TSUKUBA J. MATH.
Vol. 17 No. 2 (1993), 513—535

AVERAGE ORDER OF THE DIVISOR FUNCTIONS
WITH NEGATIVE POWER WEIGHT

Dedicated to Professor Katsumi Shiratani on his 60th birthday

By

Makoto ISHIBASHI

1. Introduction.

In this paper we are primarily concerned with the study of the sums of
the sum-of-divisors function ¢.(n) with negative power weight n~%(¢>0), i.e.
the sums of the form

2 ntaq(n)

nsx

and we also study the averages of associated error terms. Throughout the
paper, we shall refer to @ as I and whose results we cite e. g. as I{Theorem
1. First we consider the case 0<a—t=Z, where Z denotes the set of all
rational integers, and prove which generalizes and in some cases
corrects MacLeod’s Theorem 8[8]. This case is easier to handle although the
needed calculations are rather long. And the special case a=t of this is the
starting point of the investigation of the case a<t{. In this case our approach,
which depends on MacLeod’s back-track method (Cemma 1 below), is not so
effective for a large, and we have to restrict ourselves to the narrower range
0<a<3 which, however, covers and interpolates all the formulas obtained by
MacLeod. In the case of general ¢ we appeal to induction, and in order to
guess the forms of the formulas, we have to calculate out all the cases {=a+1,
t=a+2, i=a+3, the last being the initial value of ¢ for induction. Here we
take the instructive standpoint and calculated out all these three cases succes-
sively and then give the form for t=a+3, since each independent formula seems
to have its own interest. Except for integral values of a, our interpolating
formulas involve various negative powers of x with extremely complicated
and clumsy coefficients, but in some cases they are absorbed in the error terms
by just multiplying the log-factor. The main reasons why we restrict ourselves
to 0<a<3 are the complication of these coefficients as well as inapplicability
of Lemma 8 However, we state the formulas for a>3 as well, only for t=
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a+1 (Theorem 2), though, for want of a more effective method to compute
the sums in question. Of course, in principle, we can continue to calculate
further cases t=a-+2, a+3, --- starting from the case t=a-+1, using the back-
track method. But the effort made does not seem to deserve it since the main
difficulty lies in the explicit determination of the coefficients. Our
covers and at some points corrects Theorem 10, and the first half of Theorem
12, of MacLeod [8], and Corollary to it covers Corollary to his Theorem 10
and gives a new result as a counterpart of the possible Corollary (which is
non-existent) to the first half of Theorem 12. In particular, it follows from our
and that

dm)_ 1

= 5 log*x+27 log x+7*+2r:+0(x7"*/*(log x)**/*).
nsx

which improves a result of Amitsur [I]. We note that our formulas in the
Corollary are proved while MacLeod’s are conjectured, since by [Lemma & an
extended form of MacLeod’s conjecture is proved. seems interesting
in its own right, indicating a great deal of cancellation of G, .(x) for x large.
Our subsequent Theorem 3-(1) reduces to Theorem 4-(1). However, for the
formulas (2) and (3), the case {=a+2 is still exceptional, and by only looking
at the case /=a-+3 we can guess the general form of main terms. As in [6],
we note that the error estimates claimed in MacLeod’s Theorem 12 are not yet
proved since they depend on Segal’s yet unproven estimates [17], and the error
estimates claimed in our Theorems and Corollaries are the best that are known
to date.

As in [6], main results of the paper are asymptotic formulas for our sums
in terms of G, .-functions. For completeness’ sake we collect some information
on G, .. They are defined as

- X
G,. k(x):nzgngaBk(—n—) .
for acR, k=N, where B.(y) is the k-th Bernoulli polynomial, B,(y)=
B.(y—[»]), with [y] the integral part of y, R and N denoting the set of all
real numbers and the set of all natural numbers respectively. As regards the
order estimates of G, .(x), there is a famous conjecture due to Chowla and
Walum saying (in a more precise form)

a/2+1/4 (a=—-1/2),
ak(a Z{ (S)

where a.(a) denotes the least a for which G, (x)=0 (x**¢) for each ¢>0
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(For detailed introduction to these functions we refer the reader to Pétermann
[12, 13]). The looser form (S< ) of the conjecture (S), where we replace the
equality sign in (S) by <, has been known for 2#>2, a=1/2, and non-trivial
eatimates have been known for £>2, 0<a<1/2, k=1, —1<a<0. Very recently,
Pétermann has succeeded in sharpening the last estimates by applying the
theory of one dimensional exponent pairs. We will quote these eatimates
from [13], referring the details to it. F is the set of all exponent pairs (k, 1)
(0=£=<1/2<2<1) and S is Rankin’s set CFE obtained by applying Theorem 4.1
[13] a finite (but arbitrary) number of times starting with the trivial exponent
pair (0, 1). S may be seen as the convex hull convT of T obtainable from
(0, 1) by applying to it all the finite compositions built with operators A and
BA. Also, if M denotes the set {h(e)|0<e<5/56} of exponent pairs h(e)=
(9/56+¢, 1/24+9/56+¢) found by Huxley and Watt, we construct the set S,=
S,(M) by apllying Theorem 4.1 to M repeatedly. If R=adS, 0S, denotes the
borders of S, S, respectively, the infimum I(R, ) on R of some function 6
gives the optimal result.
Now define the function /7: [0, 1/2]—[1/2, 1] by

aSl = {(IC; F(K‘.)>, ’CE[O; 1/2]}'
Then I" is continuous, decreasing and convex. Also, with

K-+ A
2(k+1)"
define a:= I(S,, 6,)=0.32894 -.- and define B to be the larger one of a and

(A—k)/(k+1) for (k, ) for which 8(k, )=« (see [12] for the numerical values of
a and B).

02(’5, 2):

O-THEOREM (Huxley [5], Pétermann [12, 13], Walfisz [18])

{ o(a), —1<a<—8,
(1.1) a(a)<
a/2+a, az—B, a=0,
(1.2) G, 1(x)=0(x"*?(log x)%/?%) , G_11(x)=0(log x)?'3),
and for £=2,

Sb(a): _1§a<1/2’
1.3) ak(a)é{

a/2+1/4, a=1/2,

where ¢(a) (resp. ¢(a)) is the value of x/(k+1) (resp. k) at the unique argu-
ment « satisfying a=&—1"(x))/(k+1) (resp. a=2c—1"(k)).



516 Makoto ISHIBASHI

Q-THEOREM (Hafner [3, 4], Pétermann [10, 11, 14, 15])

2.((x log x)"4(loglog x)@*2log /¢ exp(— A +/logloglog x))

Q_(x'*exp (c(loglog x)"*(logloglog x)~%%), a=0,
(1.4) Gy ()= Qi(exp(ca%gglx—(gc—l), —1<a<0,
2.(loglog x), a=—1,
2.1), a<l—1,
Q.(x2210g o (x)), 0<a<l1/2,
Q. (x22HHf (%)), 0=ax1/2,
Q. (xeP1f (%)), —1/2<a<0,
(1.5) G, o(x)= Q+(exp(ca§:—((:—§—%)ét;—l), Clcac—1/2,
2.(loglog x), a=—1,
2., a<l—1,

for some positive constant A, ¢, ¢,, Where

(log x)t/4-e/2, —1/2<a<1/2,

fa(x):{
loglog x , a=1/2,

and

4(10g10g x)l/4-arz )

ga(x)=exp (C (fogloglog x)3/4+a/5

The interested reader should ask the author for a detailed version of the
paper at the address indicated at the end.

2. Statement of results.

THEOREM 1. Let t>0 and 0sa—t=Z. Then

& |
- _C(d-’-l) a-t+1 *&! (=D"ra—t a-t+l-r
é_‘,zn tO'a(n)—— mix + rgl - (?‘—].)x t Gr-a-l.r(x)
Cl—a)log x+7{(1—a)+{(1—a), 1=1,
™ zwge- a>+—c—(lt§t“—)X"‘ t+1,

— 574G an(1)+0(x/70),

where y denotes Euler’s constant.
(2) Define E%(x) by
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Eﬁt(x>=n§n“oa(n)—g%(w,

where
0, 1>2 or 0<IZ2, t#1 or 1=1, a>2,
gﬁt(x)—C(a+1) et {
—t+1 CLl—a)log x, (=1, a<2.
and let G%,(x)= g E%(n).
Then
(1) G2a(i)=— 5 7 G s+ 5 Gra a(0)+O(x 47
{i—a) ,., Le+D=&a) (1 =, Nl—a) ., _
mfx 4+ —‘—““2 x+(2 BI(X)> 1—a X , 0<a-—l<1,
1 1 1 -
5 €@ —7—log 2m)x— I log x—(5 — Bu(x))G1..(x), a=t=1,
La+1)—C(a) {(1—a) oo Sla—D+Le+1) 1,1 =
) T R e e E = — (5B
— 80D By )5~ Bu(®))Gar(), 1<a=1<2,
c<3>—-c<2> 1 L3) c<3>
B R —I-ﬁlog x+ 2+A +24+ 12 Bi(x)
1
—5 2 —By(0))t@)— (——Bl<x>)G 21(%), a=t=2,
where A;=—L'(—1) (see 1-[Theorem 1)).
se a _ C(a+l) xa-t+1 1(—1)m a—t a-t+1-m
(i) Grn) =50 T 7 B o T T G mn(®)

La+1) et (—)ma—t+1

a-t+1-m

+a—t—|—l m=1 m+1 \ m ) mH(x)x

1 4t m a—i+1 a-t+1-m
+(5—Bu0) g 2 D (T G-t m(%)

1 (—1)a-¢t+1
—ﬁGaﬂ.z(x)%—C(t—a)C(l)x%—mGl-z,a_m(x)

Ba t+2 Ba—t+2 _1- 23
+ D et Uat D (5 — B e — i)

{ Fox?t, 2<1<3,
+ +O0(x@riz=t),

0, 1=0,

where
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- 1 _(—1)““(a-t+’<a—t+2) B,
ala—t+1)(a—t+2) a—1+2\ i=o u u—a

{(1—a) >+C(t—a).

2k

CES M {1 ) N |<CES I C50
I o (5

+(—;———Bl(x))c(21_;aa)x2‘“

F1:_'

(if) Gour(x)=

By(x))x

D) +Gi-a, 2(?5) Gl+a 2(x)

—(%—El(x))xG_a.x(x)+0(x<’-ﬂ>/2), 0<t<1, a—t=1,

(iv) G%(x)

= C<a+1an—z+x—|—F4x2-t_C(a+1) e 4! (—)m“(a—H‘l

2(a—1+1) a—t+1 a=1 m+1 m

(=™
+ 21 m+1

)Bm+l(x)xa—t+l—m

a—t 1
( )xa_Hl_me—a.mﬂ(x) o 51 Grea.2(X)
xl t a-t-1

Z (—l)m<a—ntz+l)xa-me_a_l. m(x)+0(x(a+1)/2—¢)

m=1

+(— “‘Bx(x))

0<t<l, a—t=2,
where

+

s yan Sa—t+1\ By 1 _a—t  (a—ti—I)a—t+1—u)
A= HE=°( u >—a(a—t+2—u a—t+1 2(a—t+1)

-~ L a—t  (a—t—1)1—0)
+(—D t§(1_0)<a_1+1) (Z—t_a——t-i—l_ a—i+1 )

W Ga@= e (24l 1a+¥ 8m) 26,

2 Gy o(x)— (-———Bl(x))xG_z,1(x)+0(x1’2), =1, a=2,

M_D_ a-enny & (D7 aniriom
s LA ) m+1(m+1) G-, mer(%)

(vi)  GZ(x)=

Cla+1)azt (—1)’"( —1+1

a-t+1-m
a—it+1m=1 m+1 m ) me1(X)x

+

a—t+1

m

1 n 1 e , —t+1-m ‘ 1
Hg =Bz 2O ) G )= g G )



Average order of the divisor functions 519

0, : t=1, a—t=2,
| Rx 2“‘+C(t——a)§(l)x 1<1<2, a—tz1, +0(x@* D),
Bt e 4 EVG ), =2, atzL,

(3) We have
(i) S’:Ea (u)du:___l__G (x)___l_.G (x)—}—O(x(““”z“)
1 —-a zxa a+1,2 2 1-a,2
_M._ 2—a_§L‘> pa—
l—a)—a)" 5 % 0<a=i<1,
_%(log2n'+7‘)x, a=1=1,
+
_a) —a) ., La—D  La+l) B
2 “Tacoe-o* T 1z T ISemi<i
2 1
~S i Log et LA+ 5 a=t=2,
@ {TEedu
a-1 (—1)™m —1 1
:mz=1 (m+>1 nal_l xa_Hl—mGM—a,m+1(x)‘WGa+1.2(x)+C(i—a)C(t)x
Ba_i.2 . L(a+1) (—1)a-e+t
+a——i—|—2C(z 1)+(a—_1+1)(a_l+2)+ a—1+2 Git,a-t42(%)
0, 123,
+{ +O(x @+nre-ty
Fix®t,  2<1<3,
o x xi-a 1
(iii) SIE.G_'a+l(u>du: 2G1 ag(x) 2 Giia o)+ = G2 . 8(%)
_M S—a_c(a_l) (@a+1)y/2-t
a2 " 7 Ao )
0<t<1, a—t:l’
. z a-— —1)m™ — 1
(iv) S Efz(u)du:mz; <m+)1 (;_l)xa—tﬂ_me—a-7n+1(x)—‘2‘FGa+1,2(x)
+Fpx? Tt O(x et 0<i<l, a—1=2,

W) SfEEl(u)du

x

== 2 G~ (gg+ At 5= Ga D HO(VE), =1, a=2,
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v [TEzodu="S (8T et 5 G )

m=1 m—+1\m—1 2xt
0, =1, a—1=2,
+1 Fax* ' +{(t—a)l()x, 1<t<2, a—1=1, +0(x@*v/e)
L2—a)2)x+(—1)2*1a"'G_, (%), t=2, a—i=1,
where
e 1 _Lt—a) fi—1—a)
T ala—t+1)(a—142) 1—t 2—1
__(_1)a-¢ __1ya-t a—t
a__'l_i_zEl—l,a-t+2+( 1) a—'i+1E_t'a_l+l .

Theorem 1, (1.1)~(1.5) imply the following Corollary.

COROLLARY 1. For every £¢>0, we have

x log x+@2r—1)x, ([6]) a=0,
C(a)+C(1——a)x1_a

0 Za("z__: fa+1)x— 5 =2 s 0<a<],
nsz n¢ 1 1
IC(Z)x—flog x—i(log27r+r), a=1,
O(x—a/2+n+s), Oéaéﬁ,
+1 O(x#C2*e), B<a<l,
O((log x)**), a=1.
In particular
2
Zg(ﬁ?—f—x—kilog x=8.(loglog x), a=1.
nsxr N 6 2

y 1 O(x# ),
(i1) 7§1E~1(n): E(Q(z)—r—log 277)x+{ .Q+(x”“(log )14,
O(x¢/;(0)+e)’

z 1
EX(w)du=—-—=(o 27r+7’)x+{
) z % 2.(x'log x)'*),

p-g2 | O
(i) = Ezzm):Ci)—;—CL 11
nsx ﬁlog x+.Q+(10g10g x)
) O(x°),
S Eig(u)du:—izx%— 1
1 2 75 log x+8.(loglog x),
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O(x1+5)’
v 3 Em="Y +{
£.(x loglog x).

O(XH'&),

SxEEI(u)a'u:{
! 2.(x loglog x).

Similar results hold for other values of a.

REMARK 1. These formulas improve and correct MacLeod’s corresponding

results in [8].

In what follows we shall use the notation 4§, ;=1—40,,; where §; ;=1 for

i=7 and 0 otherwise.

THEOREM 2.
o a.(n) —;—logzx—i—Zr log x+71°42711, a=0,
e La+1D)log x+L(a+D+18a+D),  a>0,
—x—lc_a_1(X)—x~a—lGa.l(x)
0, a=0,
—g—lz_i)x-a, 0<a<2,
—LG =2
zxg —l.2<x) a=uq,
N (C(ag—l)_l_C(Z))x L 2G1 ) 9ca<3,
—i-r Gi-a.2(n) G_q.1(n)
l<r<§/2+2cr(x)x +n§x n(n—i—l)"’ 2%“; n(n+1)*
1 G_ai(n) | 1 o Gig(n)
_2_x§Gl—a,2(x) Z 2(n+1)+ n§z nz(n+l)2
G—a.l(n)
L CES a>3,
+0(x~2271),
_fla+1) C(a)
where c¢,(x)= 5 4
exx)=(~ 2B 3B~ DL 1 35,0 -1 EL

+(By(%)= Bi(x)+3 )G _a1(%),



522 Makoto ISHIBASHI

_ eyt e+ D(u—D@2r—u) {(a)
c’(x)"r+1[u§o( D ( u ){ 2(r+2—u) 2

+r=DG_ 0 (O} Bulx) =2 La+Drr—DB, (0], 723,

and 7, is the constant term in the Euler-Maclaurin expansion of > n~'log n (see
nsx

[lLemma 8).
(2) On defining E%,_\(x) by

2 'log®*x+2y log x+71r’+27,, a=0,
%, ()= 3 "“fﬁ)—{
nszr n C(a+1)log x+L'(a+1)+78(a+1), a>0,
we have
nngga—l(n):

—l—log 2x 47 log x4+ W, +2x E G, Z(n)

: 271G o), a=0,
ggzzﬁlogx—i—le—}-(Bl(x)—-——)x“G_l,1(x)——é};(x"Gg_z(x)-’rGo_z(x)), a=1,
0 1 W0 Dyee gcac,
fl((ll_“)) w80, sX 0+ f1(X)x 71, 1<a<3,
T Foeit
{2 S RS 25
1 o, Gi_uo(n) Goan(n) 1

RED IR ST § il Y ie roeny ) il PEACERURLCY

Gl—a.z(n) +l_ Gl—a.2(n)

trx 2 R T 1

n>r n(n+1)2 a>3,

—%(x_acna.z(x)+Gl—a.2(x))

+O(x—(a+1)/2) ,
where,

FooSetD e gt

D L > Bulx )+(B(x)—-)G-a (),
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&a+1)
12

+(By(x)— B1(x)+3™)G _,.1(x),

Fo(x)=(—8By(x)+6B,(x)—2B,(x)—1)

+(6B,(x)—1)

&a)
24

fr()=cr(2)=(Bi(x)—1/2)c,r (), r=3,
Wo =r242y,— CIIZ(O) + Z— —7 log 2=, a=0,
Wil,=(log 27 —{(2) log 27 +-2{'(2)+2rL(2)+7r+1)/2, a=1,
wa,_, =C(T“)+c'<a+1>+rc<a+1>—C(“;“ log 27, a0, 1,
@ [ Bt @du=Y e (7 )+ Cra )
205,27, =,
—é— log x, a=1,
_i((lljclz))g“-z‘s“-*xl_a

0, 0<a<l,
" (C(agrl) +C(:))x", 1<a<3,

+ 1srs<2a+1,,zc’(’“)x_r+2xn§2(_251:;1))2

B B

_|_O(x—(a+1)/2(10g x)Ba, 1) ,
where,

7*+2r,—2r+3/4,
Y2, 1=3 (log 27x+7+1)/2+'(2)+7r8(2)—L(2),
C'(a+D+7rl(a+1)—L(a+1)+L(a)/2,

By Lemma § and (1.1}, [(1.2), (1.4), we have

COROLLARY 2. For any >0,

a=0,
a=1,

a#0, 1,

523
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(1) g;—n)—_—_;_ 10g2x+27’ log x+72+27’,+0(x“5/"“),
nsx
1 O(x71%),
(ii) 2 E%(n)=-—log®x+7r log x+W2 +
nsxr 4 Qi(x_ll‘),

z O(x~14),
S Eﬂl(u)du-_-Yﬂl—}—{
! Qi(x—l/4);
O(x‘/"“"‘“),

Q. (x~34(log x)'*),

L@+ |

(iii) EzElz(n)= 5 ogx+le+{

0(x¢(0)-1+s)’

SrElz(u)duz L 1og x+Yl2+{
! Q.,(x~**(log x)'*),

2

C(S) O(x—l+s),
2

(V) ZENHm= logx+W£s+f1(x>x-l+{

Q2.(x'loglog x),
z O(JC_HE),

S Eis(u)du—_-YZS-l-{
! 2.(x 'loglog x).

Similarly, for other values of a the order of the error term essetially depends on
that of Gi_q o(x).

THEOREM 3. (1)

n@z ilaa(:lz) ZC(Z)C(G +2)—x—2(x—aGa, W(X)+G_g (x)+0(x-2/27%)

r—x"llog x—C2r+1)x7*, a=0,
—C((:f)x“'“, 0<a<2,
+ 1
*—C(a—f—l)x-l-{— —FGI_G,g(x) a:2,
5 1 L 1
(fe@+D+3L@Nx~ = 56iau(¥), 2<as3,

(2) On defining E%, ,(x) by

aa(n) { g¥2)—x"'log x—(2r+1x"Y,  a=0,

Ele o(x)=2 —0r —
C@)X%(a+2)—f(a+1Dx, 0<as3,

nsr N

we have
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D E2 (n)=W2,_,— Z(x—aGua,2(x)+G1—a.2(x))

—~1- log x—()’—i——:lz—)x" : a=0,
{(l—a) . C(a+1)
a(1+a)5a 25a 3X
+ C%:)(E,(x)— ) ~1-a 0<a<l,
+{ (Biw) = )Goanx™, a=1,
|| R - B+ (B g e} 1<as8,
+0(xm @91,
where
. _{C2(2)+72—7—n—1. a=0,
- C(Z)C(CH-Z)—C’(G+1)—C(a+1), otherwise,

@ (B2 du=Y 2 (575G 0 a0+ el

0, a=0,
0, 0<axl,
L1 a)- -
0.20a,3X "+
la(1+a) a.sX <C(a+l)+C(1;) x7? 1<as3,

FO(x-@rv),
{ R)y—r:—2r—2r,—1, a=0,
| z@a+2)—La+)—1la+)—L(a+1), 0<a<3.

THEOREM 4. (1) For 1=2, we have

where,

= 7 e+
”z’—% " log x—; 1(27+t11 x a=0,
i(_lei ~ate1 0<a<2
+ _La+1) Xt g LS (x) a=2
=1 2 “hass -
(a(t)c(a+1)+/9(t)c<a)>x““-——;—x*"’Gl-a,zm» 2<a=3,

—x7Hx7%G g (X)F+ G g, 1(x)+O(x%/278),
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where,

P41 oy
s+’ PO= gy

(2) On defining E%,_(x) by

a(t)=

Ega_l(X):ngxonaa(-:lt)_gga-t(x)’
where
g2 (x)=LM)(a+1)+ c b
*—(t“—_’Ll—x-M, 0<a<3,
we have, for 1=3,
zEaa t(n) W—a t
—-t-1 1 1 —-t+1 JE—
_2(1_1))5‘ log x———_—~)<27+l_—l)x , a=0,
C(a+1) 1 C1—a) 5. .5 .g-a-tez
20—D "~ B +(a+t 1)(a+t—2) 9a.20a,0% """
C(l-——d) n —a-t+1
+1 | (B )xme, 0<a<l,
+ (Bl(x)——;—)G_x,x(x)x“‘, a=1,
(@ +D+8 0@~ Bio)) x4 (Bu— )G a i),
1<a<3,
3 (E G s +G g a2+ O 18,
where,
g~ gu—— Doy 1) HED a=0,
Wga—t:
COL(a+)—L(t—1f(a+1— 1)+C(a+l)C(t—l) otherwise.

(3) For 1=3,
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| Eeewdu=ye,.,

0 H (1:0,
C<1 a) —~—a-t+2
| @i +i=1) e
{ 0, 0<ax],
(@’ (a+1)+p'E(a)x*, 1<a<s,

1
—ﬁ(x'“Gua,z(xH‘Gl-a,z(x))—}—O(x‘“/Z—Hl/Z),
where,
1 1 1
2 e o _
T i) C s ) a=0,

Z(a+1)
@—=(-=2)’

a’')=all)—a(i—1), B'=pHt)—p(A—1).

a
—a-t—

LWC(a+0—-Lt—1Z(a+1—1+

otherwise,

REMARK 2. From (1.1)-(1.5) and [7] the last but one term involving G, -
functions can be estimated as follows:

() —2G_ga(X)H0 (x-2/i-trase)
O (x-erz-trate) 0<a<pB,

={ O (xformtre), B<a<l,

O ((log x)*%), a=1,
Q.,(x"t*4(log x)*(loglog x)*2leen/t exp (— A +/loglog x log x), a=0,
Q (x4 exp (c(loglog x)'*(logloglog x)~%/*), a=0,
= Qi(x“ exp (C-a (}gglz)g—:cﬂ)) 0<a<l,
Q.(x tloglog x), a=1,
(2.(x7Y), a>1.
(i) o Gra ()0 (x7o00310)
O (x-v/2-t+arey 0=<ax1/2,
=1 O (x#0®mtre), 1/2<a<2,

0 (x79, a>2,
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Q. (xarEmers, 0=<a<1/2,
Q. (x7elB7831f (%)), 1/2=a<],
Q. (xmal2tsnf (x)), 1<a=3/2,
Tl o (xtex (cl-a%)), 3/2<a<2,
2.(x *tloglog x), a=2,
2.(x7Y, a>2.

3. Preliminaries.

LEMMA 1. (MacLead [8]) For t>0, let
3 nta(n)=g%(x)+E%(x),

nsx

and suppose the series

i Egt(@ had Egt(n)_i o ¥g3,(n)i
=1 n® ' n=1 n¥(n+1)’ st n¥(n+1)’
all converge and that x %3} E%(n)—0 as x—oo. Then we have
nsxr
(1) "‘Saxn"“oa(n)= 2ZSO+K.,

_ g%(n) _gél_(i
where Sx(l)—Ez n? +nz>]zn2(n+1)'

e G, Gin)
Sut)= 2n§zn(n+l)2 nor n¥(n+1)’

Ss(t)=G2(x)([x]+1)72,

. E2(n)
SO= 2 1)

SeO)=(B,(x)—1/2)x ([x]+D* T n~*aa(n),
Se()=x"' 2 n~taq(n),
nsxr

and that

@) 5 (x—mn e (m=x 2 S(+xK

naxr

where K2, is the sum of the three series, G%,(x) is defined by

G2y(x)= 2 E2y(n),

nse

and the R. H.S. of (2) should be interpreted as the sum of first five terms in (1)
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multiplied by x, with an ervor term better than the error term for the L. H.S. of
(1) by x—372,

(3) nngEt(n):nZg‘,I(x—n)n—toa(n)——n;cgft(n)—(él(x)_1/2)“% n-ta,(n),
and (Segal [17])
@) SfEE:(u)du:g_}x(x_n)n-caa(n)_ ng?_t(u) .

LEMMA 2. For v>0, let
L_v__l(x)zélgcn"’(n—|—1)“1 , M_, —(x)= %}In‘”(n—{—l)'l log n,
and for v>—1, let
L_,,,_g(x):ng n%(n+1)"%, M_v,_z(x)zng_;, n%n+1)%logn.
Then for any NN,
N (—1) r

@) M.y _(x)= 2‘:0(_0’_:1 sé(—1)3(”“:7)11(:«)(10;; X Joa(s—v—r—1)) x0T

+0 (x~¥-*1log x),

X (=17 \ v+r+1\ 5 —v—r—1 -N-v-2

3 Lowoalm)= B =D —s+D(7T L )Bun)x T 0 (27,
e LA , v+r+1\ 2

@ Moy )= 3 - SH=Dir—s+1(" ) Butx)log x

+Jeo(s—v—r—2)x""" "' +0 (x"¥"%log x),

where J'n-l(u)———nil 1/(u—k) for nz1, j_,(u)=0, j_o(u)=—1/(u+1).
k=0

PROOF. Substituting

(n+1)t= 8 (—1)7nT 0 (17,

(n1)= 3 (~ D (r+Dn 40 (n7¥),

in the definitions of L’s and M’s and applying the asymptotic formulas for
L, (x) and M,(x) contained in [-Lemma 3, 8 we conclude the assertion.

LEMMA 3. Let S,.(x)=(x—1)". Then we have
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(1 SHx)= 3 aurBu(x),
where a,(r)= E—iﬁ’l*“(r-;—l) (u<r), and 0 otherwise.

@) Buy(x)= 3 b-()S:(x),

(“) 0<r=u—2,
r
where b, (u)=< u/2, r=u—1

1, r=u

PrROOF. These follow from the recurrence relations of Bernoulli numbers
and Bernoulli polynomials.

LEMMA 4. For any nonnegative integer N, we have

(1) ([x]+1)_l: éo(uéo (jﬁl—u(rl—l)éu(x))X’f—l_i_O ()C'N—z)’
@) Ca+1= 33 (5 Do 7)Buo)e 40 (v,

PROOF. We have

(3.1) (x4 D= A+ = {xh)/ )
= 31 S (Ixhx 71 4+0 (6,

similarly

(3.2) ([x]+1)7*= 7S, 1(xhx 740 (2747,

Now the result follows from Lemma 3.
LEMMA 5. For any nonnegative integer N, we have

(1) (Bl(x)—l/Z)x‘l([x]+1)-1:Té ué a (B (x)x " T4+0 (x~ V72,

(2) (Bl(X)—l/Z)([x]—}—l)‘Z_—_r% ruéo au<r)B—u(x)x—l—r+0 (x_N_z),
(3) Bz(x)([x]+1)—2: 1_1\,2:17’(:2:,(a“(r+l)+au(r)+au(f’—l)/G)Bu(x)

4+ Brn(X)+(1 =) Bo(x)/2)+0 (x~¥-2),
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where a,(r) are defined in [Lemma 3.

PrROOF. From and we can expand the L.H.S. of (1), (2) in
powers of x with coefficients S,,,({x}), which are expressed in terms of B.(x)
by Cemma 3, (1). Similarly, for (3) we first express By(x) in terms of S,({x})
by Cemma 3, (2), and then we can expand the L.H.S. of (3) in powers of x

with coefficients involving S,({x}) and again we apply [Lemma 3, (1) to express
them via B,(x).

LEMMA 6. For us N, we have

1 u+1

(By(x)—1/2)B (x)= u+1"§o( m

)Bu—m+1Bm(x)+Bu+l<x) .

ProOOF. We have
L.H. S.=(x—DBu(x)= 3 b,(1)S,.1(x).

Using Lemma 3-(1), and interchanging the order of summation gives the result.

LEMMA 7. (cf. Walfisz [18]) Suppose f(x) is a bounded, Riemann integrable
function on [a, b] and that it has the bounded, Riemann integrable derivative on
[a, b] except at integer points, where it has the right derivative. Then

2 fo={ 10)dy+ B /@)~ B SO+ B (»dy .

PROOF. The proof goes on the same lines as 3hose of Lemma 1.3.1 in
Walfisz. Indeed, by dividing the interval (a, b] into subintervals, we see that
it suffices to prove our formula in the case where there is at most one integer
in (a, b]. We distinguish three cases. First, if there is no integer in (a, b],
our formula follows by integration by parts.

Secondly, if there is an integer n such that a<n<b, we proceed as in
Walfisz to arrive at

B ="+

a n

Since f has the right derivative at x=n, we may integrate the second as well
as the first integral by parts, and so we infer that
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[ B.) 7 dy=Bin=0)fm—Bu@ @ 1(dy
+ B0 )~ Bum - f(»dy

= f()+ BuUb) &)~ Bu(@)f(@)- | f(»dy.

Finnally, if b is an integer, we can repeat the argument of Walfisz.

LEMMA 8. Let a(n) be a polynomial in n of degree t with leading coefficient
positive and let a<2t—2. Then

Ga.k(l):{ O (x%/2-t+1y a>—2,

T:=
isz a(n) O (x7%(log xY’*-Y), a<-2,

PrROOF. Changing the order of summation, we have

T=>m* 3 a(n)“Bk(%).

mz1 n>r.nzm?

Dividing the range of m into two: m<+/x, m>./x and estimating the sum
over m>x, n=m? trivially, we obtain

T= E maS(x)+ >2f‘ma5‘(m2)+0 (xa/z—t+1/2),

msvzr

where
= n
_ -1 n
S()= 3 a(n) B,,(m).
Now, by and the second mean value theorem,
o 5 (U 5 (Y
S(Y)zgya(u) B )duta(r)Ba(;-)
o d B (U a2k 5 u
+SYBl(u){Ea(u) lBk(E)‘f'a(u) ‘;Bk_l(;)}du
=0 (MYt '4-mY ),
since, by integration by parts
Sygl(u)ék(%)duzO (m?).

Hence
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T:0 ( E ma<7nx—t+m2x—t—1))+0 ( E 771(1—2“-1)_](_0 (xa/Z—LH/Z)
MsVT Mm>VZI

{ O (xo/2-t+), if a>—2,
O (x7%(log x)Y* %), if a<-2,

as asserted.

LEMMA 9. (Richert [16, Satz 2)). Let Z(s)=3) f(m)n™ be a convergent

Dirichlet series whose analytic continuation is meromorphic in every subdomain of
C and satisfies |Z(s)|=0 (|1|°) uniformly in ¢ with a constant c. Suppose there
exist real numbers a, @ such that f(n)=0 (n***) and Z(s) is absolutely convergent
for a>a. Suppose also that we can express Z(s) as

Z(s)=C9+*"G(s)Z ,(r—s)

with v, 8 real, C>0, 0, complex, and

_ & T(Bi—byss)
Gls)= ng I'(0;+d;s)’

where Me N, B;, §,=R, b;, d;>0, 1<7<M, and where Z(s) is an analytic func-
tion defined by a convergent Dirichlet series Z,(s)= i fi(n)n=%. Suppose further
n=1
that there are two real numbers a,, @, such that fi(n)=0 (n*1**), and 3 fi(n)n~*
n=1

is absolutely convergent for ¢>da,. Then, if a=—1 and k=0, we have, as x— o,

C e+ B S —n)

ajt+ati—r A-1/2—¢
= x(x)"‘O(xaHKH)(l_q(_&]l:m)“)_*_O (xa+s)+0(x'€+ p +s)’
where
I'(s)Z(s)
£ == R 8+x__—_____,
Bl min(r—al,gz_l)sdswn s P(S+K+1)

4. Sketch of proofs

The proof of goes along similar lines to those of proofs of
in [6]. In order to apply IH-Lemma 3 without error term we have
to restrict ourselves to the case a—t=Z. In what follows, by (Case: i=b) we
refer to formulas for
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D Tt lem), @) BEm, @ | B wdu.

nsx

Then, using Lemma 1-6, 8 we deduce (Case: t=1) from Theorem
1 with t=a, which however, differs from the corresponding formulas in Theo-
rem 4 (Case: t=2). We therefore go on to deduce (Case: 1=2).
Formula (1) in coincides with Formula (1) in with t=2,
while neither Formulas (2) nor (3) coincide with those in [Theorem 4. We then
proceed to deduce Formulas (2) and (3) in (Case: {=3), which are seen to coin-
cide with Formulas (2) and (3) in with ¢=3.

To prove Theorem 4-(1) we apply induction on f. The starting point for
Formula (1) is t=2 and, for Formulas (2) and (3), it is {=3. Applying the
back-track method to Formulas for some { (which we assume to hold), we can
check that the Formulas for ¢+1 are precisely those given in Theorem 4 with
i+1 in place of ¢

In order to derive Formulas (2) and (3), we need Riesz sums, which we
calculate with the aid of Lemma 1-(2), Lemma 9. They read

PROPOSITION. For 3<i<Z, we have

= -2 gt +0r—L—1a-+-1D

na+L
-—"‘1 Ttrz 1 ! 1 ~t+2 —
G LR e T G R )
Catl) ., {1—a) s uens
* (—11—-2)" +(a+t—1)(a+1_2)‘7a'25a’3x
{0’ 0<a<l,
(@’ (a+1)+B'W)¢(a)x~t 1<a<s3,
1

- ”Z*XT(x_acl+a.2(x)+Gl-a.z(x))+0 (xﬁa/2_1+”2),

where

a'(O=a)—alt—1), B BO=BH—PLE-1).
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