘ﬂ}
e 2 (e, ) o) 80(10)Bt"
%07 {ay, -, g, ag} e, Pt!
Ve {a7, — MU, ?911(3)@35
al: Tty aﬁ) aS}
US {al) Y a’b _,l} gu(g)
Table 3
g t=g° |
80(8) s
au(3)

3. Proof of the Main Theorem
By the universal coefficient theorem, we have an exact sequence
0—> Ext(H(M, Z), Z,) —> H¥M, Z;) —> Hom (H,M, Z), Z,) —> 0.
Since M is simply connected, we have H,(M, Z)=0. Hence we have
H*M, Z,)=Hom(H,M, Z), Z,).

Since M is l-connected, by Hurewicz Theorem (cf. Whitehead [9], p. 169), we

have
H M, Z)=rm,(M).
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So, in order to prove our Main Theorem, we have only to calculate the second
homotopy group m,(M).
The homotopy exact sequence of the principal K-bundle (G, K, M=G/K)

is as follows:
h

(B-1)  7(G) —> m(G/K) —J; T (K) —> 7:(G) —> 1(G/K) —> m(K).
Let G and Z(G) be the universal covering group of G and the center of G,
respectively. Then G is isomorphic to the quotient group CN?/Z(é). Since the
second homotopy group of a simply connected compact simple Lie group G is
trivial and 7,(G)= 71:2(5), the homomorphism f is injective and 7,(G/K)=Imf=
ker h. So we shall calculate the kernel of the homomorphism A.

Now we shall express nl(G)gZ(é) in terms of the roots of G. Let T and
t be a maximal torus of G and the Lie algebra of T, respectively. We denote
by ¥={a,, ---, a;} the simple root system of g with respect to t, and by exp:
g—G the exponential map. The central lattice 4, and the unit lattice AG) of
G are defined by

A(G)=exp™(Z(G)),

A(G)=exp~(e),

respectively, where e denotes the identity element of G. We choose an Ad((N})-
invariant inner product (,) on g. For each linear form a<t*, the element
det is defined by

@@, v)=a@) for any vet,
and for each root a, we define a*<t by

. 2
(a, @)’

where the inner product (a, b) of two linear forms a and b is defined by (a, b)=
(4, ). Then we have the following proposition (cf. [4] p. 479).

PROPOSITION 3.1. Let G be a compact semisimple Lie group and ¥=
{ay, -+, a;} the simple root system of G with respect to a maximal torus T of
G. Then

) ZG)=M(G)/ AG).

2) A(G)={vet|a,v)EZ, for any j=1, -, I}.

(3) Furthermore, if G is simply connected, then A(G)=Zay*+ - +Za,*.

By a straightforward calculation, we have
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PROPOSITION 3.2. The centers of SU(n), Spin(n), Sp(n), Gs, Fi, E¢, E; and

Eg are given as follows;
F n-1
2Um)={exp(L Eiar)1j=0, 1, -, n—1},

Z(Spin(2n+1)=Z(Spin(2n))

n-—2

={exo(% Eiar+ 4 (nan*+(n—2)a)

i=

k(n—1)
T2

(an_l*—l—an*))I]‘:——O, 1,2, 3, k=0, 1},

Z(Sp(n))=1{e},
Z(Go)={e},
Z(F)=1{e},

Z(E)={exp(L @ +2a +a +2a)1i=0, 1, 2},

2By ={exp(Lar+as+am)li=0, 1},
Z(Ed=1e}.

In the case where G is a classical Lie group or Z((N})zl, then we may
calculate m,(G/K). So we shall deal with the case where G =Fs or E,.
First we shall show the following lemma.

LEMMA 3.3. Let t be the Lie algebra of a connected Lie group K. Suppose
t is a direct sum Y, DY, of two ideals t, and f,. We denote by R; the connected
Lie subgroup of K of Lie algebrat,(i=1, 2). Then K is isomorphic to the quotient
group I%IX [?2/[?{\1?2.
Proor. For any Xe&f, Y ¥,
expY expX (expY ) '=exp (Ad(expY)X)
=exp(e*?MX)
=expX.

Hence we have k,k,=k,k,, for any k,E K’l, k.= K,. We consider the homomor-
phism 7: K, x Ko~ K defined by m(k,, k)=Fk.k,. Since

kerm={(k,, ko) KX Ky | b1ks=c)}
—{(k, ke KX K ke KNK,)
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=Kk,

we obtain the lemma.

In the sequel, we shall adopt the following notation. Let p: G—G be the
universal covering group of compact Lie group G, and K (resp. K) the con-
nected Lie subgroup of 5(re5p. G) generated by the Lie subalgebra f. We
denote by z: K—K the universal covering group of K. Let 7: I—K be a path
with 7(1)e(pem)~'(e). We define a loop 7 at e in K by y=pon-f. By the
unique lifting property, the curve 7:==n-7 is the lifting of y starting at the
identity of K.

Case (E6-1) g=e; x=(1/3)v,.
Take a direct sum decomposition of I by the following two ideals;
L=[f, ¥]=380(10),

L=R(4a,*+3a,* +5as* +-6a.* +4a* +2as™).
Put

1
V= —2‘(az*+as*) ’

w,= %(36!2*‘*‘56?3*‘}‘2“4*‘{'2“6*) )

ve=4a*+3a*+5as*+6a*+4as* +2a* .
Then {w,} forms a basis of A,(K,). We have
Z(R)={exp(kw,) | k=0, 1, 2, 3} = Z,,
K,=5pin(10).
Since the intersection XM\K'Z is equal to {exp(k/4)v.| k=0, 1, 2, 3}, we have
K= {Spin(10)xSO(2)}/ Z..
If we put I"'=Z(G)N\K, then K is isomorphic to K/I". In our case,
K = {[Spin(10)X SOR)]/Z.}/ Z,
={Spin(10)X [SO(2)/Zs1}/ Z
={Spin(10)xXSO2)}/Z,.

Thus we have 7, (K)=Z,XZ,XZ. We define paths 7,(j=1, 2, 3) in K =Spin(10)
X R by

70=(e, 5 v2),
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T2(t)=(exp(twy), 0),
Ts(t)=(e, tv,),

so that the corresponding paths 7,, 7, and 7; represent the generators (1, 0, 0),
(0, 1, 0) and (0, 0, 1) of 7,(K) respectively. It is easily seen that 7, and 7, are
null-homotopic and 7, is not. Therefore we have 7, (G/K)=kerh=Z,XZ.

Case (E6-2) g=¢,, x=(2/3)v,.
Take a direct sum decomposition of f by the following two ideals;
L=[1, f1=38u(2)Psu®),

L=RGa*+6a*+10as*+12a,*+8as*+4ag*).
Put
1

vlz—z_al* ’

w,= %(4a2*+3a4*+2a5*+a6*) s

ve=>5a;*+6a,*+10as*+12a,*+8as*+4ag* .
Then {v,, w,} forms a basis of 4,(K;). We have
Z(K)={exp(jv1)| j=0, 1} X {exp(kw,)| k=0, 1, 2, 3, 4}
=Z.XZs
= Z(SU@2)XSU(5)),
K=SU@Q)xSU®).

Since the intersection K; N K, is equal to {exp(k/l10ws|k =0, 1, --., 9} =
{exp(j/5)v.|j=0, 1, 2, 3, 4} X {exp(k/2)v.| k=0, 1}, we have

K= {SUQ@)X[SUG)XU1)1/Zs}/Z.
= {SUR)XSWUGBXUN/Z,.
If we put F=Z(6)f\1§', then K is isomorphic to K/I". In our case,
K={[SUR)XSWUGXUQ)]1/Z:}/Zs
={SU@)X[SWUGXUW))/Zs1}/ Z:.
Thus we have n,(K)=2Z,XZ,XZ;XxZ. We define paths 7,(j=1, 2, 3, 4) in K=
{SU@2)XSU(B)} XR by

- 2t
Tl(t):(e: Tvz s
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_ 1 —t
Tz(t)——(eXp7U2, 2 Uz) »

_ 1 —t
Ts(t)—(eng'Uz, —“5——7&),
Td)=(e, tvy),

so that the corresponding paths 7, 7», s and 7, represent the generators (1, 0,
0,0),(0,1,0,0),(0,0, 1,0 and (0,0, 0, 1) of 71:,(1? ) respectively. It is easily
seen that 7, 7: and 7, are null-homotopic and 7, is not. Therefore we have
wo(G/K)=Kkerh=Z,XZsX Z.

Case (E6-3) g=c¢s x=(2/3)v,.
Take a direct sum decomposition of ¥ by the following two ideals:
t,=[t t1=3u(6),

f2=R(a1*+2a2*+2a3*+3a4*+2a5*+a6*) .
Put

v = _(1;—(5a1*+4as*+3a4*+2as*+as*)6f1 ’

ve=a*+2a,* +2a5* 4+ 3aF 4 2a:* +a* L, .
Then {v,} forms a basis of /11(]?1). We have
Z(K)=expAy(K))
={exp(jv) /=0, 1, ---, 5}
=Z,=7Z(SU()),
K,=SU®).
Since the intersection K;N\K, is equal to {exp((j/2)vy)|7=0, 1} =Z,, we have
K= {SU®)XT}/Z,.
If we put F:Z(é)f\k, then K is isomorphic to K/I". 1n our case,
K={[SU®)/Z]XT"}/Z,.

Thus we have 7 (K)=ZXZ;XZ,. We define paths 7,(j=1, 2, 3) in K=SU(6)
X R by
?l(t)z(e: th):

T2(t)=(exp(2tvy), 0),

Fot)=(exp 3 v, —5ua),
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so that the corresponding paths 7,, 7, and 7, represent the generators (1, 0, 0),
0, 1, 0) and (0, 0, 1) of m(K) respectively. It is easily seen that y, and 7; are
null-homotopic and 7, is not. Therefore we have #n,(G/K)=kerh=Z X Z,.

Case (E6-4) g=-¢¢, x=v,.
The center of f is 0, and f is semisimple. We denote by a,=-—pg the
negative of the maximal root. Then we have

Z(k):{exp%(al*—l—Zczs*)l 7=0, 1, Z}X{exp—g—(as*—i—Zas*)l k=0, 1, 2}
=ZyXZ;,
K= {SU@R)XSUB)XSUQ3)}/Zs,
If we put P:Z(CN;)/\[?, then K is isomorphic to K/I". In our case
K = {SUR)XSUBR)XSUQR)} /{ZsX Zs} .

Thus we have m,(K)=Z,XZ,. We define paths 7,(j=1, 2) in K=SU@3)xXSU®B)
xXSU(3) by

- 2t
rl(t)z(exp%(al*—i—Zas*), exp-g—(ao*—l—Zaz*), exp—é—(a5*+2as*)),

= t t
7a()= (exp (ar*+2as¥), ¢, exp (as*+2a®)),

so that the corresponding paths 7, and 7, represent the generators (1, 0) and
(0, 1) of nl(K') respectively. It is easily seen that 7, is null-homotopic and 7.
is not. Therefore we have 7, (G/K)=ker h=21Z,.

Case (E6-5) g=¢es, x=(1/3)(v,+vs).

Take a direct sum decomposition of ¥ by the following two ideals:
L=[t, ¥]=80(8),
L=R{4a*+a,*+3as*+2a,* —2a.*)

@R(—zal*—aa*+as*+2as*) .
Put

V1= ‘%‘(az*‘Fas*) ’

w,= —2];(a2*+(15*) ’

ve=4a ¥+ a,*+3as*+2a,* —2a*,

we=—2a,*—as*+as*+2a*.



158 Takashi Kobpa

Then {v,, w,} forms a basis of /4,(K,). We have
Z(K)={exp(jv.)| 7=0, 1} X {exp(kw,)| k=0, 1}
=Z.,XZ,
=~ 7(Spin(8)),
K,=Spin(8).

Since the intersection K;N\ K, is equal to {exXp(j/2)v,| =0, 1} X {exp(k/2)(vs+ws)| k
=0, 1}, we have

R = {[Spin(8)x SO2)1/Z:X SOQ@)}/ Z,.
If we put F=Z(G)f\1?, then K is isomorphic to I?/I’. In our case,
K = {{[Spin@) X SOR2)]/Z,XSO)}/Z.}/Zs
= {[Spin(8) X SO2)]/ Z:X[SO(2)/Z;1}/ Z.
= {[Spin(@) X SO(2)]/ Z.XSO2)}/Z,.
Thus we have 7, (K)=ZXZ,XZ,XZXZ. We define paths 7,j=I1, :--, 5) in
K=Spin(8) X RXR by

- t
Tl(t)=(eXP(U1 +w 1); 0: - -6— wz) ’

Fat)=(expvs, — 5 s, 0),

. t t
Ts(t):-(exl)wl, —'Evz, *'2—w2>,
74(t)=(e, tvzy 0) )

fﬁ(t):(e) 0; th):

so that the corresponding paths 7, 7., #s, 7« and 7s represent the generators
(1,0,0, 0, 0), (0,1,0,0,0), (0,0, 1,0, 0), (0,0,0,1, 0 and (0, 0, 0, 0, 1) of 7 (K)
respectively. It is easily seen that 7, 7s, 7« and 7 are null-homotopic and 7,
is not. Therefore we have 7, (G/K)=Kerh=Z , X Z, X ZXZ.

Case (E7-1) g=e,, x=(1/3)v;.
Take a direct sum decomposition of t by the following two ideals:
L=[1 t]=e,,

t.=R(Ba*+4a* +5as*+6a*+4as*+2a*+3a.*).
Put



A Remark on the Second Homotopy 159

= é(ag*+2as*+a5*+2as*>,

v.=(3a,*+4a*+5as*+6aF +4as*+2a6* +3a.*) .
Then {v,} forms a basis of Al(lz'l). We have
Z(K)={exp(jv.)|j=0, 1, 2} = Z = Z(Ey),
R=E,.
Since the intersection I?J\Kz is equal to {exp(k/3)v:| k=0, 1, 2}, we have
K={EXT"/Z,.
If we put I =Z(5)/‘\K, then K is isomorphic to K/I". In our case,
K={[EXT']/Zs}/Z,
={E«X[T"/Z,]}/Z,
={EXT"Y/Z,.

Thus we have n(K)=Z,XZ;XZ. We defined paths 7,(j=1, 2, 3) in K=E¢X
R by

= 1 ¢
Tl(t):(expg(a2*+2a3*+a5*+2a6*)’ “‘6"7)2),
Fuy=(exp - (ar*+2ac* v +2a,), —L0y)
2 3 2 8 [ 6 ) 3 2),
73(t):(e, t‘Ug) ,

so that the corresponding paths 7, 7, and 7; represent the generators (1, 0, 0),
0, 1, 0) and (0, 0, 1) of 7r1(f(‘ ) respectively. If is easily seen that y, and 7; are
null-homotopic and 7, is not. Therefore we have 7, (G/K)=kerh=Z;X Z.

Case (E7-2) g=e,;, x=(2/3)v..
Take a direct sum decomposition of ¥ by the following two ideals:
L=t ¥1=8u(2)Psn(10),

L=RQ2a,*+4a*+5as*+6a*+4as*+2as*+3a*).
Put
1

v1=—a1* ’

2
w,=—= i‘(as*+2a4*+2ae*+3a7*) ’

7-’2:2&1*+4az*+5as*+6(14*+4a5*+2a6*+3a7* .
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Then {v,, w,} forms a basis of Al(f{'l). We have
Z(K)= {exp(jv:)| =0, 1} X {exp(kw,)| k=0, 1, 2, 3}
=Z.,XZ,
= Z(SU(2)x Spin(10)),
R, =SU(2)x Spin(10).
Since the intersection K,NK, is equal to {exp(k/4)v.| k=0, 1, 2, 3}, we have
K= {[SUQ)XSpin(10)IX T}/ Z,
= (SUQR)X [Spin(10)X T/ Z,} / Z..
If we put I'=Z(G)NK, then K is isomorphic to K/I". In our case,
K= {[SUQR)X(Spin(10)XSO2))/ Z>1/ Z:} | Z> .

Thus we have m(K)=Z,X Z,XZ. We define paths 7;j=1, 2, 3) in K=SU(2)
X Spin(10)X R by

7= (exp(v), 2 1),

7o(H)= (exp(v1+w1), - %vz),

TS(t): (e) tv2) ’

so that the corresponding paths 7,, 7. and 7, represent the generators (1, 0, 0),
(0, 1, 0) and (0, 0, 1) of nl(I?) respectively. It is easily seen that 7, and 7, are
null-homotopic and 7, is not. Therefore we have 7, (G/K)=kerh=2Z,XZ.

Case (E7-3) g=e,;, x=(2/3)vs.
Take a direct sum decomposition of ¥ by the following two ideals:
L=[f f1=80(12),

fzzR(a1*+2a2*+3a3*+4a4*+3a5*+2a6*—|—2a7*) .
Put

D= %(a1*+3as*+3a5*) ’

w1=—21—(a5*+a7*),
Vo= a*+2a,*+3as*+4aF+3as*+2as* +2a.* .
Then {v,, w,} forms a basis of /11(1?1). We have
Z(K)={exp(jv.)| j=0, 1} X {exp(kw,)| k=0, 1}
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=ZXZ,
= Z(Spin(12)),
K, =Spin(12).
Since the intersection K;N\K, is equal to {exp(k/2)v,| k=0, 1}, we have
K= {Spin(12)X T}/ Z,.
If we put I"=Z(5)f\l?, then K is isomorphic to K/I". In our case,
K= {[Spin(12)XSO2)]/ Z:}/ Z, .

Thus we have n(K)=Z,xXZ,xZ. We define paths 7:47=1,2, 3) in K=Spin(12)
X R by

7i(0)=(exp o (a +ar*+a¥), 0),

To()= (eXp% Vg, — '%112);

73(t)= (e: th) ’

so that the corresponding paths 7,, 7. and 7s represent the generators (1, 0, 0),
(0, 1, 0) and (0, 0, 1) of nl(l? ) respectively. It is easily seen that 7, and 7, are
null-homotopic and 7, is not. Therefore we have m,(G/K)=kerh=Z,X Z.

Case (E7-4) g=e,, x=(2/3)v.
Take a direct sum decomposition of f by the following two ideals:
=0t t1=3u(?),

L=RBa;*+6a,*+9as*+12a,*+8as*+4a*+T7a.*).
Put

= %—(al*+2a2*+3as*+4a4*+5a5*+6as*) ,
ve=(Ba*+6a*+9a*+12a,*+8as*+4as*+7a.*).
Then {v,} forms a basis of /11(1?1). We have
Z(K)={exp(jv.)| j=0, 1, -+, 6} = Z,= Z(SU(T)),
Ri=suU(®).
Since the intersection K,NK, is equal to {exp(k/7)v,|k=0, 1, ---, 6}, we have
K= {SUMX T} Z,=S{UTDXUL)}.

If we put I'=Z(G)NK, then K is isomorphic to K/I". In our case,
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K=S(U(M)XU(L))/Z..
Thus we have 7, (K)=Z,XZ,XZ. We define paths 7;j=1, 2, 3) in K=SU(7)
X R by

7= (e, %Uz),
Fuy=(expBr), — 7 vs),
7s(t)=(e, tvs),

so that the corresponding paths 7,, 7, and 7; represent the generators (1, 0, 0),
(0, 1, 0) and (0, 0, 1) of n,(l? ) respectively. It is easily seen that 7, and 7; are
null-homotopic and 7, is not. Therefore we have n,(G/K)=kerh=Z,XZ.

Case (E7-5) g=e,;, x=vs.
The center of f is 0, and t is semisimple. We denote by y=—a, the
maximal root a,+2a,+3as+4a,+3as+2as+2a, of g. Put

U= %(a1*+2az*),
w,= %(ao*—i—Zas*+3a5*+4a4*+5a7*)

= %(—al*—Zaz*—3a3*+3a7*) .
Then {w,} forms a basis of Al(k). We have
Z(K)={exp(kw))| k=0, 1, -+, 5} = Z,,
K= {SU@)XSU®6)}/Zs,
If we put I'=Z(G)NK, then K is isomrphic to K/I". In our case,
K= {[SURB)XSU®6)1/Z}/Z,
={SUR)X[SU(6)/Z,1}/Z;.

Thus we have 7, (K)=Z,xXZ,. We define paths 7,(j=1, 2) in K=SU(3)xSU(6)
by

71()=(e, exp(3tw,)),

7+(t)=(exp(tv,), exp(2tw,)),

so that the corresponding paths 7, the 7, represent the generators (1, 0) and
0, 1) of n’l(}? ) respectively. It is easily seen that 7, is null-homotopic and 7,
is not. Therefore we have 7(G/K)=ker h=2Z,.
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