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1. Introduction.

Let $M_{p}^{n+p}(c)$ be an $(n+p)$-dimensional connected indefinite Riemannian
manifold of index $p$ and of constant curvature $c$ , which is called an indefinite
space form of index $p$ . According to $c>0,$ $c=0$ or $c<0$ it is denoted by $S_{p}^{n+p}(c)$ ,
$R_{p}^{n+p}$ or $H_{p}^{n+p}(c)$ . A submanifold $M$ of an indefinite space form $M_{p}^{n+p}(c)$ is
said to be space-like if the induced metric on $M$ from that of the ambient space
is positive definite. It is pointed out by some physicians that space-like hy-
persurfaces with constant mean curvature of arbitrary spacetimes get interested
in relativity theory and an entire space-like hypersurface with constant mean
curvature of an indefinite space form are studied by many authors (for exam-
ples: [1], [2], [3], [4], [7], [12] and so on).

Now, for a complete space-like submanifold $M$ with parallel mean curvature
vector of $S_{p}^{n+p}(c)$ , it is also seen by the first author [5] that $M$ is totally

umbilic if $n=2$ and $h^{2}\leqq 4c$ or if $n>2$ and $h^{2}<4(n-1)c$ , where $H$ denotes the
mean curvature, $i$ . $e.$ , the norm of the mean curvature vector and $h=nH$ . On
the other hand, the first author and Nakagawa [6] investigated the total um-
bilicness of such hypersurfaces from the different point of view. They proved

that the squared norm $S$ of the second fundamental form of $M$ is bounded

from above by $S_{+}(1)$ and if $\sup S<S_{-}(1)$ and $fi^{2}\leqq c$ , then $M$ is totally umbilic,

where

$S_{\pm}(p)=-pnc+\frac{nh^{2}\pm(n-2)\sqrt{h^{4}-4(n-1)ch^{2}}}{2(n-1)}$ .

In this paper, we research the similar problem to the above property for the
complete space-like submanifolds with parallel mean curvature vector of an
indefinite space form. That is, we prove the following
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THEOREM 1. Let $M$ be an n-dimensional complete space-like submanifold
with parallel mean $curt$)$ature$ vector of an indefinite space form $M_{p}^{n+p}(c)$ . If the
one of the following conditions is satisfied:

(1) $c\leqq 0$ ,

(2) $c>0$ and $n^{2}H^{2}\geqq 4(n-1)c$ ,

then

(1.1) $s\leqq S_{+}(p)+K(p)$ ,

where $K(p)$ is a constant defined by

$K(p)=(p-1)H\{nH+\sqrt{H^{2}\}}\}$ .

THEOREM 2. The hyperbolic cylinder $fi^{1}(c_{1})\times R^{n- I}$ in $R_{1}^{n+1}$ is the only com-
plete connected space-like n-dimensional submanifolds with parallel mean curvature
vector of $R_{p}^{n+p}$ satisfying $S=S_{+}(p)+K(p)$ .

THEOREM 3. 7 he hyperbolic cylinder $fi^{1}(c_{1})\times H^{n-1}(c_{2})$ of $H_{1}^{n+1}(c)$ and the
maximal submanifolds $H^{n_{1}}(c_{1})\times\cdots xH^{n_{P+1}}(c_{p+1})$ of $H_{p}^{n+p}(c)$ are the only complete
connected space-like n-dimensional submanifolds with parallel mean curvature
vector satisfying $S=S_{+}(p)+K(p)$ , where $c_{r}=(n/n_{r})c$ and $\Sigma_{r=1}^{p+1}n_{r}=n$ in the latter
case.

2. Standard models.

This section is concerned with some standard models of complete space-like
submanifolds with parallel mean curvature vector of an indefinite space form
$M_{p}^{n+p}(c),$ $c\leqq 0$ . In particular, we only consider non-totally umbilic cases.
Moreover, the squared norms of the second fundamental forms of such standard
models are calculated. Without loss of generality, an $(n+p)$-dimensional in-
definite Euclidean space $R_{p}^{n+p}$ of index $p(\geqq 1)$ can be first regarded as a product
manifold of

$R_{1}^{n_{1}+1}\times\cdots\times R_{1}^{n_{p^{+1}}}\times R^{m}$ ,

where $\Sigma_{r=\iota}^{p}n_{r}+m=n$ . With respect to the standard orthonormal basis of
$R_{p}^{n+p}$ a class of space-like submanifolds

$H^{n_{1}}(c_{1})\times\cdots\times H^{n_{p}}(c_{p})\times R^{m}$

of $R_{p}^{n+p}$ is defined as the Pythagorean product

$H^{n_{1}}(c_{1})\times\cdots\times H^{n_{p}}(c_{p})\times R^{m}$

$=\{(x_{1}, \cdots, x_{p+1})\in R_{p}^{n+p}=R_{1}^{n_{1}+1}\times\cdots\times R_{1}^{n_{p^{+1}}}\times R^{m}$ : $|x_{r}|^{2}=-\frac{1}{c_{r}}>0\}$ ,
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where $r=1,$ $\cdots,$ $p$ and $|$ $|$ denotes the norm defined by the product on the
Minkowski space $R_{1}^{k+1}$ which is given by $\langle x, x\rangle=-(x_{0})^{2}+\Sigma_{j\Rightarrow 1}^{k}(x_{j})^{2}$ . The mean
curvature vector $h$ of $M$ is given by

(2.1) $h=-\frac{1}{n}\sum_{r=1}^{p}n_{r}c_{r}x_{r}$

at $(x_{1}, \cdots, x_{p+1})\in M$, which is parallel in the normal bundle of $M$. The number
$S_{+}(1)$ and the squared norm $S$ of the second fundamental form are given by

(2.2) $S_{+}(1)=n^{2}fi^{2}=-\sum_{r=1}^{p}n_{r}^{2}c_{r}$ , $S=-\sum_{r=I}^{p}n_{r}c_{r}$ .

Then we get

$S_{+}(p)+K(p)=pn^{2}H^{2}=-p\sum_{r=1}^{p}n_{r}^{2}c_{r}\geqq S$ ,

where the equality holds if and only if $p=1$ and $n_{1}=1$ .
Next we consider an n-dimensional space-like submanifold of $H_{p}^{n+p}(c),$ $p\geqq 1$ .

Without loss of generality, an $(n+p+1)$-dimensional indefinite Euclidean space
$R_{p+1}^{n+p+1}$ of index $(p+1)$ can be first regarded as a product manifold of

$R_{1}^{n_{1}+1}\times\cdots\times R_{1}^{n_{p+1^{+1}}}$ ,

where $\sum_{r=1}^{p+1}n_{r}=n$ . With respect to the standard orthonormal basis of $R_{p}^{n}\ddagger^{p_{1}+1}$

a class of space-like submanifolds

$H^{n_{1}}(c_{1})\times\cdots\times H^{n_{p+1}}(c_{p+1})$

of $R_{p}^{n}\ddagger_{1}^{p+1}$ is defined as the Pythagorean product

$H^{n_{1}}(c_{1})\times\cdots\times fi^{n_{p+1}}(c_{p+1})$

$=\{(x_{1}, \cdots, x_{p+1})\in R_{p}^{n}\ddagger^{p_{1}+1}=R_{1}^{n_{1}+1}\times\cdots\times R_{1}^{n_{p+1^{+1};}}|x_{r}|^{2}=-\frac{1}{c_{r}}>0\}$ ,

where $r=1,$ $\cdots,$ $p+1$ . The mean curvature vector $h$ of $M$ is given by

(2.3) $h=-\frac{1}{n}\sum_{r=1}^{p+1}(n_{r}c_{r}x_{r})+cx$

at $x=(x_{1}, \cdots, x_{p+1})\in M$, which is parallel in the normal bundle of $M$ . The
norm $H$ of the mean curvature vector $h$ and the squared norm $S$ of the second
fundamental form are given by

(2.4) $h^{2}=n^{2}H^{2}=n^{2}c-\sum_{r=1}^{p+1}n_{r}^{2}c_{r}$ , $S=\sum_{r\Rightarrow 1}^{p+1}n_{r}(c-c_{r})=nc-\sum_{r=1}^{p+1}n_{r}c_{r}$ .

When $M$ is maximal, it satisfies $n_{r}c_{r}=nc$ for any index $r$ by (2.3), which
yields $S=-pnc$ . Then we get $S_{+}(p)+K(p)-S=0$ , because of $S_{+}(p)=-pnc$ and
$K(p)=0$ .
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Suppose that $fi\neq 0$ . By a theorem of Ki, Kim and Nakagawa $\lceil_{-}9$ ], if $p=1$ ,

then we have $S_{+}(1)-S=0$ . On the other hand, we have $S_{+}(1)>h^{2}-nc$ , because
of $c<0$ . So it is seen that if $p\geqq 2$ , then we obtain

$S_{+}(p)+K(p)-S>h^{2}-pnc+(p-1)h^{2}-S=ph^{2}-pnc-S\geqq 0$

by (2.4). In order to prove the last inequality, the following lemma is pre-
pared. The proof of this lemma is the only calculus and hence it is omitted.

LEMMA 2.1. Let $a_{1},$ $\cdots$ , $a_{p+1}$ be numbers not less than 1 satisfying $\Sigma a_{r}=n$

and $b_{1},$
$\cdots,$ $b_{p+1}$ be negative numbers satisfying $\Sigma(1/b_{r})=(1/b)$ . Then we have

$\Sigma$ {a $r^{-p(a_{r})^{2}\}b_{r}\geqq n(p+1-pn)b}$ .

3. Preliminaries.

Throughout this paper all manifolds are assumed to be smooth, connected
without boundary. We discuss in smooth category. Let $M_{p}^{n+p}(c)$ be an $(n+p)-$

dimensional indefinite Riemannian manifold of constant curvature $c$ whose index
is $p$ , which is called an indefinite space form of constant curvature $c$ and with
index $p$ . Let $M$ be an n-dimensional submanifold of an $(n+p)$-dimensional
indefinite space form $M_{p}^{n+p}(c)$ of index $p$ . The submanifold $M$ is said to be
space-like if the induced metric on $M$ from that of the ambient space is positive
definite. We choose a local field of orthonormal frames $e_{1},$

$\cdots$ , $e_{n+p}$ adapted to
the indefinite Riemannian metric of $M_{p}^{n+p}(c)$ and the dual coframes $\omega_{1},$ $\cdots,$ $\omega_{n+p}$

in such a way that, restricted to the submanifold $M,$ $e_{1},$
$\cdots$ , $e_{n}$ are tangent to

$M$ . Then connection forms $\{\omega_{AB}\}$ of $M_{p}^{n+p}(c)$ are characterized by the structure
equations

(3.1) $\left\{\begin{array}{l}d\omega_{4}\wedge+\Sigma\epsilon_{B}\omega_{AB}\wedge\omega_{B}=0, \omega_{AB}+\omega_{BA}=0,\\d\omega_{AB}+\Sigma\epsilon_{C}\omega_{AC}\wedge\omega_{CB}=\Omega_{AB},\\\Omega_{AB}=-\frac{1}{2}\Sigma\epsilon_{C}\epsilon_{D}R_{4BCD}^{\prime}\omega_{C}\wedge\omega_{D},\end{array}\right.$

(3.2) $R_{ABCD}^{\prime}=c\epsilon_{A}\epsilon_{B}(\delta_{AD}\delta_{BD}-\delta_{AC}\delta_{BD})$ ,

where $\epsilon_{A}=1$ for an index $A\leqq n,$ $\epsilon_{A}=-1$ for an index $A\geqq n+1$ , and $\Omega_{AB}$ (resp.
$R_{ABCD}^{\prime})$ denotes the indefinite Riemannian curvature form (resp. the components
of the indefinite Riemannian curvature tensor $R^{\prime}$ ) of $M_{p}^{n+p}(c)$ . Therefore the
components of the Ricci curvature tensor $Ric^{\prime}$ and the scalar curvature $r^{\prime}$ of
$M_{p}^{n+p}(c)$ are given as

$R_{AB}^{\prime}=c(n+p-1)\epsilon_{A}\delta_{AB}$ , $r^{\prime}=(n+p)(n+p-1)c$ .
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In the sequel, the following convention on the range of indices is used, unless
otherwised stated:

$1\leqq A,$ $B,$ $\cdots\leqq n+p$ ; $1\leqq i,$ $j,$ $\cdots\leqq n$ ; $n+1\leqq\alpha,$ $\beta,$ $\cdots\leqq n+p$ .

We agree that the repeated indices under a summation sign without indication
are summed over the respective range. The canonical forms $\{\omega_{A}\}$ and the
connection forms $\{\omega_{AB}\}$ restricted to $M$ are also denoted by the same symbols.

We then have

(3.3) $\omega_{\alpha}=0$ for $\alpha=n+1,$
$\cdots,$ $n+p$ .

We see that $e_{1},$ $\cdots$ , $e_{n}$ is a local field of orthonormal frames adapted to the
induced Riemannian metric on $M$ and $\omega_{1},$

$\cdots$ , $\omega_{n}$ is a local field of its dual
coframes on $M$ . It follows from (3.1), (3.3) and Cartan’s lemma that we have

(3.4) $\omega_{\alpha i}=\Sigma h_{ij}^{\alpha}\omega_{j}$ , $h_{ij}^{\alpha}=h_{ji}^{\alpha}$ .

The second fundamental form $\alpha$ and the mean curvature vector $h$ of $M$ are
defined by

$\alpha=-\Sigma h_{ij}^{\alpha}\omega_{i}\omega_{j}e_{\alpha}$ , $h=-\frac{1}{n}\Sigma(\sum_{i}h_{ii}^{\alpha})e_{\alpha}$ .

The mean curvature $H$ is defined by

(3.5) $H=|h|=\frac{1}{n}\sqrt{\Sigma(\Sigma h_{ii}^{\alpha})^{2}}i$

Let $S=\sum(h_{ij}^{\alpha})^{2}$ denote the squared norm of the second fundamental form $\alpha$ of
$M$ . The connection forms $\{\omega_{ij}\}$ of $M$ are characterized by the structure equations

(3.6)
$\left\{\begin{array}{l}d\omega_{i}+\Sigma\omega_{ij}\wedge\omega_{j}=0, \omega_{ij}+\omega_{ji}=0,\\d\omega_{ij}+\Sigma\omega_{ik}\wedge\omega_{kj}=\Omega_{ij},\\\Omega_{ij}=-\frac{1}{2}\Sigma R_{ijkl}\omega_{k}\wedge\omega_{l},\end{array}\right.$

where $\Omega_{ij}$ (resp. $R_{ijkl}$ ) denotes the Riemannian curvature form (resp. the com-
ponents of the Riemannian curvature tensor R) of $M$ . Therefore, from (3.1)

and (3.6), the Gauss equation is given by

(3.7) $R_{ijkl}=c(\delta_{il}\delta_{jk}-\delta_{ik}\delta_{jl})-\sum(h_{il}^{\alpha}h_{jk}^{\alpha}-h_{ik}^{\alpha}h_{jl}^{\alpha})$ .

The components of the Ricci curvature $Ric$ and the scalar curvature $r$ are
given by

(3.8) $R_{jk}=(n-1)c\delta_{jk}-\Sigma h_{ii}^{\alpha}h_{jk}^{\alpha}+\Sigma h_{ji}^{\alpha}h_{ik}^{\alpha}$ ,

(3.9) $r=n(n-1)c-n^{2}H^{2}+\sum(h_{ij}^{\alpha})^{2}$ .
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We also have

(3.10) $d\omega_{a\beta}-\sum\omega_{\alpha\gamma}\wedge\omega_{\gamma\beta}=-\frac{1}{2}\sum R_{\alpha\beta ij}\omega_{i}\wedge\omega_{j}$ ,

where
$R_{\alpha\beta ij}=-\sum(h_{il}^{\alpha}h^{\beta_{jl}}-h_{jl}^{a}h^{\beta_{il}})$ .

The Codazzi equation and the Ricci formula for the second fundamental form
are given by

(3.11) $h_{ijk}^{a}-h_{ikj}^{\alpha}=0$ ,

(3.12) $h_{ijkl}^{a}-h_{iflk}^{a}=-\Sigma h_{im}^{a}R_{mjkl}-\sum h_{mj}^{\alpha}R_{mikl}+\sum h^{\beta_{ij}}R_{\beta\alpha kl}$ ,

where $h_{ijk}^{\alpha}$ and $h_{ijkl}^{a}$ denote the components of the covariant differentials $\nabla\alpha$

and $\nabla^{2}\alpha$ of the second fundamental form, respectively. The Laplacian $\Delta h_{ij}^{\alpha}$ of
the components $h_{ij}^{a}$ of the second fundamental form $\alpha$ is given by

$\Delta h_{ij}^{\alpha}=\Sigma h_{ijkk}^{\alpha}$ .
From (3.12) we get

(3.13) $\Delta h_{ij}^{\alpha}=\sum_{k}h_{kkij}^{\alpha}-\Sigma h_{km}^{a}R_{mijk}-\sum h_{mi}^{\alpha}R_{mkjk}+\Sigma h^{\beta_{ki}}R_{\beta\alpha jk}$ .

The following generalized maximum principle due to Omori [11] and Yau [15]

will play an important role in this paper.

THEOREM 3.1. Let $M$ be an n-dimensional complete Riemannian manifold
whose Ricci curvature is bounded from below. Let $F$ be a $C^{2}$-function bounded
from above on $M$, then for any $\epsilon>0$ , there exists a point $p$ in $M$ such that

$ f^{i}(p)+\epsilon>\sup\Gamma$, $|gradF|(p)<\epsilon$ , $\Delta F(p)<\epsilon$ .
The following lemma is already known.

LEMMA 3.2. Let $a_{1},$ $\cdots,$ $a_{n}$ be real numbers satisfying $\Sigma a_{i}=0$ and $\Sigma a_{i^{2}}=$

$k^{2}$ for $k>0$ . Then we have

$|\Sigma a_{t^{3}}|\leqq(n-2)\sqrt{\frac{1}{n(n-1)}}k^{3}$ ,

where the equality holds if and only if $n-1$ of them are equal with each other.

4. Pseudo-umbilic submanifolds.

Let $M$ be an n-dimensional space-like submanifold with parallel mean
curvature vector $h$ of an indefinite space form $M_{p}^{n+p}(c)$ . Because the mean
curvature vector is parallel, the mean curvature is constant. Suppose that
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$li\neq 0$ . We choose $e_{n+1}$ in such a way that its direction coincides with that of

the mean curvature vector. Then it is easily seen that we have

(4.1) $\omega_{\alpha n+1}=0$ , $H=constant$ ,

(4.2) $H^{\alpha}H^{n+1}=fi^{n+1}H^{\alpha}$ ,

(4.3) $trH^{n+1}=nfi$ , $trH^{\alpha}=0$

for any $\alpha\neq n+1$ , where $H^{\alpha}$ denotes an $n\times n$ symmetric matrix $(h_{ij}^{\alpha})$ .
A submanifold $M$ is said to be pseudo-umbilic, if it is umbilic with respect

to the direction of the mean curvature vector $h$ , that is,

(4.4) $h_{ij}^{n+1}=H\delta_{ij}$ .

We denote by $\mu$ an $n\times n$ symmetric matrix with $\mu_{ij}=h_{ij}^{n+1}-H\delta_{ij}$ . Then we
have

(4.5) $tr\mu=0$ , $|\mu|^{2}=tr(\mu)^{2}=\Sigma(\mu_{ij})^{2}=tr(H^{n+1})^{2}-nfi^{2}$ .

So the pseudo-umbilic submanifolds are characterized by the property $\mu=0$ . A

non-negative function $\tau$ is defined by $\tau^{2}=\Sigma_{\beta\neq n+1}(h^{\beta_{ij}})^{2}$ . We then have

(4.6) $S=|\mu|^{2}+\tau^{2}+nH^{2}$ .

Hence it is seen that $|\mu|^{2}$ as well as $\tau^{2}$ are independent of the choice of the

frame fields and they are functions defined globally on $M$ .

PROPOSITION 4.1. Let $M$ be n-dimensional complete space-like submanifold
with parallel mean curvature vector of an indefinite space form $S_{p}^{n+p}(c)$ . If it

satisfies
$n^{2}c\geqq n^{2}H^{2}\geqq 4(n-1)c$ , $S\leqq S_{-}(1)$ ,

then $M$ is pseudo-umbilic, where $H$ denotes the mean curvature, $i$ . $e.$ , the norm of
the mean curvature vector.

PROOF. In order to prove this property it suffices to show $\mu=0$ . From
(3.13), the Gauss equation (3.7) and (3.10), we have

(4.7) $\Delta h_{ij^{+1}}^{n}=nch_{ij^{+1}}^{n}-ncH\delta_{ij}+\sum h_{km}^{n+1}h^{\beta_{mk}}h^{\beta_{ij}}-2\sum h^{\beta_{ik}}h_{km}^{n+1}h^{\beta_{mf}}$

$+\Sigma h_{im}^{n+1}h^{\beta_{mk}}h^{\beta_{kj}}-nH\Sigma h_{im}^{n+1}h_{mj}^{n+1}+\Sigma h^{\beta_{ik}}h^{\beta_{km}}h_{mj}^{n+1}$ .

Accordingly we obtain from (4.2)

$\frac{1}{2}\Delta|\mu|^{2}=\sum(h_{ijk}^{n+1})^{2}+nc\Sigma(h_{ij}^{n+1})^{2}-n^{2}cH^{2}$

$+\Sigma h_{km}^{n+1}h^{\beta_{mk}}h^{\beta_{ij}}h_{ij^{+1}}^{n}-2\sum h^{\beta_{ik}}h_{km}^{n+1}h^{\beta_{mj}}h_{ij}^{n+1}+\Sigma h_{im}^{n+1}h^{\beta_{mk}}h^{\beta_{kj}}h_{ij}^{n+1}$
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$-nH\sum h_{im}^{n+1}h_{mj^{1}}^{n+}h_{ij}^{n+1}+\sum h^{\beta_{ik}}h^{\beta_{km}}h_{mj}^{n+1}h_{ij}^{n+\iota}$

and hence we see

$\frac{1}{2}\Delta|\mu|^{2}=\sum(h_{ijk}^{n+1})^{2}+nc\sum(h_{ij}^{n+1})^{2}$

(4.8) $-n^{2}cH^{2}-nHtr(H^{n+1})^{3}-\sum_{\beta\neq n+1}tr(H^{n+1}H^{\beta}-H^{\beta}fi^{n+1})^{2}$

$+\{tr(H^{n+1})^{2}\}^{2}+_{\beta}\sum_{\neq n+1}\{tr(H^{n+1}H^{\beta})\}^{2}$ .

On the other hand, because of

$tr(H^{n+1})^{3}=tr\mu^{3}+3H\{tr(H^{n+1})^{2}-nH^{2}\}+nH^{3}$ ,
we get

$\frac{1}{2}\Delta|\mu|^{2}\geqq(|\mu|^{2}+nH^{2})^{2}-nH$ {tr $\mu^{3}+3H|\mu|^{2}+nH^{3}$ } $+nc|\mu|^{2}$

(4.9)
$=|\mu|^{2}(|\mu|^{2}+nc-nH^{2})-nH$ tr $\mu^{3}$ .

Because of $tr\mu=0$ , we can apply Lemma 3.2 to the eigenvalues of $\mu$ and obtain

(4.10) tr $\mu^{3}|\leqq\frac{n-2}{\sqrt{n(n-1)}}|\mu|^{3}$ .

Hence we obtain

(4.11) $\frac{1}{2}\Delta|\mu|^{2}\geqq|\mu|^{2}(|\mu|^{2}-nH\frac{n-2}{\sqrt{n(n-1)}}|\mu|+nc-nH^{2})$ ,

where we have used (4.9) and (4.10). From (3.8) we know that the Ricci curvature
of $M$ is bounded from below. Putting $F=-1/\sqrt{|\mu|^{2}+a}$ for any positive
number $a$ . Since $M$ is complete and space-like, we can apply the Generalized
Maximum Principle (Theorem 3.1) to the function $F$. For any given positive
number $\epsilon>0$ , there exists a point $p$ at which $F$ satisfies

(4.12) $\sup F<F(p)+\epsilon$ , $|gradF|(p)<\epsilon$ , $\Delta F(p)<\epsilon$ .
Consequently the following relationship

(4.13) $\frac{1}{2}F(p)^{4}\Delta|\mu|^{2}(p)<3\epsilon^{2}-F(p)\epsilon$

can be derived by the simple and direct calculations. For a convergent sequence
$\{\epsilon_{m}\}$ such that $\epsilon_{m}\rightarrow 0(m\rightarrow\infty)$ and $\epsilon_{m}>0$ , there exists a point sequence $\{p_{m}\}$ such
that $\{F(p_{m})\}$ converges to $F_{0}=\sup F$ by (4.12). On the other hand, it follows
from (4.13) that we have

(4.14) $\frac{1}{2}F(p_{m})^{4}\Delta|\mu|^{2}(p_{m})<3\epsilon_{m^{2}}-F(p_{m})\epsilon_{m}$ .

The right hand side of (4.14) converges to $0$ because $F$ is bounded. Accordingly,
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for any positive number $\epsilon>0(\epsilon<2)$ there exists a sufficiently large integer $m$

for which we have
$ F(p_{m})^{4}\Delta|\mu|^{2}(p_{m})<\epsilon$ .

Hence we get

$(2-\epsilon)|\mu|^{4}(p_{m})-2nH\frac{n-2}{\sqrt{n(n-1)}}|\mu|^{3}(p_{m})$

$+2(nc-nH^{2}-\epsilon a)|\mu|^{2}(p_{m})-\epsilon a^{2}<0$ .

Thus the sequence $\{|\mu|^{2}(p_{m})\}$ is bounded and the definition of $F$ gives rise to

(4.15) $\lim_{m\rightarrow\infty}|\mu|^{2}(p_{m})=\sup|\mu|^{2}$ .

Therefore the supremum of $F$ satisfies $F_{0}=\sup F<0$ . According to (4.14) we
have

(4.16) $\lim_{m\rightarrow\infty}\sup\Delta|\mu|^{2}(p_{m})\leqq 0$ .

Thus (4.11) and (4.16) yield

(4.17) $0\geqq\sup|\mu|^{2}(\sup|\mu|^{2}-nH\frac{n-2}{\sqrt{n(n-1)}}\sup|\mu|+nc-nH^{2})$ .

Taking account of (4.5) we have

(4.18) $\sup\sum(h_{ij^{+1}}^{n})^{2}=nH^{2}$ or $S_{-}(1)\leqq\sup\sum(h_{ij}^{n+1})^{2}\leqq S_{+}(1)$ ,

from which combining with the assumption of Proposition 4.1 it follows that
we have

$\sup\sum(h_{ij}^{n+1})^{2}=nH^{2}$ .

This means that $\mu=0$ because of (4.5) and therefore $M$ is pseudo-umbilic. $\square $

The inequality (4.17) holds on the space-like submanifold $M$ of $M_{p}^{n+p}(c)$ .
Accordingly, in this case we have

(4.19) $\sup\Sigma(h_{ij}^{n+1})^{2}=nH^{2}$ or $\sup\Sigma(h_{ij}^{n+1})^{2}\leqq S_{+}(1)$ .

REMARK. When $p=1$ , the hypersurface $M$ becomes totally umbilic under
the assumption of Proposition 4.1, which means that this property is a gener-
alization of the theorem due to the first author and Nakagawa [6].

5. Proof of Theorem 1.

In this section the squared norm $S$ of the second fundamental form of $M$

is estimated from above. Let $M$ be an n-dimensional space-like submanifold
with parallel mean curvature vector $h$ of an indefinite space form $M_{p}^{n+p}(c)$ .
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PROOF OF THEOREM 1. Because the mean curvature vector is parallel, the
mean curvature is constant. If $H=0$ , then from Theorem 1.1 due to Ishihara
[8], we know that $M$ is totally geodesic if $c\geqq 0$ and $S\leqq-npc$ if $c<0$ . Hence
Theorem 1 is true. Next we may suppose $H\neq 0$ . We choose $e_{n+1}$ in such a
way that its direction coincides with that of the mean curvature vector. Then
we get (4.1), (4.2) and (4.3). From (3.13), the Gauss equation (3.7) and (3.10)

we get

$\frac{1}{2}\Delta\tau^{f}=\sum_{a\neq n+1}(h_{ijk}^{\alpha})^{2}+\sum_{\alpha\neq n+1}h_{ij}^{\alpha}\Delta h_{lf}^{\alpha}$

$=\sum_{\alpha\neq n+1}(h_{ijk}^{\alpha})^{2}+nc\tau^{2}+\sum_{a\neq n+1}h_{km}^{\alpha}h^{\beta_{mk}}h^{\beta_{ij}}h_{ij}^{\alpha}$

$-2\sum_{\alpha\neq n+1}h^{\beta_{ik}}h_{km}^{\alpha}h^{\beta_{mj}}h_{ij}^{\alpha}+\sum_{\alpha\neq n+1}h_{im}^{\alpha}h^{\beta_{mk}}h^{\beta_{kf}}h_{ij}^{\alpha}$

$-nH\sum_{\alpha\neq n+1}h_{im}^{\alpha}h_{mj}^{n+1}h_{ij}^{\alpha}+\sum_{\alpha\neq n+1}h^{\beta_{ik}}h^{\beta_{km}}h_{mj}^{a}h_{ij}^{\alpha}$ ,

and hence we get

$\frac{1}{2}\Delta\tau^{2}=\sum_{\alpha\neq n+1}(h_{ijk}^{\alpha})^{2}+nc\tau^{2}+_{\alpha,\beta}\sum_{\neq n+1}h_{km}^{\alpha}h^{\beta_{mk}}h^{\beta_{ij}}h_{ij}^{\alpha}$

$-2\sum_{\alpha.\beta\neq n+1}h^{\beta_{ik}}h_{km}^{\alpha}h^{\beta_{mj}}h_{ij}^{\alpha}+\sum_{\alpha,\beta\neq n+1}h_{im}^{\alpha}h^{\beta_{mk}}h^{\beta_{kj}}h_{ij}^{\alpha}$

(5.1) $+\sum_{\alpha.\beta\neq n+1}h^{\beta_{ik}}h^{\beta_{km}}h_{mj}^{\alpha}h_{ij}^{\alpha}+\sum_{\alpha\neq n+1}h_{km}^{\alpha}h_{mk}^{n+1}h_{ij}^{n+1}h_{ij}^{\alpha}$

$-2\sum_{a\neq n+1}h_{ik}^{n+1}h_{km}^{\alpha}h_{mj}^{n+1}h_{ij}^{\alpha}+\sum_{\alpha\neq n+1}h_{lm}^{\alpha}h_{mk}^{n+1}h_{kj}^{n+1}h_{ij}^{\alpha}$

-
$nH\sum_{\alpha\neq n+1}h_{im}^{\alpha}h_{mj}^{n+1}h_{ij}^{\alpha}+\sum_{\alpha\neq n+1}h_{ik}^{n+1}h_{im}^{n+1}h_{mf}^{a}h_{ij}^{\alpha}$ .

We put $S_{\alpha\beta}=\sum h_{ij}^{\alpha}h^{\beta_{ij}}$ for any $\alpha,$ $\beta\neq n+1$ . Then $(S_{\alpha\beta})$ is a $(p-1)\times(p-1)$

symmetric matrix. It can assumed to be diagonal for a suitable choice of
$e_{n+2},$ $\cdots$ , $e_{n+p}$ . Set $S_{\alpha}=S_{\alpha\alpha}$ . We then have $\tau^{2}=\sum S_{a}$ . In general, for a matrix
$A=(a_{ij})$ , we define $N(A)=tr(A^{t}A)$ . Hence we get

$\sum_{\alpha.\beta\neq n+1}h_{km}^{\alpha}h^{\beta_{mk}}h^{\beta_{ij}}h_{i-}^{\alpha}2\sum_{\alpha.\beta\neq n+1}h^{\beta_{ik}}h_{km}^{\alpha}h^{\beta_{mj}}h_{ij}^{\alpha}$

$+\sum_{\alpha.\beta\neq n+1}h_{im}^{\alpha}h^{\beta_{mk}}h^{\beta_{kj}}h_{ij}^{\alpha}+\sum_{\alpha.\beta\neq n+1}h_{jm}^{\alpha}h^{\beta_{mk}}h^{\beta_{ki}}h_{ij}^{\alpha}$

$=\sum_{\alpha\neq n+1}(S_{a})^{2}+\sum_{\alpha,\beta\neq n+1}N(H^{\alpha}Pi^{\beta}-H^{\beta}H^{\alpha})$ .

Obviously, we see
(5.2)

$\sum_{\alpha.\beta\neq n+1}N(H^{\alpha}H^{\beta}-H^{\beta}H^{\alpha})\geqq 0$ .

Suppose $p\geqq 2$ . Let
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$(p-1)\sigma_{1}=\tau^{2}=\Sigma S_{\alpha}$ ,

$(p-1)(p-2)\sigma_{2}=2\sum_{\alpha<\beta,\alpha,\beta\neq n+I}S_{\alpha}S_{\beta}$ .

Then we get

$\Sigma(S.)^{2}=(p-1)(\sigma_{1})^{2}+(p-1)(p-2)\{(\sigma_{1})^{2}-\sigma_{2}\}$ ,

$(p-1)^{2}(p-2)\{(\sigma_{1})^{2}-\sigma_{2}\}=\sum_{<\alpha\beta,\alpha,\beta\neq n+1}(S_{\alpha}-S_{\beta})^{2}$ .

Hence we obtain

$\sum_{\alpha.\beta\neq n+1}h_{km}^{\alpha}h^{\beta_{mk}}h^{\beta_{ij}}h_{i\Gamma}^{\alpha}-2\sum_{\alpha,\beta\neq n+1}h^{\beta_{ik}}h_{km}^{a}h^{\beta_{mj}}h_{ij}^{a}$

(5.3)
$+\sum_{\alpha.\beta\neq n+1}h_{im}^{\alpha}h^{\beta_{mk}}h^{\beta_{kj}}h_{ij}^{\alpha}+\sum_{\alpha,\beta\neq n+1}h^{\beta_{tk}}h^{\beta_{km}}h_{mj}^{\alpha}h_{ij}^{\alpha}$

$\geqq(p-1)(\sigma_{1})^{2}=\frac{1}{p-1}\tau^{4}$ .

Then the equations (5.1), (5.2) and (5.3) imply

$\frac{1}{2}\Delta\tau^{2}\geqq nc\tau^{2}+\frac{1}{p-1}\tau^{4}+\sum_{\alpha\neq n+1}h_{km}^{\alpha}h_{mk}^{n+1}h_{ij}^{n+1}h_{ij}^{\alpha}-2\sum_{\alpha\neq n+1}h_{ik}^{n+I}h_{km}^{\alpha}h_{mj}^{n+1}h_{i}^{\alpha_{j}}$

$+\sum_{\alpha\neq n+1}h_{im}^{\alpha}h_{mk}^{n+1}h_{kj}^{n+1}h_{ij}^{a}-nH\sum_{\alpha\neq n+1}h_{im}^{\alpha}h_{mj}^{n+1}h_{ij}^{\alpha}+\sum_{\alpha\neq n+1}h_{ik}^{n+1}h_{km}^{n+1}h_{mf}^{\alpha}h_{ij}^{\alpha}$ .

For a fixed index $\alpha$ , since $H^{\alpha}H^{n+1}=H^{n+1}H^{\alpha}$ , we can choose $\{e_{1}, \cdots, e_{n}\}$ such
that

$h_{ij}^{\alpha}=\lambda_{i}^{\alpha}\delta_{ij}$ , $h_{ij}^{n+1}=\lambda_{i}\delta_{ij}$ .
Then we get

$\Sigma h_{km}^{\alpha}h_{mk}^{n+1}h_{ij}^{n+1}h_{ij}^{\alpha}-2\Sigma h_{ik}^{n+1}h_{km}^{\alpha}h_{mj}^{n+1}h_{ij}^{\alpha}+\Sigma h_{im}^{\alpha}h_{mk}^{n+1}h_{kj}^{n+1}h_{ij}^{\alpha}$

$-nH\Sigma h_{im}^{\alpha}h_{mj}^{n+1}h_{ij}^{a}+\Sigma h_{ik}^{n+1}h_{km}^{n+1}h_{mj}^{a}h_{ij}^{\alpha}$

$=(\Sigma\lambda_{i}\lambda_{i}^{a})^{2}-nH\Sigma\lambda_{i}(\lambda_{i}^{a})^{2}$ .

We notice here that eigenvalues $\lambda_{i}^{\prime}s$ are bounded by (4.19). In order to
estimate the last term on the above equation, the following property is prepared.

LEMMA 5.1. Let $a_{1},$ $\cdots,$ $a_{n}$ be real numbers satisfying $\sum a_{i}=0$ and let $b_{I},$ $\cdots$ ,

$b_{n}$ be also real numbers. Then we have

$\sum a_{i}(b_{i})^{2}\leqq\sqrt{\frac{n-1}{n}}\sqrt{\sum(a_{i})^{2}}\sum(b_{i})^{2}$ ,

where the equality holds if and only if the $n-1$ of $a_{i}\prime s$ are equal with each other
and the corresponding $n-1$ of $b_{i}\prime s$ are equal to $0$ .
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PROOF. We consider the function $f=\sum a_{i}(b_{i})^{2}$ with constraint $\sum a_{i}=0$ ,

$\sum(a_{i})^{2}=a$ and $\sum(b_{i})^{2}=b$ . Then there exists a critical point of $f$ on $R^{2n}$ at

which we have

(5.4) $(b_{i})^{2}+\mu_{1}+2\mu_{2}a_{i}=0$ , $2a_{i}b_{i}+2\mu_{3}b_{i}=0$ .
From (5.4) we get

$\mu_{1}=-\frac{1}{n}b$ ,

and the critical value of $f$ is equal to $-\mu_{3}b=-2\mu_{2}a$ , and therefore we have

(5.5) $a_{i}=-\mu_{3}$ , or $b_{i}=0$ .

If $a_{i}=-\mu_{3}$ for any index $i$ , then we get $f=0$ , because of $\sum a_{i}=0$ . If $a_{i}=$

$-\mu_{3},1\leqq i\leqq m$ and $b_{j}=0,$ $m+1\leqq j\leqq n$ , then we have from (5.4)

$2\mu_{2}a_{j}=\frac{1}{n}b$ , $j=m+1,$ $\cdots,$ $n$ .

If $\mu_{2}=0$ , then $f=0$ . Without loss of generality, we may suppose $\mu_{2}\neq 0$ . Thus
we see

$a_{j}=\frac{b}{2n\mu_{2}}$ , $j=m+1,$ $\cdots,$
$n$ ,

which yields

(5.6) $m\mu_{s}=(n-m)\frac{b}{2n\mu_{2}}$ .

From (5.4) and (5.5) it follows that we obtain

$\mu_{2}=\pm\frac{1}{2}\sqrt{\frac{n-m}{nm}}\frac{b}{\sqrt{a}}$ ,

which means that we obtain

$|f|\leqq\sqrt{\frac{n-1}{n}}\sqrt{\Sigma(a_{i})^{2}}\Sigma(b_{i})^{2}$ .

If the equality holds, then we have $m=1$ and $a_{j}=\pm\sqrt{a/n(n-1}$), $ b_{j}=0,2\leqq$ ] $\leqq n$ .
The converse is obvious. $\square $

According to Lemma 5.1 we have

$(\sum_{i}\lambda_{i}\lambda_{i}^{\alpha})^{2}-nH\sum_{i}\lambda_{i}(\lambda_{i}^{a})^{2}\geqq-nH\sum_{i}(\lambda_{i}-H)(\lambda_{i}^{\alpha})^{2}-nH^{2}\sum_{i}(\lambda_{i}^{\alpha})^{2}$

$=-nH(\sum_{i}\mu_{i}(\lambda_{i}^{\alpha})^{2}+H\sum_{i}(\lambda_{i}^{\alpha})^{2})$

$\geqq-nH(\sqrt{\frac{n-1}{n}}\sqrt{\sum(h_{ij}^{n+1})^{2}-nH^{g}}+H)tr(H^{\alpha})^{2}$ .
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The right hand side of the inequality above does not depend on the choice of
frame fields. Therefore we have

$\sum_{\alpha\neq n+1}h_{km}^{\alpha}h_{mk}^{n+1}h_{ij}^{n+1}h_{ij}^{a}-2\sum_{\alpha\neq n+1}h_{ik}^{n+1}h_{km}^{\alpha}h_{mj}^{n+1}h_{ij}^{\alpha}+\sum_{\alpha\neq n+1}h_{im}^{\alpha}h_{mk}^{n+1}h_{kj}^{n+1}h_{ij}^{\alpha}$

$-nH\sum_{\alpha\neq n+1}h_{im}^{\alpha}h_{mj}^{n+1}h_{ij}^{\alpha}+\sum_{\alpha\neq n+1}h_{jm}^{\alpha}h_{mk}^{n+1}h_{ki}^{n+1}h_{ij}^{\alpha}$

$\geqq-nH(\sqrt{\frac{n-1}{n}}\sqrt{\Sigma(h_{ij}^{n+1})^{2}-nH^{2}}+H)\tau^{2}$ .

Thus we have

$\frac{1}{2}\Delta\tau^{2}\geqq\{nc-nH(\sqrt{\frac{n-1}{n}}\sqrt{\Sigma(h_{ij}^{n+1})^{2}-nH^{2}}+H)\}\tau^{2}+\frac{1}{p-1}\tau^{4}$ .

Making use of the same proof as in the proof of $|\mu|^{2}$ above, we have

$0\geqq\{nc-nH(\sqrt{\frac{n-1}{n}}\sqrt{\Sigma(h_{ij}^{n+1})^{2}-nH^{2}}+H)\}\tau^{2}+\frac{1}{p-1}\tau^{4}$ .

Thus from (4.19) we get

(5.7) $\sup\tau^{2}\leqq(p-1)\{nfi(\sqrt{\frac{n-1}{n}}\sqrt{S_{+}(1)-nH^{2}}+H)-nc\}$ .

The equality (4.6), the inequalities (4.19) and (5.7) yield

$S\leqq S_{+}(p)+(p-1)H\{nH+\sqrt{n(n-1)\{S_{+}(1)-nH^{2}\}}\}$ .

Hence we complete the proof of Theorem 1. $\square $

REMARK. When $M$ is maximal $(i. e., H=0)$ , Theorem 1 implies $S\leqq-npc$ .
Ishihara [8] obtained this relation for complete maximal space-like submanifolds.
When $p=1$ , Theorem 1 becomes $S\leqq S_{+}(1)$ . This result is obtained by the first
author and Nakagawa [6]. Hence Theorem 1 generalizes the results above.

6. Proof of Theorems 2 and 3.

Let $M$ be an n-dimensional complete space-like submanifold with parallel

mean curvature vector of $M_{p}^{n+p}(c),$ $c\leqq 0$ . We assume $S=S_{+}(p)+K(p)$ . Then
the equalities of all inequalities in the previous sections have to hold. Con-
sequently, from (4.8) and (5.7) it is seen that

(6.1) $h_{ijk}^{\alpha}=0$

for any $i,$ $j,$ $k$ and $\alpha$ . Also from (4.2) and (5.7) it follows that
$H^{\alpha}H^{\beta}=H^{\beta}H^{\alpha}$

for any $\alpha$ and $\beta$ . The equations imply that all of $H^{\alpha}$ are simultaneously
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diagonalizable and the normal connection in the normal bundle of $M$ is flat.
Hence we can choose a suitable basis $\{e_{i}\}$ such that

(6.2) $h_{ij}^{\alpha}=\lambda_{i}^{\alpha}\delta_{ij}$

for any $i,$ $j$ and $\alpha$ . The submanifold $M$ is said to be isoparametric [13] if
the normal connection is flat and the characteristic polynomial of the shape
operator $A_{\xi}$ has constant coefficients over the domain of any local parallel
normal field $\xi$ .

LEMMA 6.1. $M$ is isoparametric.

PROOF. Since the normal connection is flat, it is seen that there exist
locally $p$ mutually orthogonal unit normal vector fields which are parallel in
the normal bundle. So we can choose a suitable parallel basis $\{e_{\alpha}\}$ and then
we have $\omega_{a\beta}=0$ . Hence, since we have

(6.3) $\Sigma h_{tji}^{\alpha}\omega_{k}=dh_{ij}^{\alpha}-\Sigma h_{kj}^{\alpha}\omega_{ki}-\Sigma h_{ik}^{\alpha}\omega_{kj}+\Sigma h^{\beta_{ij}}\omega_{\beta a}$ ,

setting $i=$ ] in the above equation and using (6.1) we get $dh_{ii}^{\alpha}=0$ . Hence $h_{ii}^{a}$

is constant and $M$ is isoparametric. $\square $

LEMMA 6.2. $M$ is of non-positive curvature.

PROOF. Suppose that there exist indices $i,$ $j$ and $\alpha$ such that $h_{il}^{\alpha}\neq h_{jj}^{\alpha}$ .
From the equation (6.3) we get

$\sum h_{kj}^{\alpha}\omega_{ki}+\sum h_{i}^{a}rv_{kj}=(h_{ii}^{\alpha}-h_{jj}^{\alpha})\omega_{tj}=0$ ,

from which it follows that $\omega_{ij}=0$ . Accordingly, we have

$\sum\omega_{ik}\wedge\omega_{kj}=0$ .
In fact, for any fixed indices $i$ and $\alpha$ we denote by $[i]$ the set consisting of
indices $k$ such that $h_{ii}^{\alpha}=h_{kk}^{\alpha}$ . Then we have $[i]\neq[]]$ by the supposition and
hence we get

$\sum_{k}\omega_{kj}$ ,

each term of which vanishes identically. By the structure equation

$d\omega_{ij}+\Sigma\omega_{ik}\wedge\omega_{kj}=-\frac{1}{2}\Sigma R_{ijkl}\omega_{k}\wedge\omega_{l}$ ,

we obtain
$R_{ijfi}=c-\sum_{\beta}\lambda^{\beta_{l}}\lambda^{\beta_{j}}=0$ .
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Next, suppose that $h_{ii}^{\alpha}=h_{jj}^{\alpha}$ for any distinct indices $i$ and $j$ and for any
index $\alpha$ . Then the Gauss equation implies

$R_{ijji}=c-\sum_{\alpha}(h_{it}^{\alpha})^{2}=c-\sum_{\alpha}(\lambda_{i}^{\alpha})^{2}\leqq 0$ ,

because of $c\leqq 0$ .
Thus $M$ is of non-positive curvature. $\square $

PROOF OF THEOREM 2. By a theorem due to Koike [10] and Lemmas 6.1
and 6.2 it is seen that $M$ is locally congruent to the product submanifold
$fi^{n_{1}}(c_{1})\times\cdots\times H^{n_{q}}(c_{q})\times R^{m}$ of $R_{q}^{n+q}$ , where $\sum^{q_{r=1}}n_{r}+m=n$ and $1\leqq q\leqq p$ . Then
$M$ can be naturally regarded as the space-like submanifold of $R_{p}^{n+p}$ whose
mean curvature vector is given by (2.1). It is also parallel in the normal
bundle of $M$ in $R_{p}^{n+p}$ . The constant $S_{+}(1)$ and the squared norm $S$ of the
second fundamental form are given by (2.2). Therefore it is seen that we have

$S_{+}(p)+K(p)=-p\sum_{r=1}^{q}n_{r}^{2}c_{r}=S$ ,

which implies $p=q=1$ and $n_{1}=1$ . Accordingly the hyperbolic cylinder $ H^{1}(c_{1})\times$

$R^{n-1}$ of $R_{1}^{n+1}$ is the complete connected space-like hypersurface with constant
mean curvature whose squard norm $S$ attaining the maximal value. $\square $

PROOF OF THEOREM 3. When $p=1$ it is seen by a theorem due to Ki,

Kim and Nakagawa [9] that the hyperbolic cylinder $H^{1}(c_{1})\times H^{n-1}(c_{2})$ is the
complete spacelike hypersurface with constant mean curvature of $H_{1}^{n+I}(c)$

satisfying the given condition.

Suppose next that $p\geqq 2$ . By means of Koike’s theorem and Lemmas 6.1
and 6.2 again, $M$ is locally congruent to the product submanifold $ H^{n_{1}}(c_{1})\times\cdots\times$

$H^{n_{q+1}}(c_{q+1})$ in $fi_{q}^{n+q}(c^{\prime})$ , where $\Sigma^{q_{r}+_{=^{1_{1}}}}n_{r}=n,$ $\Sigma^{q_{r}+_{=}1_{1}}(1/c_{r})=(1/c^{\prime})\geqq(1/c)$ and $H_{q}^{n+q}(c^{\prime})$

is a totally umbilic submanifold of $H_{p}^{n+p}(c)$ . The mean curvature vector of
$M$ in $fi_{q}^{n+q}(c^{\prime})$ is denoted by $h^{\prime}$ , which is parallel in the normal bundle of
$M$ in $fi_{q}^{n+q}(c^{\prime})$ . Then the mean curvature vector $h$ of $M$ of $H_{p}^{n+p}(c)$ is given
by $h=h^{\prime}+h^{\prime\prime}$ , where $h$ “ is the mean curvature vector of $fi_{q}^{n+q}(c^{\prime})$ in $H_{p}^{n+p}(c)$ .
Consequently the mean curvature vector $h$ is parallel in the normal bundle
$N(M)$ and the mean curvature $H$ and the squared norm $S$ of $M$ in $H_{p}^{n+p}(c)$

are given by

$h^{2}=n^{2}H^{2}=n^{2}c-\sum_{r=1}^{q+1}n_{r}^{2}c_{r}$ ,

$S=nc-\sum_{r=1}^{q+1}n_{r}c_{r}$ .



512 Qing-ming CHENG and Soon Meen CHOI

We have $S_{+}(1)\geqq h^{l}-nc$ , because of $c<0$ . So it is seen by Lemma 2.1 that
we obtain

(6.4) $S_{+}(p)+K(p)-S\geqq h^{2}-pnc+(p-1)h^{2}-S=ph^{2}-pnc-S\geqq 0$ ,

where the equality holds if and only if $H=0$ . Accordingly, if we have $S=$

$S_{+}(p)+K(p)$ , then $Ii$ must vanish identically. This implies that Theorem 3
is proved by a theorem due to Ishihara [8]. $\square $
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