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COMPLETE SPACE-LIKE SUBMANIFOLDS WITH
PARALLEL MEAN CURVATURE VECTOR
OF AN INDEFINITE SPACE FORM
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Qing-ming CHENG* and Soon Meen CHOI

1. Introduction.

Let M%*?(¢) be an (n+ p)-dimensional connected indefinite Riemannian
manifold of index p and of constant curvature ¢, which is called an indefinite
space form of index p. According to ¢>0, ¢=0 or ¢<0 it is denoted by S3**(c),
R:*® or H%*P(¢). A submanifold M of an indefinite space form M3*?(c) is
said to be space-like if the induced metric on M from that of the ambient space
is positive definite. It is pointed out by some physicians that space-like hy-
persurfaces with constant mean curvature of arbitrary spacetimes get interested
in relativity theory and an entire space-like hypersurface with constant mean
curvature of an indefinite space form are studied by many authors (for exam-
ples: [11, [2], 3], 41, [7], and so on).

Now, for a complete space-like submanifold M with parallel mean curvature
vector of S3*P(c), it is also seen by the first author that M is totally
umbilic if n=2 and h%<4c or if n>2 and h*<4(n—1)c, where H denotes the
mean curvature, i.e., the norm of the mean curvature vector and A=nH. On
the other hand, the first author and Nakagawa [6] investigated the total um-
bilicness of such hypersurfaces from the different point of view. They proved
that the squared norm S of the second fundamental form of M is bounded
from above by S,(1) and if sup S<S_(1) and H?<c¢, then M is totally umbilic,
where

nh®+(n—2)/h*—4(n—1)ch?

S«(p)=—pnc+ 2n—1)

In this paper, we research the similar problem to the above property for the
complete space-like submanifolds with parallel mean curvature vector of an
indefinite space form. That is, we prove the following
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THEOREM 1. Let M be an n-dimensional complete space-like submanifold
with parallel mean curvature vector of an indefinite space form M3*P(c). If the
one of the following conditions is satisfied :

(1) ¢=0,

2) ¢>0 and n*H*=4(n—1)c,
then

(1.1) S=S.(p)+K(p),

where K(p) is a constant defined by

K(p)=(p—1H {nH+~/n(n—1{S,(1)—nH? }.

THEOREM 2. The hyperbolic cylinder H'(c,)X R*™' in R?*! is the only com-
plete connected space-like n-dimensional submanifolds with parallel mean curvature
vector of R3*? satisfying S=S.(p)+K(p).

THEOREM 3. 7The hyperbolic cylinder H'(c,) X H" *(c;) of H%1*'(c) and the
maximal submanifolds H"\(¢,)X -+ X H"?+1(¢p,1) of H3E*P(c) are the only complete
connected space-like n-dimensional submanifolds with parallel mean curvature
vector satisfying S=S.(p)+K(p), where c,=(n/n.)c and X2t n.=n in the latter

case.

2. Standard models.

This section is concerned with some standard models of complete space-like
submanifolds with parallel mean curvature vector of an indefinite space form
MZ3*?(c), c £0. In particular, we only consider non-totally umbilic cases.
Moreover, the squared norms of the second fundamental forms of such standard
models are calculated. Without loss of generality, an (n+ p)-dimensional in-
definite Euclidean space R3*? of indeX p(=1) can be first regarded as a product
manifold of

RM1*1'% .« X Rip*'x R™,
where 32_,n,+m=n. With respect to the standard orthonormal basis of
R%*? a class of space-like submanifolds

H™(c)X - XH"p(cp) X R™
of R2*? is defined as the Pythagorean product

H™(c,)X - XH"p(cp)xR"‘

:{(xl, o, Xpa)ERFTPP=RPMIX X RIp*IXR™: |x,|?=— >0},

T
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where »=1, .-, p and | | denotes the norm defined by the product on the
Minkowski space R!*! which is given by <{x, x)>=—(x,)*+>%-1(x,)?. The mean
curvature vector h of M is given by

1 »
(21) h=——2n.c,x,
n r=t
at (x,, -+, X¥p+1 )M, which is parallel in the normal bundle of M. The number

S,(1) and the squared norm S of the second fundamental form are given by
2.2) S.(D=n'H*=— S n%c,, S=—Bnec,.
Then we get

SD+K (D)= pn*H'=—p B n,%, =S,

where the equality holds if and only if p=1 and n,=1.

Next we consider an n-dimensional space-like submanifold of H%*?(¢), p=1.
Without loss of generality, an (n+ p+1)-dimensional indefinite Euclidean space
R32*' of index (p+1) can be first regarded as a product manifold of

R+l ..o X Rip+1+t

where >332tin,.=n. With respect to the standard orthonormal basis of RpIf*!
a class of space-like submanifolds

H"’(Cl)x XH"P+1(Cp+1)
of R31%*! is defined as the Pythagorean product

H™(¢))X - X H"P+1(Cp4y)

-——'{(xl, v Xpe ) ERFIEITI=RUIX X R 1T | x| 2= — L >0},
where =1, ---, p+1. The mean curvature vector h of M is given by
1 p+1
(2.3) h:———n— gl(nrc,xr)—l—cx
at x=(x,, -+, Xp41)EM, which is parallel in the normal bundle of M. The

norm H of the mean curvature vector h and the squared norm S of the second
fundamental form are given by

p+1 p+1 p+1
(2.4) hi*=n*H%=n%c— > n.%,, S= 3> n,(c—c)=nc— S n,c,.
=1 r=1 r=1
When M is maximal, it satisfies n,c,=nc for any index » by [2.3), which

yields S=—pnc. Then we get S, (p)+K(p)—S=0, because of S.(p)=—pnc and
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Suppose that H+0. By a theorem of Ki, Kim and Nakagawa 9], if p=1,
then we have S,.(1)-S=0. On the other hand, we have S.(1)>h*—nc, because
of ¢<0. So it is seen that if p=2, then we obtain

by (2.4). In order to prove the last inequality, the following lemma is pre-
pared. The proof of this lemma is the only calculus and hence it is omitted.

LEMMA 2.1. Let a,, -+, ap.1 be numbers not less than 1 satisfying 3a,=n
and b,, ---, bp,, be negative numbers satisfying >(1/b,)=(1/b). Then we have

Z{a-—pla,)’to,zn(p+1—pn)b.

3. Preliminaries.

Throughout this paper all manifolds are assumed to be smooth, connected
without boundary. We discuss in smooth category. Let M3*?(¢) be an (n+ p)-
dimensional indefinite Riemannian manifold of constant curvature ¢ whose index
is p, which is called an indefinite space form of constant curvature ¢ and with
index p. Let M be an n-dimensional submanifold of an (n4 p)-dimensional
indefinite space form MZ%*?(¢) of index p. The submanifold M is said to be
space-like if the induced metric on M from that of the ambient space is positive

definite. We choose a local field of orthonormal frames e, ---, ¢,,, adapted to
the indefinite Riemannian metric of M3*?(c) and the dual coframes @, ‘-, @n,»
in such a way that, restricted to the submanifold M, e, ---, ¢, are tangent to

M. Then connection forms {w.s} of M3*?(c) are characterized by the structure

equations
dws+Zepwap Awp=0, W+ wpa=0,
(3.1) dwas+2ec@ac NWcg=82 45,
1
Q4=— - SecepRupcpwc Nwp,
3.2) RQBCDzCSAEB(aAbaBD_aAcaBD) ’

where e,=1 for an index A<n, e,=—1 for an index A=n+1, and 2,5 (resp.
Ru4pcp) denotes the indefinite Riemannian curvature form (resp. the components
of the indefinite Riemannian curvature tensor R’) of M%*?(¢). Therefore the
components of the Ricci curvature tensor Ric’ and the scalar curvature r’ of
M3%*?(c) are given as

Rip=c(n+p—1)e 045, r'=n+p)Xn+p—1c.
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In the sequel, the following convention on the range of indices is used, unless
otherwised stated:

1<A, B, ---<n+p; 1<i, 74, ~=n; n+l<a, B, --=n+p.

We agree that the repeated indices under a summation sign without indication
are summed over the respective range. The canonical forms {w,} and the

connection forms {w,z} restricted to M are also denoted by the same symbols.
We then have

(3.3) 0,=0 for a=n+1, ---, n+p.

We see that e,, ---, ¢, is a local field of orthonormal frames adapted to the
induced Riemannian metric on M and w, ---, w, is a local field of its dual
coframes on M. It follows from and Cartan’s lemma that we have
(3.4) W =2 hfw;,  hi=hf;.

The second fundamental form « and the mean curvature vector h of M are
defined by

a=—Shiwwse,  h=—-S(Shide..
The mean curvature H is defined by
1
(3.5) H=|h|=—v2(Xh)".

Let S=33(h)? denote the squared norm of the second fundamental form a of
M. The connection forms {w,,;} of M are characterized by the structure equations
dwi+2wij/\wj:0: wij+wji:0,

(3.6) dw;;+ 2w N =85,
1
Qij:——z‘ZRijklwk/\wly

where 2;; (resp. R;;:;) denotes the Riemannian curvature form (resp. the com-
ponents of the Riemannian curvature tensor R) of M. Therefore, from [3.1)
and [3.6), the Gauss equation is given by

3.7 Rijnr=¢(0:10;5 —0:0;0) — Z(hithfe—h§hf) .

The components of the Ricci curvature Ric and the scalar curvature r are
given by

(3-8) Rjk:(n“—l)cajk—Ehgih?k“}‘zh?ihgk,
(3.9) r=n(n—1)c—n*H*+3(h$)?.



502 Qing-ming CHENG and Soon Meen CHOI

We also have
1
(3.10) dwaﬁ_zwnr/\wrﬁ:_EzRaﬁij(l)i/\w_j,

where
Raﬁij:‘——z(hﬁhﬁjz_h;zh%z) .

The Codazzi equation and the Ricci formula for the second fundamental form
are given by

(3.11) h#y—h%;=0,
(3.12) heer—h&G=—2h&Rujri— e R mint+ 2 R85 Rgan1,

where h%, and h%,, denote the components of the covariant differentials Va
and V?a of the second fundamental form, respectively. The Laplacian Ah% of
the components h¢ of the second fundamental form « is given by

Ah%’j=2h$ju .
From [3.12) we get

(3.13) Ah?j:zklhfkij—zh?mlemijk—EhfniRmkjk'*‘zhﬁkiRﬂajk .

The following generalized maximum principle due to Omori and Yau
will play an important role in this paper.

THEOREM 3.1. Let M be an n-dimensional complete Riemannian manifold
whose Ricci curvature is bounded from below. Let F be a C:-function bounded
from above on M, then for any €>0, there exists a point p in M such that

F(p)+e>supF, |grad F|(p)<e, AF(p)<e.

The following lemma is already known.

LEMMA 3.2. Let a,, ---, a, be real numbers satisfying Ja,=0 and Ja,’=
k2?2 for k>0. Then we have

el -2\

where the equality holds if and only if n—1 of them are equal with each other.

4. Pseudo-umbilic submanifolds.

Let M be an n-dimensional space-like submanifold with parallel mean
curvature vector A of an indefinite space form M3*?(c). Because the mean
curvature vector is parallel, the mean curvature is constant. Suppose that
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H+0. We choose e,,; in such a way that its direction coincides with that of
the mean curvature vector. Then it is easily seen that we have

(4.1) Wyns1=0, H =constant,
(4-2) HO(H n+1:Hn+1Ha,
(4.3) trH"*'=nH, trH*=0

for any a#n-+1, where H® denotes an nXn symmetric matrix (hg).
A submanifold M is said to be pseudo-umbilic, if it is umbilic with respect
to the direction of the mean curvature vector A, that is,

(4.4) h?fl:Haij.

We denote by g an nXn symmetric matrix with pg;;=h#"*—Hd;;, Then we
have

4.5) trp=0, | gl 2=tr(p)?=2(p ) =tr(H"**)*—nH"®.

So the pseudo-umbilic submanifolds are characterized by the property p#=0. A
non-negative function r is defined by 72=3)s...:(h%4;)? We then have
(4.6) S=|pl?+1*+nH?.

Hence it is seen that |u|? as well as z* are independent of the choice of the
frame fields and they are functions defined globally on M.

PROPOSITION 4.1. Let M be n-dimensional complete space-like submanifold
with parallel mean curvature vector of an indefinite space form Sp*P(c). If it
satisfies

ntc=n*H*=4(n—1)c, S<S_ (1),
then M is pseudo-umbilic, where H denotes the mean curvature, i.e., the norm of
the mean curvature vector.

PROOF. In order to prove this property it suffices to show g¢=0. From

(3.13), the Gauss equation [3.7) and [3.10), we have
(47) Ah’izflanh?J:H—“nCH5ij+2hlrzz7zlhﬂmkhﬁij_zzhﬁikhgﬁlhﬁmj

+ S hia hfy hBy—nH ShE A5+ SR h b hi5*
Accordingly we obtain from
%A| p P =32(hEE? +ncS(hif ) —n*cH®

+ B Wy BT =2 R h i P R A+ AR Ry Ry h T
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—nH ShE hEh Y+ Sheyh o hE5 i

and hence we see

2 Al =S+ ne Sk
(4.8) —n®cH?—nH tr(H"*')’— tr(H"“Hﬁ—HﬁH"“)"

,#n

+{tl‘(Hn”)2} +ﬁ§+l{tr(HnHHﬂ)}2'
On the other hand, because of

tr(H ™' =tr p*+3H{tr(H"*")*—nH?*} +nH?*,
we get

1
(4.9) ZAlp* (| pl*+nH® —nH {tr ' +3H| p|*+nH® +ne| p|?

=|pl¥(lpl*+nc—nH?*)—nH tr p°.
Because of tr p=0, we can apply to the eigenvalues of u and obtain

e N2
(4.10) ltr p ]‘S‘x/n(n—l) lel®.

Hence we obtain

2

4.11) —A|y|2>|p1 (]plz—nHm

lpl+nc—nH )

where we have used (4.9) and [4.10). From [3.8) we know that the Ricci curvature
of M is bounded from below. Putting F= —1/+[g|®*+a for any positive
number a. Since M is complete and space-like, we can apply the Generalized
Maximum Principle (Theorem 3.1) to the function . For any given positive
number &£>0, there exists a point p at which F satisfies

(4.12) sup F<F(p)te, |grad F |(p)<k, AF(p)<e.

Consequently the following relationship
1
(4.13) EF(P)‘AI;!V(PKSH—F(P)E

can be derived by the simple and direct calculations. For a convergent sequence
{em} such that ¢,—0 (m—co) and &,>0, there exists a point sequence {p.} such
that {F(pn)} converges to F,=sup F by [4.12). On the other hand, it follows
from that we have

(4.14) 3 F(pm)Al p| () <3a* F(puen.

The right hand side of converges to 0 because F is bounded. Accordingly,
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for any positive number ¢>0 (¢<2) there exists a sufficiently large integer m
for which we have

F(pm)4A'[«l|2(f)m)<$.
Hence we get

a2 H -T2 s
2 5)|#| (Pm) ZnHmlﬂl (Pm)
+2(nc—nH®*—ea)| p|*(pn)—ea®<0.

Thus the sequence {|p|*p~)} is bounded and the definition of F gives rise to

(4.15) lim | p|*(pm)=sup|pl®.

Therefore the supremum of F satisfies F,=sup F<0. According to we
have

(4.16) lim supA| p|%(pm)<0.
Thus and yield

2 © g2 _nH?
(4.17) 0=sup| | *(sup| | nH_e=csup | p| +nc—nH )-

Taking account of we have
(4.18) sup 2(hE?*=nH? or S_(1)<sup 2(hH)1P<S.1),

from which combining with the assumption of Proposition 4.1 it follows that

we have
sup D(h})?=nH?.

This means that #=0 because of and therefore M is pseudo-umbilic. O
The inequality [4.17) holds on the space-like submanifold M of MZ*P(c).
Accordingly, in this case we have
(4.19) sup 23(hij)’=nH® or supZ(AH)<S.(1).
REMARK. When p=1, the hypersurface M becomes totally umbilic under

the assumption of Proposition 4.1, which means that this property is a gener-
alization of the theorem due to the first author and Nakagawa [6].

5. Proof of Theorem 1.

In this section the squared norm S of the second fundamental form of M
is estimated from above. Let M be an n-dimensional space-like submanifold
with parallel mean curvature vector h of an indefinite space form MZ3*?(c).
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PROOF OF THEOREM 1. Because the mean curvature vector is parallel, the
mean curvature is constant. If H =0, then from Theorem 1.1 due to Ishihara
[8], we know that M is totally geodesic if ¢=0 and S<—npc if ¢<0. Hence
is true. Next we may suppose H#0. We choose ¢,,, in such a
way that its direction coincides with that of the mean curvature vector. Then

we get [(4.1), (4.2) and [4.3). From [3.13), the Gauss equation [3.7) and [3.10)

we get

1
0l A= 3 (hfi)*+ 2 h§HARY
atn+l a+n+1

=a§+l(h‘i’ﬂz)2+nc‘?2+ 2] hkmhpmkh 1 h

a‘En+

_2 2 h khkmhﬁmjhtj+ 2 himhﬁmkh jhzj

axn+1
—nH 2 htmh"+1 S+ X hByhbnhghy,
a+ atrn+l

and hence we get

LAT= S (hgtdnert 3 himhbuhfshg
2 atn+l a, B#n+
_2 Z hﬁikhgmhﬁmjhgj'*' 2 himhﬁmkh jhij
a,B#n+1 a,B#n+1
(5.1) + 32 hBehbmh& h&G+ 3 hEnhBS h3 A
a,B#n+1 a¥n+1

—2 2 hEhinhith+ 3 hinhwilhif Y

a#n+1

—nH 3 himh3§hit Py B s

a#xn+1
We put S.p= XZhfhb; for any a«, B#n+1. Then (S,p) is a (p—1)X(p—1)
symmetric matrix. It can assumed to be diagonal for a suitable choice of
Cny2, *ty Cnyp. Set S,=S,,. We then have 2=3)S,. In general, for a matrix
A=(a;;), we define N(A)=tr(A*A). Hence we get

S hEnhParhb hy—2 S hBhgnhbihgy

a.f#n+1 a, B#n+1
+ X hfhBuhboht+ D hEnhPuhbih
a, B#n+1 a,B#n+1
= > (S,,)2+ 2 N(H*HE—HEH®).

a#tn+1 B#n+1
Obviously, we see
(5.2) ,92 N(H*HEP—HBH*>0.

a,B3#n+1

Suppose p=2. Let
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(p—Da=r*=3S,,
(h—1)(p—2)a:=2 5 S.Sp.

a<B,a. f#n+1

Then we get
2(S)*=(p—1a)*+(p—1Xp—2){(a:)*— a3},
(p—1(p—2){(e)’—a:}= 2 (Sa—Sp)’.

a<B, a, B#En+1

Hence we obtain

S hEnhParhBihy—2 3 hEyhEnhfush

a, B#n+1 a, B+n+1

(5.3) + 3 htmhBuhbihy+ D hEhAnhgshy

a,B#+n+1 a,B#n+1

4

j)—~1 T .
Then the equations [5.1), [5.2) and [5.3) imply

=(p—1)(e)*=

FACZnct ot D MBI G2, 3 hEhe R by

aF+En+

+ . h““hk“hﬁ—nH > 25 hE +a2+1hn“hk+lhm1h?j-

a#Fn+l a#*n+1 #n

For a fixed index a, since H*H"*'=H"*'H* we can choose {e;, -+, e¢,} such
that

h$=21%90,;, h#tt=2,04,.
Then we get

g h AT h G —2 3 h G hgn A h G+ S heém AR R R
—nH I hinh i hG+ 2 h s hEE he:hy
=(ZAA?—nH 3 A:(2%)°.
We notice here that eigenvalues Ais are bounded by (4.19). In order to

estimate the last term on the above equation, the following property is prepared.

LEMMA 5.1. Let a,, -+, a, be real numbers satisfying > a;=0 and let by, -+,
b, be also real numbers. Then we have

2a;(b;)’< (b2,

where the equality holds if and only if the n—1 of ai’s are equal with each other
and the corresponding n—1 of b;’s are equal to 0.
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PROOF. We consider the function f=3a;(b;)? with constraint >a;=0,
SXa;)?=a and 3(b;)?=>b. Then there exists a critical point of f on R?*" at
which we have

(5.4) (bi)2+ﬂ1+2llzaf:0, zatbi+2ﬂabi=0-

From we get

1
#lz—;bv

and the critical value of f is equal to —psb=—2u,a, and therefore we have
(5.5) a;=—ps, or b;=0.

If a,=—ps for any index 7, then we get f=0, because of Xa;,=0. If a;=
— s, 1=<i<m and b;=0, m+1<;<n, then we have from

If ¢#,=0, then f=0. Without loss of generality, we may suppose g,#0. Thus

we see
b .
af— 2"#2’ J"“m+1; e, n,
which yields
(5.6) mus=(n—m)

2"#2 ’
From [5.4) and (5.5) it follows that we obtain

_,1 [np—m b
He==E7 nm +a’

which means that we obtain

/] g\/"_l V@S b

n
If the equality holds, then we have m=1 and a,=++a/n(n—1), b,=0, 2<;<n.
The converse is obvious. O
According to we have
(DA —nH SAA9*Z —nH DA —H)AD—nH*S2D)*
=—nH(§#i(2‘{)2+H @(2?)2)

> —nH(\/n . L /st 2—nH2+H)tr(Ha>2.
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The right hand side of the inequality above does not depend on the choice of
frame fields. Therefore we have

2 hgmhn+lhn+1ha‘___2 2 hn+1hkmh1nn«i}1h?j+ 2 h“nhn-H n+1 ;1]

a#+n+1 a#Fn+l a#FEn+

—nH 3 hnhiihit 3 AmhiEhE Ay

a#n+1

___——nH(\/n 1x/2(h"+” nH2+H)rZ

Thus we have

4

%Ar2>{nc—nH(\/n 1\/2(/’”“2 nH2+H)}12 p—1°

Making use of the same proof as in the proof of |u|? above, we have

4

n—1 - 5 1
0>{nc—n1—1(\/ V2(hYTYe—nH +H)}r =)
Thus from (4.19) we get
n—1

(5.7) sup 12§(p——1){nH(\/ \/W—FH)—TLC}.

The equality [4.6), the inequalities (4.19) and yield
S=S.(p)+(p—DH{nH+~vn(n—1){S.(1)—nH?}}.
Hence we complete the proof of [Theorem 1. O

REMARK. When M is maximal (i.e., H=0), implies S<—npc.
Ishihara obtained this relation for complete maximal space-like submanifolds.
When p=1, becomes S<S,(1). This result is obtained by the first
author and Nakagawa [6]. Hence generalizes the results above.

6. Proof of Theorems 2 and 3.

Let M be an n-dimensional complete space-like submanifold with parallel
mean curvature vector of M2*?(¢), c<0. We assume S=S,(p)+K(p). Then
the equalities of all inequalities in the previous sections have to hold. Con-
sequently, from (4.8) and (5.7) it is seen that

(6.1) h#=0
for any 7, 7, £ and a. Also from (4.2) and (5.7) it follows that
HeHé=HEH~

for any @ and 8. The equations imply that all of H® are simultaneously
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diagonalizable and the normal connection in the normal bundle of M is flat.
Hence we can choose a suitable basis {e;} such that

(6.2) h?j:'z%aij

for any 7, j and a. The submanifold M is said to be isoparametric if
the normal connection is flat and the characteristic polynomial of the shape
operator A, has constant coefficients over the domain of any local parallel
normal field &.

LEMMA 6.1. M is isoparametric.

PrOOF. Since the normal connection is flat, it is seen that there exist
locally p mutually orthogonal unit normal vector fields which are parallel in
the normal bundle. So we can choose a suitable parallel basis {e,} and then
we have w,3=0. Hence, since we have

(6.3) Zhngkzdh?j_Zhgjwki'—Zh?kwkj'*'zhﬂijwﬁav
setting 7=; in the above equation and using we get dhf=0. Hence h¥
is constant and M is isoparametric. [

LEMMA 6.2. M is of non-positive curvature.

PROOF. Suppose that there exist indices 7, ; and a such that Af#hg.
From the equation we get

2 hwei+22hiw,;=(hfi— hfw;;=0,
from which it follows that w,;=0. Accordingly, we have
Zwik/\wkj-:o.

In fact, for any fixed indices ; and @ we denote by [/] the set consisting of
indices # such that Af;y=hg. Then we have [7]+#[s] by the supposition and
hence we get

20 NWy ;= 2 wik/\a)kj‘f‘kzj Wi \NOp;+ 2 Wi Ny,
) =

kel(t] kgl11VL]]
each term of which vanishes identically. By the structure equation
1
dmij+2wik/\wkj=—72Rijkzwk Nwy,

we obtain
Rtjji‘: C—%Zel.‘;zo .
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Next, suppose that h%=h% for any distinct indices 7 and ; and for any
index a. Then the Gauss equation implies

Rijji=c—2(h$)}=c—2A9)=0,

because of ¢=0.
Thus M is of non-positive curvature. [J

PROOF OF THEOREM 2. By a theorem due to Koike and Lemmas
and it is seen that M is locally congruent to the product submanifold
H™(c)X X H"™(c))X R™ of R?*?, where X4¢.,n,+m=n and 1<¢=<p. Then
M can be naturally regarded as the space-like submanifold of R3*? whose
mean curvature vector is given by [2.1). It is also parallel in the normal
bundle of M in R3*?. The constant S,(1) and the squared norm S of the
second fundamental form are given by [2.2). Therefore it is seen that we have

SAD+K(Dy=—p 21, =S,

which implies p=¢=1 and n;=1. Accordingly the hyperbolic cylinder H(¢,)X
Rt of R?*! is the complete connected space-like hypersurface with constant
mean curvature whose squard norm S attaining the maximal value. [

PROOF OF THEOREM 3. When p=1 it is seen by a theorem due to Kij,
Kim and Nakagawa [9] that the hyperbolic cylinder H'(¢;)X H" !(c,) is the
complete spacelike hypersurface with constant mean curvature of H7%(c¢)
satisfying the given condition.

Suppose next that p=2. By means of Koike’s theorem and Lemmas
and again, M is locally congruent to the product submanifold H™(c,)X - X
Hm+(cq,,) in H}*(c’), where X% n,=n, 2%41/¢)=1/c’)=(1/c) and H7*Y(c’)
is a totally umbilic submanifold of H}*?(¢). The mean curvature vector of
M in H}*%(c¢’) is denoted by h’, which is parallel in the normal bundle of
M in H3*%(¢’). Then the mean curvature vector h of M of H3*P(c) is given
by h=h’+h”, where h” is the mean curvature vector of HZ*%(c’) in H3*?(c).
Consequently the mean curvature vector h is parallel in the normal bundle
N(M) and the mean curvature H and the squared norm S of M in H%*?(c)
are given by

2 2 2 2 2, 2
h*=n*H?*=n?c— E}ln, Cr,
r=

q+1
S=nc— 3 n.c,.
rT=1
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We have S.(1)=h:—nc, because of ¢<0. So it is seen by that
we obtain

(6.4) S«{(P)+K(p)—Szh*—pnc+(p—Dh*—S=ph*— pnc—S=0,

where the equality holds if and only if H=0. Accordingly, if we have S=
S.(p)+K(p), then H must vanish identically. This implies that
is proved by a theorem due to Ishihara [8]. O
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