COMPLETE SPACE-LIKE SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR OF AN INDEFINITE SPACE FORM

By
Qing-ming Cheng* and Soon Meen Choi

1. Introduction.

Let $M_{p}^{n+p}(c)$ be an ($n+p$)-dimensional connected indefinite Riemannian manifold of index p and of constant curvature c, which is called an indefinite space form of index p. According to $c>0, c=0$ or $c<0$ it is denoted by $S_{p}^{n+p}(c)$, \boldsymbol{R}_{p}^{n+p} or $H_{p}^{n+p}(c)$. A submanifold M of an indefinite space form $M_{p}^{n+p}(c)$ is said to be space-like if the induced metric on M from that of the ambient space is positive definite. It is pointed out by some physicians that space-like hypersurfaces with constant mean curvature of arbitrary spacetimes get interested in relativity theory and an entire space-like hypersurface with constant mean curvature of an indefinite space form are studied by many authors (for examples: [1], [2], [3], [4], [7], [12] and so on).

Now, for a complete space-like submanifold M with parallel mean curvature vector of $S_{p}^{n+p}(c)$, it is also seen by the first author [5] that M is totally umbilic if $n=2$ and $h^{2} \leqq 4 c$ or if $n>2$ and $h^{2}<4(n-1) c$, where H denotes the mean curvature, i. e., the norm of the mean curvature vector and $h=n H$. On the other hand, the first author and Nakagawa [6] investigated the total umbilicness of such hypersurfaces from the different point of view. They proved that the squared norm S of the second fundamental form of M is bounded from above by $S_{+}(1)$ and if sup $S<S_{-}(1)$ and $H^{2} \leqq c$, then M is totally umbilic, where

$$
S_{ \pm}(p)=-p n c+\frac{n h^{2} \pm(n-2) \sqrt{h^{4}-4(n-1) c h^{2}}}{2(n-1)} .
$$

In this paper, we research the similar problem to the above property for the complete space-like submanifolds with parallel mean curvature vector of an indefinite space form. That is, we prove the following

[^0]Theorem 1. Let M be an n-dimensional complete space-like submanifold with parallel mean curvature vector of an indefinite space form $M_{p}^{n+p}(c)$. If the one of the following conditions is satisfied:
(1) $c \leqq 0$,
(2) $c>0$ and $n^{2} H^{2} \geqq 4(n-1) c$, then

$$
\begin{equation*}
S \leqq S_{+}(p)+K(p), \tag{1.1}
\end{equation*}
$$

where $K(p)$ is a constant defined by

$$
K(p)=(p-1) H\left\{n H+\sqrt{n(n-1)\left\{S_{+}(1)-n H^{2}\right\}}\right\} .
$$

Theorem 2. The hyperbolic cylinder $H^{1}\left(c_{1}\right) \times \boldsymbol{R}^{n-1}$ in \boldsymbol{R}_{1}^{n+1} is the only complete connected space-like n-dimensional submanifolds with parallel mean curvature vector of \boldsymbol{R}_{p}^{n+p} satisfying $S=S_{+}(p)+K(p)$.

THEOREM 3. The hyperbolic cylinder $H^{1}\left(c_{1}\right) \times H^{n-1}\left(c_{2}\right)$ of $H_{1}^{n+1}(c)$ and the maximal submanifolds $H^{n_{1}}\left(c_{1}\right) \times \cdots \times H^{n_{p+1}}\left(c_{p+1}\right)$ of $H_{p}^{n+p}(c)$ are the only complete connected space-like n-dimensional submanifolds with parallel mean curvature vector satisfying $S=S_{+}(p)+K(p)$, where $c_{r}=\left(n / n_{r}\right) c$ and $\sum_{r=1}^{p+1} n_{r}=n$ in the latter case.

2. Standard models.

This section is concerned with some standard models of complete space-like submanifolds with parallel mean curvature vector of an indefinite space form $M_{p}^{n+p}(c), c \leqq 0$. In particular, we only consider non-totally umbilic cases. Moreover, the squared norms of the second fundamental forms of such standard models are calculated. Without loss of generality, an ($n+p$)-dimensional indefinite Euclidean space \boldsymbol{R}_{p}^{n+p} of index $p(\geqq 1)$ can be first regarded as a product manifold of

$$
\boldsymbol{R}_{1}^{n_{1}+1} \times \cdots \times \boldsymbol{R}_{1}^{n} p^{+1} \times \boldsymbol{R}^{m}
$$

where $\sum_{r=1}^{p} n_{r}+m=n$. With respect to the standard orthonormal basis of \boldsymbol{R}_{p}^{n+p} a class of space-like submanifolds

$$
H^{n_{1}\left(c_{1}\right) \times \cdots \times H^{n_{p}}\left(c_{p}\right) \times \boldsymbol{R}^{m}, ~}
$$

of \boldsymbol{R}_{p}^{n+p} is defined as the Pythagorean product

$$
\begin{aligned}
& H^{n_{1}}\left(c_{1}\right) \times \cdots \times H^{n_{p}}\left(c_{p}\right) \times \boldsymbol{R}^{m} \\
& =\left\{\left(x_{1}, \cdots, x_{p+1}\right) \in \boldsymbol{R}_{p}^{n+p}=\boldsymbol{R}_{1}^{n_{1}+1} \times \cdots \times \boldsymbol{R}_{1}^{n} p^{+1} \times \boldsymbol{R}^{m}:\left|x_{r}\right|^{2}=-\frac{1}{c_{r}}>0\right\},
\end{aligned}
$$

where $r=1, \cdots, p$ and $|\mid$ denotes the norm defined by the product on the Minkowski space \boldsymbol{R}_{1}^{k+1} which is given by $\langle x, x\rangle=-\left(x_{0}\right)^{2}+\sum_{j=1}^{k}\left(x_{j}\right)^{2}$. The mean curvature vector \boldsymbol{h} of M is given by

$$
\begin{equation*}
\boldsymbol{h}=-\frac{1}{n} \sum_{r=1}^{p} n_{r} c_{r} x_{r} \tag{2.1}
\end{equation*}
$$

at $\left(x_{1}, \cdots, x_{p+1}\right) \in M$, which is parallel in the normal bundle of M. The number $S_{+}(1)$ and the squared norm S of the second fundamental form are given by

$$
\begin{equation*}
S_{+}(1)=n^{2} H^{2}=-\sum_{r=1}^{p} n_{r}^{2} c_{r}, \quad S=-\sum_{r=1}^{p} n_{r} c_{r} . \tag{2.2}
\end{equation*}
$$

Then we get

$$
S_{+}(p)+K(p)=p n^{2} H^{2}=-p \sum_{r=1}^{p} n_{r}^{2} c_{r} \geqq S,
$$

where the equality holds if and only if $p=1$ and $n_{1}=1$.
Next we consider an n-dimensional space-like submanifold of $H_{p}^{n+p}(c), p \geqq 1$. Without loss of generality, an ($n+p+1$)-dimensional indefinite Euclidean space $\boldsymbol{R}_{p+1}^{n+p+1}$ of index ($p+1$) can be first regarded as a product manifold of

$$
\boldsymbol{R}_{1}^{n_{1}+1} \times \cdots \times \boldsymbol{R}_{1}^{n_{p+1}{ }^{+1}}
$$

where $\sum_{r=1}^{p+1} n_{r}=n$. With respect to the standard orthonormal basis of $\boldsymbol{R}_{p+1}^{n+p+1}$ a class of space-like submanifolds

$$
H^{n_{1}}\left(c_{1}\right) \times \cdots \times H^{n_{p+1}\left(c_{p+1}\right)}
$$

of $\boldsymbol{R}_{p+1}^{n+p+1}$ is defined as the Pythagorean product

$$
\begin{aligned}
& H^{n_{1}}\left(c_{1}\right) \times \cdots \times H^{n_{p+1}\left(c_{p+1}\right)} \\
& =\left\{\left(x_{1}, \cdots, x_{p+1}\right) \in \boldsymbol{R}_{p+1}^{n+p+1}=\boldsymbol{R}_{1}^{n_{1}+1} \times \cdots \times \boldsymbol{R}_{1}^{n_{p+1}+1}:\left|x_{r}\right|^{2}=-\frac{1}{c_{r}}>0\right\},
\end{aligned}
$$

where $r=1, \cdots, p+1$. The mean curvature vector \boldsymbol{h} of M is given by

$$
\begin{equation*}
\boldsymbol{h}=-\frac{1}{n} \sum_{r=1}^{p+1}\left(n_{r} c_{r} x_{r}\right)+c x \tag{2.3}
\end{equation*}
$$

at $x=\left(x_{1}, \cdots, x_{p_{+1}}\right) \in M$, which is parallel in the normal bundle of M. The norm H of the mean curvature vector \boldsymbol{h} and the squared norm S of the second fundamental form are given by

$$
\begin{equation*}
h^{2}=n^{2} H^{2}=n^{2} c-\sum_{r=1}^{p+1} n_{r}^{2} c_{r}, \quad S=\sum_{r=1}^{p+1} n_{r}\left(c-c_{r}\right)=n c-\sum_{r=1}^{p+1} n_{r} c_{r} . \tag{2.4}
\end{equation*}
$$

When M is maximal, it satisfies $n_{r} c_{r}=n c$ for any index r by (2.3), which yields $S=-p n c$. Then we get $S_{+}(p)+K(p)-S=0$, because of $S_{+}(p)=-p n c$ and $K(p)=0$.

Suppose that $H \neq 0$. By a theorem of Ki, Kim and Nakagawa [9], if $p=1$, then we have $S_{+}(1)-S=0$. On the other hand, we have $S_{+}(1)>h^{2}-n c$, because of $c<0$. So it is seen that if $p \geqq 2$, then we obtain

$$
S_{+}(p)+K(p)-S>h^{2}-p n c+(p-1) h^{2}-S=p h^{2}-p n c-S \geqq 0
$$

by (2.4). In order to prove the last inequality, the following lemma is prepared. The proof of this lemma is the only calculus and hence it is omitted.

Lemma 2.1. Let a_{1}, \cdots, a_{p+1} be numbers not less than 1 satisfying $\sum a_{r}=n$ and b_{1}, \cdots, b_{p+1} be negative numbers satisfying $\Sigma\left(1 / b_{r}\right)=(1 / b)$. Then we have

$$
\sum\left\{a_{r}-p\left(a_{r}\right)^{2}\right\} b_{r} \geqq n(p+1-p n) b .
$$

3. Preliminaries.

'Throughout this paper all manifolds are assumed to be smooth, connected without boundary. We discuss in smooth category. Let $M_{p}^{n+p}(c)$ be an ($n+p$)dimensional indefinite Riemannian manifold of constant curvature c whose index is p, which is called an indefinite space form of constant curvature c and with index p. Let M be an n-dimensional submanifold of an ($n+p$)-dimensional indefinite space form $M_{p}^{n+p}(c)$ of index p. The submanifold M is said to be space-like if the induced metric on M from that of the ambient space is positive definite. We choose a local field of orthonormal frames e_{1}, \cdots, e_{n+p} adapted to the indefinite Riemannian metric of $M_{p}^{n+p}(c)$ and the dual coframes $\omega_{1}, \cdots, \omega_{n+p}$ in such a way that, restricted to the submanifold M, e_{1}, \cdots, e_{n} are tangent to M. Then connection forms $\left\{\omega_{A B}\right\}$ of $M_{p}^{n+p}(c)$ are characterized by the structure equations

$$
\left\{\begin{array}{l}
d \omega_{A}+\sum \varepsilon_{B} \omega_{A B} \wedge \omega_{B}=0, \quad \omega_{A B}+\omega_{B A}=0 \\
d \omega_{A B}+\sum \varepsilon_{C} \omega_{A C} \wedge \omega_{C B}=\Omega_{A B} \tag{3.2}\\
\Omega_{A B}=-\frac{1}{2} \sum \varepsilon_{C} \varepsilon_{D} R_{A B C D}^{\prime} \omega_{C} \wedge \omega_{D} \\
\quad R_{A B C D}^{\prime}=c \varepsilon_{A} \varepsilon_{B}\left(\delta_{A D} \delta_{B D}-\delta_{A C} \delta_{B D}\right)
\end{array}\right.
$$

where $\varepsilon_{A}=1$ for an index $A \leqq n, \varepsilon_{A}=-1$ for an index $A \geqq n+1$, and $\Omega_{A B}$ (resp. $R_{A B C D}^{\prime}$) denotes the indefinite Riemannian curvature form (resp. the components of the indefinite Riemannian curvature tensor R^{\prime}) of $M_{p}^{n+p}(c)$. Therefore the components of the Ricci curvature tensor $R i c^{\prime}$ and the scalar curvature r^{\prime} of $M_{p}^{n+p}(c)$ are given as

$$
R_{A B}^{\prime}=c(n+p-1) \varepsilon_{A} \delta_{A B}, \quad r^{\prime}=(n+p)(n+p-1) c .
$$

In the sequel, the following convention on the range of indices is used, unless otherwised stated:

$$
1 \leqq A, B, \cdots \leqq n+p ; \quad 1 \leqq i, j, \cdots \leqq n ; \quad n+1 \leqq \alpha, \beta, \cdots \leqq n+p .
$$

We agree that the repeated indices under a summation sign without indication are summed over the respective range. The canonical forms $\left\{\omega_{A}\right\}$ and the connection forms $\left\{\omega_{A B}\right\}$ restricted to M are also denoted by the same symbols. We then have

$$
\begin{equation*}
\omega_{\alpha}=0 \quad \text { for } \quad \alpha=n+1, \cdots, n+p . \tag{3.3}
\end{equation*}
$$

We see that e_{1}, \cdots, e_{n} is a local field of orthonormal frames adapted to the induced Riemannian metric on M and $\omega_{1}, \cdots, \omega_{n}$ is a local field of its dual coframes on M. It follows from (3.1), (3.3) and Cartan's lemma that we have

$$
\begin{equation*}
\omega_{\alpha i}=\Sigma h_{i j}^{\alpha} \omega_{j}, \quad h_{i j}^{\alpha}=h_{j i}^{\alpha} . \tag{3.4}
\end{equation*}
$$

The second fundamental form α and the mean curvature vector \boldsymbol{h} of M are defined by

$$
\alpha=-\sum h_{i j}^{\alpha} \omega_{i} \omega_{j} e_{\alpha}, \quad \boldsymbol{h}=-\frac{1}{n} \sum\left(\sum_{i} h_{i i}^{\alpha}\right) e_{\alpha} .
$$

The mean curvature H is defined by

$$
\begin{equation*}
H=|\boldsymbol{h}|=\frac{1}{n} \sqrt{\sum\left(\sum_{i} h_{i i}^{\alpha}\right)^{2}} . \tag{3.5}
\end{equation*}
$$

Let $S=\Sigma\left(h_{i j}^{\alpha}\right)^{2}$ denote the squared norm of the second fundamental form α of M. The connection forms $\left\{\omega_{i j}\right\}$ of M are characterized by the structure equations

$$
\left\{\begin{array}{l}
d \omega_{i}+\Sigma \omega_{i j} \wedge \omega_{j}=0, \quad \omega_{i j}+\omega_{j i}=0 \tag{3.6}\\
d \omega_{i j}+\Sigma \omega_{i k} \wedge \omega_{k j}=\Omega_{i j} \\
\Omega_{i j}=-\frac{1}{2} \Sigma R_{i j k l} \omega_{k} \wedge \omega_{l}
\end{array}\right.
$$

where $\Omega_{i j}$ (resp. $R_{i j k l}$) denotes the Riemannian curvature form (resp. the components of the Riemannian curvature tensor R) of M. Therefore, from (3.1) and (3.6), the Gauss equation is given by

$$
\begin{equation*}
R_{i j k l}=c\left(\delta_{i l} \delta_{j k}-\delta_{i k} \delta_{j l}\right)-\Sigma\left(h_{i l}^{\alpha} h_{j k}^{\alpha}-h_{i k}^{\alpha} h_{j l}^{\alpha}\right) \tag{3.7}
\end{equation*}
$$

The components of the Ricci curvature Ric and the scalar curvature r are given by

$$
\begin{align*}
R_{j k} & =(n-1) c \delta_{j k}-\Sigma h_{i i}^{\alpha} h_{j k}^{\alpha}+\Sigma h_{j i}^{\alpha} h_{i k}^{\alpha}, \tag{3.8}\\
r & =n(n-1) c-n^{2} H^{2}+\Sigma\left(h_{i j}^{\alpha}\right)^{2} . \tag{3.9}
\end{align*}
$$

We also have

$$
\begin{equation*}
d \omega_{\alpha \beta}-\Sigma \omega_{\alpha \gamma} \wedge \omega_{r \beta}=-\frac{1}{2} \Sigma R_{\alpha \beta i j} \omega_{i} \wedge \omega_{j} \tag{3.10}
\end{equation*}
$$

where

$$
R_{\alpha \beta i j}=-\Sigma\left(h_{i l}^{\alpha} h_{j l}^{\beta_{j l}}-h_{j l}^{\alpha} h_{i l}^{\beta}\right) .
$$

The Codazzi equation and the Ricci formula for the second fundamental form are given by

$$
\begin{gather*}
h_{i j_{k}}^{\alpha}-h_{i k j}^{\alpha}=0, \tag{3.11}\\
h_{i j k l}^{\alpha}-h_{i j l k}^{\alpha}=-\Sigma h_{i m}^{\alpha} R_{m j k l}-\Sigma h_{m}^{\alpha} R_{m i k l}+\Sigma h_{i j}^{\beta} R_{\beta \alpha k l}, \tag{3.12}
\end{gather*}
$$

where $h_{i j k}^{\alpha}$ and $h_{i j_{k l}}^{\alpha}$ denote the components of the covariant differentials $\nabla \alpha$ and $\nabla^{2} \alpha$ of the second fundamental form, respectively. The Laplacian $\Delta h_{i j}^{\alpha}$ of the components $h_{i j}^{\alpha}$ of the second fundamental form α is given by

$$
\Delta h_{i j}^{\alpha}=\sum h_{i j k k}^{\alpha}
$$

From (3.12) we get

$$
\begin{equation*}
\Delta h_{i j}^{\alpha}=\sum_{k} h_{k k i j}^{\alpha}-\sum h_{k m}^{\alpha} R_{m i j k}-\sum h_{m i}^{\alpha} R_{m k j k}+\sum h_{k i}^{\beta} R_{\beta \alpha j k} \tag{3.13}
\end{equation*}
$$

The following generalized maximum principle due to Omori [11] and Yau [15] will play an important role in this paper.

Theorem 3.1. Let M be an n-dimensional complete Riemannian manifold whose Ricci curvature is bounded from below. Let F be a C^{2}-function bounded from above on M, then for any $\varepsilon>0$, there exists a point p in M such that

$$
F(p)+\varepsilon>\sup F, \quad|\operatorname{grad} F|(p)<\varepsilon, \quad \Delta F(p)<\varepsilon .
$$

The following lemma is already known.
Lemma 3.2. Let a_{1}, \cdots, a_{n} be real numbers satisfying $\Sigma a_{i}=0$ and $\Sigma a_{i}{ }^{2}=$ k^{2} for $k>0$. Then we have

$$
\left|\Sigma a_{i}{ }^{3}\right| \leqq(n-2) \sqrt{\frac{1}{n(n-1)}} k^{3}
$$

where the equality holds if and only if $n-1$ of them are equal with each other.

4. Pseudo-umbilic submanifolds.

Let M be an n-dimensional space-like submanifold with parallel mean curvature vector h of an indefinite space form $M_{p}^{n+p}(c)$. Because the mean curvature vector is parallel, the mean curvature is constant. Suppose that
$H \neq 0$. We choose e_{n+1} in such a way that its direction coincides with that of the mean curvature vector. Then it is easily seen that we have

$$
\begin{align*}
& \omega_{\alpha n+1}=0, \quad H=\text { constant }, \tag{4.1}\\
& H^{\alpha} H^{n+1}=H^{n+1} H^{\alpha}, \tag{4.2}\\
& \operatorname{tr} H^{n+1}=n H, \quad \operatorname{tr} H^{\alpha}=0 \tag{4.3}
\end{align*}
$$

for any $\alpha \neq n+1$, where H^{α} denotes an $n \times n$ symmetric matrix ($h_{i j}^{\alpha}$).
A submanifold M is said to be pseudo-umbilic, if it is umbilic with respect to the direction of the mean curvature vector \boldsymbol{h}, that is,

$$
\begin{equation*}
h_{i j}^{n+1}=H \delta_{i j} . \tag{4.4}
\end{equation*}
$$

We denote by μ an $n \times n$ symmetric matrix with $\mu_{i j}=h_{i j}^{n+1}-H \delta_{i j}$. Then we have

$$
\begin{equation*}
\operatorname{tr} \mu=0, \quad|\mu|^{2}=\operatorname{tr}(\mu)^{2}=\Sigma\left(\mu_{i j}\right)^{2}=\operatorname{tr}\left(H^{n+1}\right)^{2}-n H^{2} \tag{4.5}
\end{equation*}
$$

So the pseudo-umbilic submanifolds are characterized by the property $\mu=0$. A non-negative function τ is defined by $\tau^{2}=\sum_{\beta \neq n+1}\left(h_{i j}\right)^{2}$. We then have

$$
\begin{equation*}
S=|\mu|^{2}+\tau^{2}+n H^{2} . \tag{4.6}
\end{equation*}
$$

Hence it is seen that $|\mu|^{2}$ as well as τ^{2} are independent of the choice of the frame fields and they are functions defined globally on M.

Proposition 4.1. Let M be n-dimensional complete space-like submanifold with parallel mean curvature vector of an indefinite space form $S_{p}^{n+p}(c)$. If it satisfies

$$
n^{2} c \geqq n^{2} H^{2} \geqq 4(n-1) c, \quad S \leqq S_{-}(1),
$$

then M is pseudo-umbilic, where H denotes the mean curvature, i.e., the norm of the mean curvature vector.

Proof. In order to prove this property it suffices to show $\mu=0$. From (3.13), the Gauss equation (3.7) and (3.10), we have

$$
\begin{gather*}
\Delta h_{i j}^{n+1}=n c h_{i j}^{n+1}-n c H \delta_{i j}+\sum h_{k m}^{n+1} h_{m k}^{\beta} h_{i j}^{\beta}-2 \sum h_{i k}^{\beta_{i k}} h_{k m}^{n+1} h_{m j}^{\beta} \tag{4.7}\\
+\sum h_{i m}^{n+1} h_{m k}^{\beta} h_{k j}^{\beta}-n H \sum h_{i m}^{n+1} h_{m j}^{n+1}+\sum h_{i k}^{\beta_{i k}} h_{k m}^{\beta} h_{m j}^{n+1} .
\end{gather*}
$$

Accordingly we obtain from (4.2)

$$
\begin{aligned}
\frac{1}{2} \Delta|\mu|^{2}= & \sum\left(h_{i j k}^{n+1}\right)^{2}+n c \sum\left(h_{i j}^{n+1}\right)^{2}-n^{2} c H^{2} \\
& +\sum h_{k m}^{n+1} h_{m_{k}}^{\beta} h_{i j}^{\beta} h_{i j}^{n+1}-2 \Sigma h_{i k}^{\beta} h_{k m}^{n+1} h_{m_{j}}^{\beta} h_{i j}^{n+1}+\sum h_{i m}^{n+1} h_{m_{k}} h_{k j}^{\beta} h_{i j}^{n+1}
\end{aligned}
$$

$$
-n H \sum h_{i m}^{n+1} h_{m j}^{n+1} h_{i j}^{n+1}+\sum h_{i k}^{\beta} h_{k m}^{\beta} h_{m j}^{n+1} h_{i j}^{n+1}
$$

and hence we see

$$
\begin{align*}
\frac{1}{2} \Delta|\mu|^{2}= & \sum\left(h_{i j k}^{n+1}\right)^{2}+n c \sum\left(h_{i j}^{n+1}\right)^{2} \\
& -n^{2} c H^{2}-n H \operatorname{tr}\left(H^{n+1}\right)^{3}-\sum_{\beta \neq n+1} \operatorname{tr}\left(H^{n+1} H^{\beta}-H^{\beta} H^{n+1}\right)^{2} \tag{4.8}\\
& +\left\{\operatorname{tr}\left(H^{n+1}\right)^{2}\right\}^{2}+\sum_{\beta \neq n+1}\left\{\operatorname{tr}\left(H^{n+1} H^{\beta}\right)\right\}^{2}
\end{align*}
$$

On the other hand, because of

$$
\operatorname{tr}\left(H^{n+1}\right)^{3}=\operatorname{tr} \mu^{3}+3 H\left\{\operatorname{tr}\left(H^{n+1}\right)^{2}-n H^{2}\right\}+n H^{3}
$$

we get

$$
\begin{align*}
\frac{1}{2} \Delta|\mu|^{2} & \geqq\left(|\mu|^{2}+n H^{2}\right)^{2}-n H\left\{\operatorname{tr} \mu^{3}+3 H|\mu|^{2}+n H^{3}\right\}+n c|\mu|^{2} \tag{4.9}\\
& =|\mu|^{2}\left(|\mu|^{2}+n c-n H^{2}\right)-n H \operatorname{tr} \mu^{3} .
\end{align*}
$$

Because of $\operatorname{tr} \mu=0$, we can apply Lemma 3.2 to the eigenvalues of μ and obtain

$$
\begin{equation*}
\left|\operatorname{tr} \mu^{3}\right| \leqq \frac{n-2}{\sqrt{n(n-1)}}|\mu|^{3} \tag{4.10}
\end{equation*}
$$

Hence we obtain

$$
\begin{equation*}
\frac{1}{2} \Delta|\mu|^{2} \geqq|\mu|^{2}\left(|\mu|^{2}-n H \frac{n-2}{\sqrt{n(n-1)}}|\mu|+n c-n H^{2}\right) \tag{4.11}
\end{equation*}
$$

where we have used (4.9) and (4.10). From (3.8) we know that the Ricci curvature of M is bounded from below. Putting $F=-1 / \sqrt{|\mu|^{2}+a}$ for any positive number a. Since M is complete and space-like, we can apply the Generalized Maximum Principle Theorem 3.1) to the function F. For any given positive number $\varepsilon>0$, there exists a point p at which F satisfies

$$
\begin{equation*}
\sup F<F(p)+\varepsilon, \quad|\operatorname{grad} F|(p)<\varepsilon, \quad \Delta F(p)<\varepsilon \tag{4.12}
\end{equation*}
$$

Consequently the following relationship

$$
\begin{equation*}
\frac{1}{2} F(p)^{4} \Delta|\mu|^{2}(p)<3 \varepsilon^{2}-F(p) \varepsilon \tag{4.13}
\end{equation*}
$$

can be derived by the simple and direct calculations. For a convergent sequence $\left\{\varepsilon_{m}\right\}$ such that $\varepsilon_{m} \rightarrow 0(m \rightarrow \infty)$ and $\varepsilon_{m}>0$, there exists a point sequence $\left\{p_{m}\right\}$ such that $\left\{F\left(p_{m}\right)\right\}$ converges to $F_{0}=\sup F$ by (4.12). On the other hand, it follows from (4.13) that we have

$$
\begin{equation*}
\frac{1}{2} F\left(p_{m}\right)^{4} \Delta|\mu|^{2}\left(p_{m}\right)<3 \varepsilon_{m}^{2}-F\left(p_{m}\right) \varepsilon_{m} \tag{4.14}
\end{equation*}
$$

The right hand side of (4.14) converges to 0 because F is bounded. Accordingly,
for any positive number $\varepsilon>0(\varepsilon<2)$ there exists a sufficiently large integer m for which we have

Hence we get

$$
\begin{aligned}
& (2-\varepsilon)|\mu|^{4}\left(p_{m}\right)-2 n H \frac{n-2}{\sqrt{n(n-1)}}|\mu|^{3}\left(p_{m}\right) \\
& \quad+2\left(n c-n H^{2}-\varepsilon a\right)|\mu|^{2}\left(p_{m}\right)-\varepsilon a^{2}<0 .
\end{aligned}
$$

Thus the sequence $\left\{|\mu|^{2}\left(p_{m}\right)\right\}$ is bounded and the definition of F gives rise to

$$
\begin{equation*}
\lim _{m \rightarrow \infty}|\mu|^{2}\left(p_{m}\right)=\sup |\mu|^{2} . \tag{4.15}
\end{equation*}
$$

Therefore the supremum of F satisfies $F_{0}=\sup F<0$. According to (4.14) we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup \Delta|\mu|^{2}\left(p_{m}\right) \leqq 0 \tag{4.16}
\end{equation*}
$$

Thus (4.11) and (4.16) yield

$$
\begin{equation*}
0 \geqq \sup |\mu|^{2}\left(\sup |\mu|^{2}-n H \frac{n-2}{\sqrt{n(n-1)}} \sup |\mu|+n c-n H^{2}\right) . \tag{4.17}
\end{equation*}
$$

Taking account of (4.5) we have

$$
\begin{equation*}
\sup \Sigma\left(h_{i j}^{n+1}\right)^{2}=n H^{2} \quad \text { or } \quad S_{-}(1) \leqq \sup \Sigma\left(h_{i j}^{n+1}\right)^{2} \leqq S_{+}(1), \tag{4.18}
\end{equation*}
$$

from which combining with the assumption of Proposition 4.1 it follows that we have

$$
\sup \sum\left(h_{i j}^{n+1}\right)^{2}=n H^{2}
$$

This means that $\mu=0$ because of (4.5) and therefore M is pseudo-umbilic.
The inequality (4.17) holds on the space-like submanifold M of $M_{p}^{n+p}(c)$. Accordingly, in this case we have

$$
\begin{equation*}
\sup \sum\left(h_{i j}^{n+1}\right)^{2}=n H^{2} \quad \text { or } \sup \sum\left(h_{i j}^{n+1}\right)^{2} \leqq S_{+}(1) . \tag{4.19}
\end{equation*}
$$

Remark. When $p=1$, the hypersurface M becomes totally umbilic under the assumption of Proposition 4.1, which means that this property is a generalization of the theorem due to the first author and Nakagawa [6].

5. Proof of Theorem 1.

In this section the squared norm S of the second fundamental form of M is estimated from above. Let M be an n-dimensional space-like submanifold with parallel mean curvature vector \boldsymbol{h} of an indefinite space form $M_{p}^{n+p}(c)$.

Proof of Theorem 1. Because the mean curvature vector is parallel, the mean curvature is constant. If $H=0$, then from Theorem 1.1 due to Ishihara [8], we know that M is totally geodesic if $c \geqq 0$ and $S \leqq-n p c$ if $c<0$. Hence Theorem 1 is true. Next we may suppose $H \neq 0$. We choose e_{n+1} in such a way that its direction coincides with that of the mean curvature vector. Then we get (4.1), (4.2) and (4.3). From (3.13), the Gauss equation (3.7) and (3.10) we get

$$
\begin{aligned}
\frac{1}{2} \Delta \tau^{2}= & \sum_{\alpha \neq n+1}\left(h_{i j k}^{\alpha}\right)^{2}+\sum_{\alpha \neq n+1} h_{i j}^{\alpha} \Delta h_{i j}^{\alpha} \\
= & \sum_{\alpha \neq n+1}\left(h_{i j k}^{\alpha}\right)^{2}+n c \tau^{2}+\sum_{\alpha \neq n+1} h_{k m}^{\alpha} h_{m k}^{\beta} h_{i j}^{\beta} h_{i j}^{\alpha} \\
& -2 \sum_{\alpha \neq n+1} h_{i k}^{\beta} h_{k m}^{\alpha} h_{m j}^{\beta} h_{i j}^{\alpha}+\sum_{\alpha \neq n+1} h_{i m}^{\alpha} h_{m k}^{\beta} h_{k j}^{\beta} h_{i j}^{\alpha} \\
& -n H_{\alpha \neq n+1} h_{i m}^{\alpha} h_{m j}^{n+1} h_{i j}^{\alpha}+\sum_{\alpha \neq n+1} h_{i k}^{\beta} h_{k m}^{\beta} h_{m j}^{\alpha} h_{i j}^{\alpha},
\end{aligned}
$$

and hence we get

$$
\begin{align*}
\frac{1}{2} \Delta \tau^{2} & =\sum_{\alpha \neq n+1}\left(h_{i j k}^{\alpha}\right)^{2}+n c \tau^{2}+\sum_{\alpha, \beta \neq n+1} h_{k m}^{\alpha} h_{m k}^{\beta} h_{i j}^{\beta} h_{i j}^{\alpha} \\
& -2 \sum_{\alpha, \beta \neq n+1} h_{i k}^{\beta} h_{k m}^{\alpha} h_{m j}^{\beta} h_{i j}^{\alpha}+\sum_{\alpha, \beta \neq n+1} h_{i m}^{\alpha} h_{m k}^{\beta} h_{k j}^{\beta} h_{i j}^{\alpha} \\
& +\sum_{\alpha, \beta \neq n+1} h_{i k}^{\beta} h_{k m}^{\beta} h_{m j}^{\alpha} h_{i j}^{\alpha}+\sum_{\alpha \neq n+1} h_{k m}^{\alpha} h_{m k}^{n+1} h_{i j}^{n+1} h_{i j}^{\alpha} \tag{5.1}\\
& -2 \sum_{\alpha \neq n+1} h_{i k}^{n+1} h_{k m}^{\alpha} h_{m j}^{n+1} h_{i j}^{\alpha}+\sum_{\alpha \neq n+1} h_{i m}^{\alpha} h_{m k}^{n+1} h_{k j}^{n+1} h_{i j}^{\alpha} \\
& -n H \sum_{\alpha \neq n+1} h_{i m}^{\alpha} h_{m j}^{n+1} h_{i j}^{\alpha}+\sum_{\alpha \neq n+1} h_{i k}^{n+1} h_{k m}^{n+1} h_{m j}^{\alpha} h_{i j}^{\alpha} .
\end{align*}
$$

We put $S_{\alpha \beta}=\Sigma h_{i j}^{\alpha} h_{i j}^{\beta}$ for any $\alpha, \beta \neq n+1$. Then $\left(S_{\alpha \beta}\right)$ is a $(p-1) \times(p-1)$ symmetric matrix. It can assumed to be diagonal for a suitable choice of e_{n+2}, \cdots, e_{n+p}. Set $S_{\alpha}=S_{\alpha \alpha}$. We then have $\tau^{2}=\Sigma S_{\alpha}$. In general, for a matrix $A=\left(a_{i j}\right)$, we define $N(A)=\operatorname{tr}\left(A^{t} A\right)$. Hence we get

$$
\begin{aligned}
& \sum_{\alpha, \beta \neq n+1} h_{k m}^{\alpha} h_{m k}^{\beta} h_{i j}^{\beta} h_{i j}^{\alpha}-2 \sum_{\alpha, \beta \neq n+1} h_{i k}^{\beta} h_{k m}^{\alpha} h^{\beta}{ }_{m j} h_{i j}^{\alpha} \\
& \quad+\sum_{\alpha, \beta \neq n+1} h_{i m}^{\alpha} h_{m k}^{\beta} h_{k j}^{\beta} h_{i j}^{\alpha}+\sum_{\alpha, \beta \neq n+1} h_{j m}^{\alpha} h_{m k}^{\beta} h_{k i}^{\beta} h_{i j}^{\alpha} \\
& \quad=\sum_{\alpha \neq n+1}\left(S_{\alpha}\right)^{2}+\sum_{\alpha, \beta \neq n+1} N\left(H^{\alpha} H^{\beta}-H^{\beta} H^{\alpha}\right) .
\end{aligned}
$$

Obviously, we see

$$
\begin{equation*}
\sum_{\alpha, \beta \neq n+1} N\left(H^{\alpha} H^{\beta}-H^{\beta} H^{\alpha}\right) \geqq 0 . \tag{5.2}
\end{equation*}
$$

Suppose $p \geqq 2$. Let

$$
\begin{gathered}
(p-1) \sigma_{1}=\tau^{2}=\Sigma S_{\alpha}, \\
(p-1)(p-2) \sigma_{2}=2 \sum_{\alpha<\beta, \alpha, \beta \neq n+1} S_{\alpha} S_{\beta} .
\end{gathered}
$$

Then we get

$$
\begin{aligned}
& \Sigma\left(S_{\alpha}\right)^{2}=(p-1)\left(\sigma_{1}\right)^{2}+(p-1)(p-2)\left\{\left(\sigma_{1}\right)^{2}-\sigma_{2}\right\}, \\
& (p-1)^{2}(p-2)\left\{\left(\sigma_{1}\right)^{2}-\sigma_{2}\right\}=\sum_{\alpha<\beta, \alpha, \beta \neq n+1}\left(S_{\alpha}-S_{\beta}\right)^{2} .
\end{aligned}
$$

Hence we obtain

$$
\begin{align*}
& \sum_{\alpha, \beta \neq n+1} h_{k m}^{\alpha} h_{m k}^{\beta} h_{i j}^{\beta} h_{i j}^{\alpha}-2 \sum_{\alpha, \beta \neq n+1} h_{i k}^{\beta} h_{k m}^{a} h_{m j}^{\beta} h_{i j}^{\alpha} \\
& \quad+\sum_{\alpha, \beta \neq n+1} h_{i m}^{\alpha} h_{m k}^{\beta} h_{k j}^{\beta} h_{i j}^{\alpha}+\sum_{\alpha, \beta \neq n+1} h_{i k}^{\beta} h_{k m}^{\beta} h_{m j}^{\alpha} h_{i j}^{\alpha} \tag{5.3}\\
& \quad \geqq(p-1)\left(\sigma_{1}\right)^{2}=\frac{1}{p-1} \tau^{4} .
\end{align*}
$$

Then the equations (5.1), (5.2) and (5.3) imply

$$
\begin{aligned}
& \frac{1}{2} \Delta \tau^{2} \geqq n c \tau^{2}+\frac{1}{p-1} \tau^{4}+\sum_{\alpha \neq n+1} h_{k m}^{\alpha} h_{m k}^{n+1} h_{i j}^{n+1} h_{i j}^{\alpha}-2 \sum_{\alpha \neq n+1} h_{i k}^{n+1} h_{k m}^{\alpha} h_{m j}^{n+1} h_{i j}^{\alpha} \\
&+\underset{\alpha \neq n+1}{ } h_{i m}^{\alpha} h_{m k}^{n+1} h_{k j}^{n+1} h_{i j}^{\alpha}-n H_{\alpha \neq n+1} \sum_{i m}^{\alpha} h_{m j}^{n+1} h_{i j}^{\alpha}+\sum_{\alpha \neq n+1} h_{i k}^{n+1} h_{k m}^{n+1} h_{m j}^{\alpha} h_{i j}^{\alpha} .
\end{aligned}
$$

For a fixed index α, since $H^{\alpha} H^{n+1}=H^{n+1} H^{\alpha}$, we can choose $\left\{e_{1}, \cdots, e_{n}\right\}$ such that

$$
h_{i j}^{\alpha}=\lambda_{i}^{\alpha} \delta_{i j}, \quad h_{i j}^{n+1}=\lambda_{i} \delta_{i j} .
$$

Then we get

$$
\begin{aligned}
& \Sigma h_{k m}^{\alpha} h_{m k}^{n+1} h_{i j}^{n+1} h_{i j}^{\alpha}-2 \Sigma h_{i k}^{n+1} h_{k m}^{\alpha} h_{m j}^{n+1} h_{i j}^{\alpha}+\Sigma h_{i m}^{\alpha} h_{m k}^{n+1} h_{k j}^{n+1} h_{i j}^{\alpha} \\
& \\
& \quad-n H \Sigma h_{i m}^{\alpha} h_{m j}^{n+1} h_{i j}^{\alpha}+\Sigma h_{i k}^{n+1} h_{k m}^{n+1} h_{m j}^{\alpha} h_{i j}^{\alpha} \\
& =\left(\Sigma \lambda_{i} \lambda_{i}^{\alpha}\right)^{2}-n H \Sigma \lambda_{i}\left(\lambda_{i}^{\alpha}\right)^{2} .
\end{aligned}
$$

We notice here that eigenvalues $\lambda_{i}^{\prime} \mathrm{s}$ are bounded by (4.19). In order to estimate the last term on the above equation, the following property is prepared.

Lemma 5.1. Let a_{1}, \cdots, a_{n} be real numbers satisfying $\sum a_{i}=0$ and let b_{1}, \cdots, b_{n} be also real numbers. Then we have

$$
\Sigma a_{i}\left(b_{i}\right)^{2} \leqq \sqrt{\frac{n-1}{n}} \sqrt{\Sigma\left(a_{i}\right)^{2}} \Sigma\left(b_{i}\right)^{2}
$$

where the equality holds if and only if the $n-1$ of a_{i} 's are equal with each other and the corresponding $n-1$ of b_{i} 's are equal to 0 .

Proof. We consider the function $f=\sum a_{i}\left(b_{i}\right)^{2}$ with constraint $\sum a_{i}=0$, $\Sigma\left(a_{i}\right)^{2}=a$ and $\Sigma\left(b_{i}\right)^{2}=b$. Then there exists a critical point of f on $\boldsymbol{R}^{2 n}$ at which we have

$$
\begin{equation*}
\left(b_{i}\right)^{2}+\mu_{1}+2 \mu_{2} a_{i}=0, \quad 2 a_{i} b_{i}+2 \mu_{3} b_{i}=0 . \tag{5.4}
\end{equation*}
$$

From (5.4) we get

$$
\mu_{1}=-\frac{1}{n} b,
$$

and the critical value of f is equal to $-\mu_{3} b=-2 \mu_{2} a$, and therefore we have

$$
\begin{equation*}
a_{i}=-\mu_{3}, \quad \text { or } \quad b_{i}=0 \tag{5.5}
\end{equation*}
$$

If $a_{i}=-\mu_{3}$ for any index i, then we get $f=0$, because of $\sum a_{i}=0$. If $a_{i}=$ $-\mu_{3}, 1 \leqq i \leqq m$ and $b_{j}=0, m+1 \leqq j \leqq n$, then we have from (5.4)

$$
2 \mu_{2} a_{j}=\frac{1}{n} b, \quad j=m+1, \cdots, n .
$$

If $\mu_{2}=0$, then $f=0$. Without loss of generality, we may suppose $\mu_{2} \neq 0$. Thus we see

$$
a_{j}=\frac{b}{2 n \mu_{2}}, \quad j=m+1, \cdots, n
$$

which yields

$$
\begin{equation*}
m \mu_{\mathrm{s}}=(n-m) \frac{b}{2 n \mu_{2}} . \tag{5.6}
\end{equation*}
$$

From (5.4) and (5.5) it follows that we obtain

$$
\mu_{2}= \pm \frac{1}{2} \sqrt{\frac{n-m}{n m}} \frac{b}{\sqrt{a}}
$$

which means that we obtain

$$
|f| \leqq \sqrt{\frac{n-1}{n}} \sqrt{\Sigma\left(a_{i}\right)^{2}} \Sigma\left(b_{i}\right)^{2}
$$

If the equality holds, then we have $m=1$ and $a_{j}= \pm \sqrt{a / n(n-1)}, b_{j}=0,2 \leqq \jmath \leqq n$. The converse is obvious.

According to Lemma 5.1 we have

$$
\begin{aligned}
& \left(\sum_{i} \lambda_{i} \lambda_{i}^{\alpha}\right)^{2}-n H \sum_{i} \lambda_{i}\left(\lambda_{i}^{\alpha}\right)^{2} \geqq-n H \sum_{i}\left(\lambda_{i}-H\right)\left(\lambda_{i}^{\alpha}\right)^{2}-n H^{2} \sum_{i}\left(\lambda_{i}^{\alpha}\right)^{2} \\
& \quad=-n H\left(\sum_{i} \mu_{i}\left(\lambda_{i}^{\alpha}\right)^{2}+H \sum_{i}\left(\lambda_{i}^{\alpha}\right)^{2}\right) \\
& \quad \geqq-n H\left(\sqrt{\frac{n-1}{n}} \sqrt{\sum\left(h_{i j}^{n+1}\right)^{2}-n H^{2}}+H\right) \operatorname{tr}\left(H^{\alpha}\right)^{2} .
\end{aligned}
$$

The right hand side of the inequality above does not depend on the choice of frame fields. Therefore we have

$$
\begin{aligned}
& \sum_{\alpha \neq n+1} h_{k m}^{\alpha} h_{m k}^{n+1} h_{i j}^{n+1} h_{i j}^{\alpha}-2 \sum_{\alpha \neq n+1} h_{i k}^{n+1} h_{k m}^{\alpha} h_{m j}^{n+1} h_{i j}^{\alpha}+\sum_{\alpha \neq n+1} h_{i m}^{\alpha} h_{m k}^{n+1} h_{k j}^{n+1} h_{i j}^{\alpha} \\
& \quad-n H_{\alpha \neq n+1} h_{i m}^{\alpha} h_{m j}^{n+1} h_{i j}^{\alpha}+\sum_{\alpha \neq n+1} h_{j m}^{\alpha} h_{m k}^{n+1} h_{k i}^{n+1} h_{i j}^{\alpha} \\
& \geqq \\
& \geqq-n H\left(\sqrt{\frac{n-1}{n}} \sqrt{\Sigma\left(h_{i j}^{n+1}\right)^{2}-n H^{2}}+H\right) \tau^{2} .
\end{aligned}
$$

Thus we have

$$
\frac{1}{2} \Delta \tau^{2} \geqq\left\{n c-n H\left(\sqrt{\frac{n-1}{n}} \sqrt{\sum\left(h_{i j}^{n+1}\right)^{2}-n H^{2}}+H\right)\right\} \tau^{2}+\frac{1}{p-1} \tau^{4} .
$$

Making use of the same proof as in the proof of $|\mu|^{2}$ above, we have

$$
0 \geqq\left\{n c-n H\left(\sqrt{\frac{n-1}{n}} \sqrt{\sum\left(h_{i j}^{n+1}\right)^{2}-n H^{2}}+H\right)\right\} \tau^{2}+\frac{1}{p-1} \tau^{4} .
$$

Thus from (4.19) we get

$$
\begin{equation*}
\sup \tau^{2} \leqq(p-1)\left\{n H\left(\sqrt{\frac{n-1}{n}} \sqrt{S_{+}(1)-n H^{2}}+H\right)-n c\right\} . \tag{5.7}
\end{equation*}
$$

The equality (4.6), the inequalities (4.19) and (5.7) y ield

$$
S \leqq S_{+}(p)+(p-1) H\left\{n H+\sqrt{n(n-1)\left\{S_{+}(1)-n H^{2}\right\}}\right\}
$$

Hence we complete the proof of Theorem 1.
Remark. When M is maximal (i. e., $H=0$), Theorem 1 implies $S \leqq-n p c$. Ishihara [8] obtained this relation for complete maximal space-like submanifolds. When $p=1$, Theorem 1 becomes $S \leqq S_{+}(1)$. This result is obtained by the first author and Nakagawa [6]. Hence Theorem 1 generalizes the results above.

6. Proof of Theorems 2 and 3.

Let M be an n-dimensional complete space-like submanifold with parallel mean curvature vector of $M_{p}^{n+p}(c), c \leqq 0$. We assume $S=S_{+}(p)+K(p)$. Then the equalities of all inequalities in the previous sections have to hold. Consequently, from (4.8) and (5.7) it is seen that

$$
\begin{equation*}
h_{i j k}^{\alpha}=0 \tag{6.1}
\end{equation*}
$$

for any i, j, k and α. Also from (4.2) and (5.7) it follows that

$$
H^{\alpha} H^{\beta}=H^{\beta} H^{\alpha}
$$

for any α and β. The equations imply that all of H^{α} are simultaneously
diagonalizable and the normal connection in the normal bundle of M is flat. Hence we can choose a suitable basis $\left\{e_{i}\right\}$ such that

$$
\begin{equation*}
h_{i j}^{\alpha}=\lambda_{i}^{\alpha} \delta_{i j} \tag{6.2}
\end{equation*}
$$

for any i, j and α. The submanifold M is said to be isoparametric [13] if the normal connection is flat and the characteristic polynomial of the shape operator A_{ξ} has constant coefficients over the domain of any local parallel normal field ξ.

Lemma 6.1. $\quad M$ is isoparametric.

Proof. Since the normal connection is flat, it is seen that there exist locally p mutually orthogonal unit normal vector fields which are parallel in the normal bundle. So we can choose a suitable parallel basis $\left\{e_{\alpha}\right\}$ and then we have $\omega_{\alpha \beta}=0$. Hence, since we have

$$
\begin{equation*}
\sum h_{i j k}^{\alpha} \omega_{k}=d h_{i j}^{\alpha}-\Sigma h_{k j}^{\alpha} \omega_{k i}-\Sigma h_{i k}^{\alpha} \omega_{k j}+\Sigma h_{i j}^{\beta} \omega_{\beta \alpha} \tag{6.3}
\end{equation*}
$$

setting $i=j$ in the above equation and using (6.1) we get $d h_{i i}^{\alpha}=0$. Hence $h_{i i}^{\alpha}$ is constant and M is isoparametric.

Lemma 6.2. M is of non-positive curvature.
Proof. Suppose that there exist indices i, j and α such that $h_{i i}^{\alpha} \neq h_{j j}^{\alpha}$. From the equation (6.3) we get

$$
\Sigma h_{k j}^{\alpha} \omega_{k i}+\Sigma h_{i k}^{\alpha} \omega_{k j}=\left(h_{i i}^{\alpha}-h_{j j}^{\alpha}\right) \omega_{i j}=0,
$$

from which it follows that $\omega_{i j}=0$. Accordingly, we have

$$
\Sigma \omega_{i k} \wedge \omega_{k j}=0
$$

In fact, for any fixed indices i and α we denote by [i] the set consisting of indices k such that $h_{i t}^{\alpha}=h_{k k}^{\alpha}$. Then we have $[i] \neq[j]$ by the supposition and hence we get

$$
\sum_{k} \omega_{i k} \wedge \omega_{k j}=\sum_{k \in[i]} \omega_{i k} \wedge \omega_{k j}+\sum_{k \in[j]} \omega_{i k} \wedge \omega_{k j}+\sum_{k \in[i] \cup[j]} \omega_{i k} \wedge \omega_{k j}
$$

each term of which vanishes identically. By the structure equation

$$
d \omega_{i j}+\Sigma \omega_{i k} \wedge \omega_{k j}=-\frac{1}{2} \Sigma R_{i j k l} \omega_{k} \wedge \omega_{l}
$$

we obtain

$$
R_{i j j i}=c-\sum_{\beta} \lambda_{i}^{\beta} \lambda_{j}^{\beta}=0 .
$$

Next, suppose that $h_{i i}^{\alpha}=h_{j j}^{\alpha}$ for any distinct indices i and j and for any index α. Then the Gauss equation implies

$$
R_{i j j i}=c-\sum_{\alpha}\left(h_{i i}^{\alpha}\right)^{2}=c-\sum_{\alpha}\left(\lambda_{i}^{\alpha}\right)^{2} \leqq 0,
$$

because of $c \leqq 0$.
Thus M is of non-positive curvature.
Proof of Theorem 2. By a theorem due to Koike [10] and Lemmas 6.1 and 6.2 it is seen that M is locally congruent to the product submanifold $H^{n_{1}}\left(c_{1}\right) \times \cdots \times H^{n_{q}}\left(c_{q}\right) \times \boldsymbol{R}^{m}$ of \boldsymbol{R}_{q}^{n+q}, where $\sum_{r=1}^{q} n_{r}+m=n$ and $1 \leqq q \leqq p$. Then M can be naturally regarded as the space-like submanifold of \boldsymbol{R}_{p}^{n+p} whose mean curvature vector is given by (2.1). It is also parallel in the normal bundle of M in \boldsymbol{R}_{p}^{n+p}. The constant $S_{+}(1)$ and the squared norm S of the second fundamental form are given by (2.2). Therefore it is seen that we have

$$
S_{+}(p)+K(p)=-p \sum_{r=1}^{q} n_{r}^{2} c_{r}=S,
$$

which implies $p=q=1$ and $n_{1}=1$. Accordingly the hyperbolic cylinder $H^{1}\left(c_{1}\right) \times$ \boldsymbol{R}^{n-1} of \boldsymbol{R}_{1}^{n+1} is the complete connected space-like hypersurface with constant mean curvature whose squard norm S attaining the maximal value.

Proof of Theorem 3. When $p=1$ it is seen by a theorem due to Ki , Kim and Nakagawa [9] that the hyperbolic cylinder $H^{1}\left(c_{1}\right) \times H^{n-1}\left(c_{2}\right)$ is the complete spacelike hypersurface with constant mean curvature of $H_{1}^{n+1}(c)$ satisfying the given condition.

Suppose next that $p \geqq 2$. By means of Koike's theorem and Lemmas 6.1 and 6.2 again, M is locally congruent to the product submanifold $H^{n_{1}}\left(c_{1}\right) \times \cdots \times$ $H^{n_{q+1}\left(c_{q+1}\right)}$ in $H_{q}^{n+q}\left(c^{\prime}\right)$, where $\sum_{r=1}^{q+1} n_{r}=n, \sum_{r=1}^{q+1}\left(1 / c_{r}\right)=\left(1 / c^{\prime}\right) \geqq(1 / c)$ and $H_{q}^{n+q}\left(c^{\prime}\right)$ is a totally umbilic submanifold of $H_{p}^{n+p}(c)$. The mean curvature vector of M in $H_{q}^{n+q}\left(c^{\prime}\right)$ is denoted by \boldsymbol{h}^{\prime}, which is parallel in the normal bundle of M in $H_{q}^{n+q}\left(c^{\prime}\right)$. Then the mean curvature vector \boldsymbol{h} of M of $H_{p}^{n+p}(c)$ is given by $\boldsymbol{h}=\boldsymbol{h}^{\prime}+\boldsymbol{h}^{\prime \prime}$, where $h^{\prime \prime}$ is the mean curvature vector of $H_{q}^{n+q}\left(c^{\prime}\right)$ in $H_{p}^{n+p}(c)$. Consequently the mean curvature vector \boldsymbol{h} is parallel in the normal bundle $N(M)$ and the mean curvature H and the squared norm S of M in $H_{p}^{n+p}(c)$ are given by

$$
\begin{gathered}
h^{2}=n^{2} H^{2}=n^{2} c-\sum_{r=1}^{q_{+1}} n_{r}^{2} c_{r}, \\
S=n c-\sum_{r=1}^{q+1} n_{r} c_{r} .
\end{gathered}
$$

We have $S_{+}(1) \geqq h^{2}-n c$, because of $c<0$. So it is seen by Lemma 2.1 that we obtain

$$
\begin{equation*}
S_{+}(p)+K(p)-S \geqq h^{2}-p n c+(p-1) h^{2}-S=p h^{2}-p n c-S \geqq 0, \tag{6.4}
\end{equation*}
$$

where the equality holds if and only if $H=0$. Accordingly, if we have $S=$ $S_{+}(p)+K(p)$, then H must vanish identically. This implies that Theorem 3 is proved by a theorem due to Ishihara [8].

References

[1] K. Abe, N. Koike and S. Yamaguchi, Congruence theorems for proper semiRiemannian hypersurfaces in a real space form, Yokohama Math. J. 35 (1987), 123-136.
[2] R. Aiyama and Q. M. Cheng, Complete space-like hypersurfaces with constant mean in a Lorentz space form of dimension 4, Kodai Math. J. 15 (1992), 375-386.
[3] K. Akutagawa, On space-like hypersurfaces with constant mean curvature in the de Sitter space, Math. Z. 196 (1987), 13-19.
[4]E. Calabi, Examples of Bernstein problems for some nonlinear equations, Proc. Pure Appl. Math. 15 (1970), 223-230.
[5] Q.M. Cheng, Complete space-like submanifolds in de Sitter space with parallel mean curvature vector, Math. Z. 206 (1991), 333-339.
[6] Q.M. Cheng and H. Nakagawa, Totally umbilical hypersurfaces, Hiroshima J. Math. 20 (1990), 1-10.
[7] S. Y. Cheng and S.T. Yau, Maximal space-like hypersurfaces in the LorentzMinkowski spaces, Ann. of Math. 104 (1976), 407-419.
[8] T. Ishihara, Maximal spacelike submanifolds of a pseudo Riemannian space of constant mean curvature, Michigan Math. J. 35 (1988), 345-352.
[9] U.-H. Ki, H.-J. Kim and H. Nakagawa, On space-like hypersurfaces with constant mean curvature of a Lorentz space form, Tokyo J. of Math. 14 (1991), 205216.

「10] N. Koike, Proper isoparametric semi-Riemannian submanifolds in a semi-Riemannian space form, Tsukuba J. Math. 13 (1989), 131-146.
[11] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205-214.
[12] J. Ramanathan, Complete spacelike hypersurfaces of constant mean curvature in a de Sitter space, Indiana Univ. Math. J. 36 (1987), 349-359.
[13] C. L. Terng, Isoparametric submanifolds and their coxeter groups, J. Differential Geometry 21 (1985), 79-107.
[14] A.E. Treibergs, Entire hypersurfaces of constant mean curvature in Minkowski 3-space, Invent. Math. 66 (1982), 39-56.
[15] S.T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure and Appl. Math. 28 (1975), 201-208.

Institute of Mathematics, Fudan University, Shanghai 200433, P. R. China Institute of Mathematics, University of Tsukuba, 305 Ibaraki, Japan

[^0]: * The project is supported by National Natural Science Foundation of China. Received November 5, 1992.

