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Introduction.

Throughout this paper we assume that all spaces are just topological spaces,
otherwise specified. We start from the following theorem:

THEOREM $0[10]$ . Let $X\times Y$ be piecewise rectangular. Then,

$(^{*})$ $Id(X\times Y)\leqq IdX+IdY$ .
Where In $Z$ for a space $Z$ is a dimension function introduced by B. A. Pasynkov
[9], and we will give its definition in the following section of this paper as
well as the definition of piecewise rectangularity.

COROLLARY $0[10]$ . Let $X\times Y$ be normal, piecewise rectangular, and let each
of $X$ and $Y$ satisfy a finite sum theorem for $Ind$ ($FST(Ind)$ for short). Then we
have

$(^{**})$ $Ind(X\times Y)\leqq lndX+IndY$ .
The proofs for these results have not yet been published. The central ideas
for those were presented by the first author at General Topology and Geometric
Topology Symposium held at Tsukuba in 1990; the simplest case when $X\times Y$

is compact was talked there. Detailed proofs for Theorem $0$ and Corollary $0$

were given also by the first author when he visited Tsukuba in 1991 (see [12]).

On this occasion we discussed the following conjecture:

CONJECTURE. Let $\Pi=X_{1}^{\prime}\times X_{2}.*\in X_{1}^{\prime},$ $X_{1}=X_{1}^{\prime}\backslash \{*\}$ , and the product $\Pi_{0}=$

$X_{1}\times X_{2}$ be piecewise rectangular and satisfy the following condition $(\#)$ .
$(\#)$ Every set $H$ is functionally separated from $\{*\}xX_{2}$ whenever $H$ is

closed in $\Pi$ and $ H\cap(t*\}\times X_{2})=\emptyset$ . Then, we have Id $\Pi\leqq IdX_{1}^{\prime}+IdX_{2}$ .
In this paper we shall prove this conjecture for the following cases:
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THEOREM 1. The conjecture is trure, when $\Pi_{0}\iota s$ reclangular.

THEOREM 2. It is true when it satisfies the following condition $(\#\#)$ as well
as the condition $(\#)$ ;

$(\#\#)$ Id $X_{1}=IdX_{1}^{\prime}$ .
Moreover, we will show the following theorem.

THEOREM 3. Let $\Pi=X_{1}^{\prime}\times X_{2}^{\prime},$ $x_{i}\in X_{i}^{\prime},$ $X_{i}=X_{i}^{\prime}\backslash \{x_{i}\}$ , and the product $\Pi_{0}=$

$X_{1}\times X_{2}$ be piecewise rectangular satisfying the following condition $(\#\#\#)$ ;

$(\#\#\#)$ Every set $H$ is functionally separated from $E_{i}$ whenever $H$ is closed
in $\Pi$ , and $ H\cap E_{i}=\emptyset$ , where $E_{1}=X_{1}^{\prime}\times\{x_{2}\}$ and $E_{2}=\{x_{1}\}\times X_{2^{\prime}}$ . Then, we have
Id $\Pi\leqq IdX_{1}+IdX_{2}$ .

CONVENTIONS. We shall use the following conventions. The set $\partial_{F}U$

denotes the boundary of the set $U$ in $F$. For a subset $A$ of a space $B$ the set
$[A]_{B}$ denotes the closure of $A$ in $B$ . Some Greek letters are used to denote
some families consisting of subsets of a space (in particular, $\omega$ does not mean
the first infinite ordinal).

1. Definitions and Preliminaries.

We start from definitions (for the simplicity we only deal with a product

with two factors, and see $[10, 11]$ for general cases). A subset of a product

space $\Pi=X_{1}\times X_{2}$ is said to be a functionally open rectangle (FORect, for short)

if it is of the form $U_{1}\times U_{2}$ , where each $U_{i}$ is a functionally open in $X_{i}$ . A
clopen (that is, both closed and open) subset of a FORect is called a functionally
open rectangular piece (FORectP, for short). A cover of $\Pi$ by FORect (resp.

FORectP) sets is called functionally open rectangular (FORect, for short) (resp.

functionally open piecewise rectangular (FOPRect, for short).

DEFINITION $0[10]$ . A product $\Pi$ is called piecewise rectangular (resp. rec-
tangular) if each finite functionally open cover has a $\sigma$ -locally finite FOPRect
(resp. FORect) refinement.

Let $\lambda$ and $\omega$ be families of subsets of $X$ . Then $\lambda$ is called finite relative
to $\omega$ if for any $ O\in\omega$ the family $\{F\in\lambda:F\cap 0\neq\emptyset\}$ is finite. $\lambda$ is called uni-
formly locally finite (ULF, for short) if $\lambda$ is finite relative to a functionally open
locally finite (FOLF, for short) cover of $X$ (see [6], and Remark 2).

Let $\lambda$ and $\mu$ be closed families (that is, families of closed subsets) of a
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space $X$ . Then we shall call $\lambda$ breaks $\mu$ if for every $ F\in\mu$ and for any two

closed subsets $A$ and $B$ of $F$, which are functionally separated (FS, for short)

in $X$ , there exists an element $ C\in\lambda$ contained in $F$, which is a partition between
$A$ and $B$ in $F$ (see [9]).

DEFINITION 1 [12]. A family $\lambda^{\prime}$ consiting of subsets of $X$ uniformly
generates a family $\lambda$ if for every $ L\in\lambda$ there is a ULF family $\mu_{L}$ consisting of
closed subsets of some members of $\lambda^{\prime}$ such that $L=\cup\mu_{L}$ .

DEFINITION 2 [9]. We define Id $X=-1$ if and only if $ X=\emptyset$ . We put

Id $X\leqq n$ for $n=0,1,2,$ $\cdots$ , if there are $k+2$ closed families $\sigma_{i},$
$-1\leqq i\leqq k\leqq n$ ,

in $X$ satisfying the following conditions:
a) $\sigma_{-I}=\{\emptyset\},$ $X\in\sigma_{k},$ $\sigma_{i+1}\supset\sigma_{i},$ $-1\leqq i\leqq k-1$ ;
b) $\sigma_{i}$ breaks $\sigma_{i+1}$ ;
c) For any members $A$ and $B$ of $\sigma_{i}$ their union $A\cup B$ is also a member

of $\sigma_{i}$ (in this case we say that the family $\sigma_{i}$ is additive).

d) Any closed subset of a member of $\sigma_{i}$ is also a member of $\sigma_{i}$ (in this
case we say that the family $\sigma_{i}$ is monotone).

The following lemmas are used by the first author to prove Theorem $0$ ,

and those proofs can be seen in [12].

LEMMA 1. Let $C$ and $D$ be disjoint closed subsets of X. Let $\lambda$ be a locally

finite closed cover of $X$ , and assume that for each $ F\in\lambda$ there exists a partition
$P_{F}$ in $F$ between $C\cap F$ and $D\cap F$. Then there exists a partition $P$ in $X$ between
$C$ and $D$ such that

$\cup\{P_{F} : F\in\lambda\}\cup T\supset P$, where

$T=$ { $x\in X:x\in F\cap F^{\prime}$ for some distinct $F$ and $F^{\prime}$ of $\lambda$ }.

LEMMA 2. Let $\mu^{\prime}$ and $\lambda^{\prime}$ be closed families, and $\mu$ and $\lambda$ be the families
uniformly generated by them, respectively. Then, $\lambda$ breaks $\mu$ if $\mu^{\prime}$ is additive and
$\lambda^{\prime}$ breaks $\mu^{\prime}$ .

LEMMA 3. If families $\lambda_{\alpha},$ $\alpha\in A$ , are $ULF$ in $X$ and the family $\mu=\{\cup\lambda_{\alpha}$ :
$\alpha\in A\}$ is also $ULF$ in $X$ , then the whole family $\lambda=\cup\{\lambda_{\alpha}, \alpha\in A\}$ is $ULF$ in $X$

again.

LEMMA 4. Let $C$ and $D$ be $dis$] $oint$ closed subsets of a closed subset $F$ of
$X$ , and let $\omega$ be an open cover of $F$ having the following properties:
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a) Every member of $\omega$ is disjoint from either $C$ or $D$ ;
b) $\omega$ is a union of countably many $ULF$ subfamilie $s\omega_{i}$ satisfying that there

exists a FOLF cover $\Omega$ of $X$ for which the cover $\Omega\wedge F=\{U\cap F;U\in\Omega\}$ refines
the countable cover $\{\cup\omega_{i}\}$ . Then there exists a closed family $\lambda$ , which is $ULF$

in $X$ , satisfying that for each $ L\in\lambda$ there exists $ 0\in\omega$ with $\partial_{F}O\supset L$ , and that the
set $\cup\lambda$ is partition between $C$ and $D$ in $F$.

Using these lemmas we can show the following corollaries.

COROLLARY 1 (Uniformly locally finite sum theorem). Let $X$ be normal and
satisfy $FST(Ind)$ . Then $IndX\leqq n$ if it can be represented as a union of a $ULF$

covering of at most n-dimensional (in the sense of $Ind$) closed subsets.

The following corollary has been proved by the first author for the case
$X$ is paracompact.

COROLLARY 2 (Locally finite sum theorem). Let $X$ be strongly normal (see

the final section for its definition) satisfying $FST(Ind)$ . Then, Corollary 1 holds

for every locally finite closed cover.

COROLLARY 3 [B. A. Pasynkov, unpublished]. Let $G$ be a normal topological

group satisfying $FST(Ind)$ . Then $IndG=locIndG$ .

The following lemma can be quoted from a paper of K. Morita [7].

LEMMA 5. Let $X\supset Q_{\alpha}\supset F_{a}\supset U_{a}$ , and $0_{\alpha}$ and $F_{\alpha}$ be functionally open $(FO$ ,

for short) and functionally closed ( $FC$ , for short) subsets, respectively. Then the
famzly $\{U.\}$ is $ULF$ in $X$ if the family $\{O_{a}\}$ is locally finite in $X$ .

LEMMA 6. Let $S$ be a closed subsets of a space $X$ with following properties:

(a) Every set $H$ is $FS$ from $S$ in $X$ , whenever $H$ is closed in $X$ and is
disjoint from $S$ ;

(b) There exist two closed, monotone, additive familt,es $\lambda$ and $\mu$ in $X$ satisfy-

ing that for any $ F\in\mu$ there exists a functionally open neighborhood (FONbd, for
short) $O$ of $S$ and a $ P\in\lambda$ which is a partion between $0C=C\cap[O]$ and $0D=D\cap$

$[O]$ in $0F=F\cap[O]$ , whenever $C$ and $D$ are closed subsets of $F$ and are $FS$ in $X$ ;
(c) $\lambda^{\prime}$ breaks $\mu^{\prime}$ , where $\lambda^{\prime}$ and $\mu^{\prime}$ are the subfamilies of $\lambda$ and $\mu$ consisting

of all the elements disjoint from $S$ , respectively. Then $\lambda$ breaks $\mu$ .

PROOF. Let $C$ and $D$ be closed subsets in $ F\in\mu$ , which are FS in $X$ . Then,
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we have
d) a FONbd $0$ of $S$ and a $ P_{1}\in\lambda$ such that $P_{1}$ is a partition between $oC$

and $oD$ in $0F$ ;
e) a FONbd $U$ of $S$ such that two sets $[U]$ and $X\backslash O$ are FS in $X$ . Take

$ P_{2}\in\lambda$ which is a partition between $C_{U}=C\backslash U$ and $D_{U}=D\backslash U$ in $F_{U}=F\backslash U$ . Since
$F_{0}=F\backslash O$ and $U_{F}=F,\gamma[U]$ are FS in $X$ , so is also $F_{0}$ and $F_{\partial U}=F\cap\partial U$ . Since
$F_{U}\in\mu^{\prime}$ , there exists a partition $ P_{3}\in\lambda$ between $F_{0}$ and $F_{\partial U}$ in $F_{U}$ .

It is not difficult to show that there exist two disjoint open sets $G_{1}$ and $G_{2}$

in $F$ such that $F\backslash P_{3}=G_{1}\cup G_{2},$ $F_{U}\supset H=G_{1}\cap P_{3},0_{F\supset K=G_{2}\cup P_{3}}$ . Hence, it holds
that $H$ and $K$ are closed, $P_{3}=H\cap K\in\lambda,$ $P_{1}\cap K$ is a partition between $C\cap K$ and
$D\cap K$ in $K$, and that $P_{2}\cap H$ is a partition between $C\cap H$ and $D\cap H$ in $H$.

By Lemma 1 we have a partition $P$ between $C$ and $D$ in $F$ with $ P_{1}\cup P_{\mathfrak{g}}\cup$

$P_{3}\supset P$. Hence, $\lambda$ breaks $\mu$ , and this completes the proof.

2. Proofs of our theorems.

We start from a construction of the following special closed families.
By the definition of Id it is possible to choose closed families $\sigma_{j^{i}},$ $j=-1$ ,

$0,$ $\cdots,$ $n(i),$ $i=1,2$ , in $X_{1}$ and $X_{2}$ such that
(a) $\sigma_{-1^{i}}=\{\emptyset\},$ $X_{1}^{\prime}\in\sigma_{n(1)^{1}},$ $X_{2}\in\sigma_{n(2)^{2}},$ $\sigma_{J+1}^{i}\supset\sigma_{J^{t}},$ $-1\leqq 1\leqq n(i)-1$ ;
(b) $\sigma_{j^{i}}$ breaks $\sigma_{j+1^{i}},$ $-1\leqq j\leqq n(i)-1,$ $i=1,2$ ;
(c) $\sigma_{j^{i}}$ is monotone and additive, $-1\leqq j\leqq n(i),$ $i=1,2$ .
Put $\sigma_{j(1)^{1}}X\sigma_{j(2)^{2}}=\{F^{1}\times F^{2} : F^{i}\in\sigma_{j(i)^{i}}, i=1,2\}$ , and

$\sigma_{-1}=\{\emptyset\}$ , $\sigma_{j}=\cup\{\sigma_{j(1)^{1}}\times\sigma_{j(2)^{2}} : j=j(1)+j(2)\}$

for $0\leqq j\leqq n(1)+n(2)$ .
Let $\sigma_{j^{*}}$ be the family consisting of all finite unions of closed subsets of

elements of the family $\sigma_{j}$ , and $\sigma_{j^{**}}=\{F\in\sigma_{j^{*}} : F\cap S=\emptyset\}$ . Let $\Sigma_{j^{\prime}}$ be the
family uniformly generated by $\sigma_{j^{**}}$ in $\Pi$ , and

$\Sigma_{j}=\Sigma_{j^{\prime}}\cup\sigma_{j^{*}}$ .
The following lemma together with Lemma 6 completes our proof of Theorem
1, since each $\Sigma_{j}$ is obviously additive and monotone, and

$\Sigma_{-1}=\{\emptyset\}$ , $\Pi\in\Sigma_{n(1)+n(8)}$ , $\Sigma_{j+1}\supset\Sigma_{j}$ .
Note that it satisfies the condition (b) in Lemma 6 since $(\#)$ holds and we can
apply Lemma 1, putting $X=F$, for each element $F$ of $\sigma_{j^{**}}$ .

LEMMA 7. $\Sigma_{j-1}^{\prime}$ breaks $\Sigma_{j^{\prime}}$ for $0\leqq j\leqq n(1)+n(2)$ .
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PROOF. By Lemma 2 it is sufficient to prove that $\Sigma_{j-1}^{\prime}$ breaks $\sigma_{f^{**}}$ . Let
$F\in\sigma_{j^{**}}$ . For the sake of simplicity we can assume that $F=G\cup H$, where $G$

and $H$ are closed subsets of rectangles $G^{1}\times G^{2},$ $H^{1}\times H^{2},$ $G^{i}\in\sigma_{j(i)^{i}},$ $H^{i}\in\sigma_{t(i)^{i}}$ ,

$i=1,2$ , respectively, satisfying $j(1)+j(2)=t(1)+t(2)=j$ .

When $j(i)=t(i),$ $i=1,2$ , it reduces to the case when $F$ is a closed subset of
a single rectangle, since $(G^{1}\cup H^{1})\times(G^{2}\cup H^{2})\supset F$ and $G^{i}\cup H^{i}\in\sigma_{j(i)^{i}},$ $i=1,2$ .

When $j(i)\neq t(i),$ $i=1,2$ , then it also reduces to the above case, since $\sigma_{j-1}\ni$

$(G^{1}\cap H^{1})\times(G^{2}\cap H^{2})\supset G\cap H$ and Lemma 1 holds. Thus, let $F\in\sigma_{j^{**}},$ $F^{1}\times F^{2}\supset F$,
$F^{i}\in\sigma_{j(i)^{i}},$ $i=1,2,$ $j(1)+\int(2)=j$ , and let $C,$ $D$ be closed subsets of $F$ which is
$FS$ in $\Pi$ . Using $(\#)$ we have $FO$ sets $W,$ $W_{1}$ and $W_{2}$ and $FC$ sets $H$ and $H_{1}$

in $\Pi$ such that

(1) $\Pi\backslash F\supset W_{2}\supset H\supset W\supset H_{1}\supset W_{1}\supset S$ .

There exist $FO$ sets $O_{C}$ and $O_{D}$ in $\Pi$ such that

(2) $ C\cap O_{C}=\emptyset$ , $ D\cap O_{D}=\emptyset$ and $O_{C}\cup O_{D}=\Pi\backslash H$ .
Since $\Pi_{0}$ is rectangular, there exists a $\sigma$-locally finite FORect family $\omega$ such
that $\omega$ refines the binary cover $\{O_{C}, O_{D}\}$ so that each of its elements is disjoint
from either $C$ or $D$ by (2), and

(3) $\cup\omega=O_{C}\cup O_{D}=\Pi\backslash H$. Let $\omega_{j}=\{O_{a} : \alpha\in A_{j}\}$ be $LF$ in $\Pi_{0}$ , and $\omega=\bigcup_{j\Rightarrow 0}^{\infty}\omega_{j}$ .

Put $O_{\alpha}=O_{\alpha}^{1}\times O_{a}^{2}$ , where $Q_{a}^{i}$ is an $FO$ in $X_{i},$ $i=1,2$ . Let $x\in O_{a}^{2}$ . Then
$(O_{\alpha}^{1}\times\{x\})\cap(W\cap(X_{1}^{\prime}\times\{x\}))=\emptyset$ , since $ H\cap O.1\times\{x\}=\emptyset$ . So that if we take a
continuous function $f:X_{1}\times\{x\}\rightarrow[0,1]$ , with $f^{-1}(0,1$ ] $=O_{\alpha}^{1}\times\{x\}$ , then the
function $f^{\prime}$ , which is equal to $0$ at the point $(*, x)$ and coincides with $f$ on
$X_{1}\times\{x\}$ , is continuous. Hence, $Q_{\alpha}^{1}$ is $FO$ set in $X_{1}^{\prime}$ . Let $f_{\alpha}^{i}$ be a continuous
function from either $X_{1}$

’ or $X_{2}$ to $[0.1]$ such that $O_{\alpha}^{i}=(]_{\alpha^{i}})^{-1}(0,1$ ], respectively.
Let

$F_{\alpha t}^{i}=(f_{\alpha}^{i})^{-1}[1/t, 1],$ $V_{at^{i}}=(f_{\alpha^{i}})^{-1}(1/t, 1$ ]. $t=2,3,$ $\cdots$ . Then, for each set
$F_{\alpha t^{i}}\cap F^{i}$ there exists an open set $G_{\alpha t^{i}}$ in $F^{i}$ such that

(4) $V_{\alpha t+1}^{i}\supset[G_{\alpha t^{i}}]\supset G_{\alpha t^{i}}\supset F_{at^{i}}\cap F^{i}$ , $\partial_{Fi}(G_{\alpha t^{i}})\in\sigma_{j(t)-1}^{i}$ .
Then, by Lemma 5 the families $\nu_{jl}=\{V_{\alpha t} : \alpha\in A_{j}\},$ $j=0,1,2,$ $\cdots,$ $t=2,3,$ $\cdots$ ,

are ULF in $\Pi_{0}$ , since $O_{\alpha}\supset F_{at}\supset[V_{\alpha t}]$ , where

(5) $V_{\alpha i}=V_{\alpha t^{1}}\times V_{al^{2}}$ are $FO$ , and the sets $F_{al}^{1}\times F_{\alpha l^{2}}$ are $FC$ in both spaces
$\Pi$ and $\Pi_{0}$ .

Hence, let $\nu_{jt}$ be finite relative to a FOLF cover $\mu$ of $\Pi_{0}$ . Then, $\nu_{jt}$ is
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ULF in $\Pi$ also, since it is finite relative to the FOLF cover $\{Q\backslash H_{1} : Q\in\mu\}\cup$

$\{W\}$ of $\Pi$ . Obviously, [V] is disjoint from either $C$ or $D$ for every $V\in\nu_{jt}$ .
Hence, so is the set

(6) $G_{\alpha t}=G_{\alpha t}^{1}\times G_{\alpha t^{2}}\subset V_{\alpha t+1}$ , and the family $\gamma_{jt}=\{G_{\alpha t} : \alpha\in A_{j}\}$ is ULF in $\Pi$

by (4) and $\nu_{jt+1}$ is ULF in $\Pi$ .
If $x\in F$ then there exist $j$ and $\alpha\in A_{j}$ such that $x\in F_{\alpha t}$ , and hence $x\in G_{\alpha t}$ .

It follows that the family $\gamma=\cup\{\gamma_{jt} : j\geqq 0, t\geqq 2\}$ covers $F$ consisting of open
sets in $F^{*}=F^{1}\times F^{2}$ . Let $G_{jt}=\cup\gamma_{jt}$ . Then,

(7) $G_{jt}\supset(\cup\nu_{jt})\cap F^{*}$ ,

since $G_{\alpha t^{i}}\supset F_{\alpha t^{i}}\cap F^{i}\supset V_{\alpha t^{i}}\cap F^{i},$ $i=1,2$ , and $G_{\alpha t}\supset V_{\alpha l}\cap F^{*}$ . Because $V_{\alpha t}$ are
$FO$ in $\Pi$ by (5) and the family $\nu_{jt}$ is ULF in $\Pi$ , it holds that the sets $\cup\nu_{jt}$

are $FO$ in $\Pi$ , and that the family $\Omega=\{\cup\nu_{jt} ; j\geqq 0, t\geqq 2\}\cup\{W\}$ is a $FO$ countable
cover of $\Pi$ . Hence, we can assume that $\Omega$ is $LF$, since any $FO$ countable
cover has an $LF$ and $FO$ countable refinement. So that by (6), (7), and Lemma
4 there exists a closed family $\lambda$ , which is ULF in $\Pi$ , such that for each $ L\in\lambda$

there exists $G_{\alpha t}\in\gamma_{jt}$ satisfying that

$L\subset(\partial_{F*}G_{\alpha t})\cap F=F\cap((\partial G_{\alpha l}^{1}\times G_{at}^{2})\cup(G_{\alpha t}^{1}\times\partial G_{\alpha t}^{2}))$ ,

which is an element of $\sigma_{j-1^{**}}$ and that $ P=\cup\lambda$ is a partition between $C$ and $D$

in $F$. Obviously, since the set $P$ is a member of $\Sigma_{j-1}^{\prime}$ , our proof is completed.

COROLLARY 1. The inequality $(^{**})$ is valid when $X\times Y$ is normal, both factor
spaces $X$ and $Y$ satisfy FST(Ind), the one point set $\{^{*}\}$ is closed in $Y$ and $ X\times$

$(Y\backslash \{^{*}\})$ is rectangular.

We will give a proof of Theorem 3. We start from reconstruction of the
following special closed families.

By the definition of Id it is possible to choose closed families $\tau_{j^{i}},$ $j=-1$ ,
$0,$ $\cdots$ , $n(i),$ $i=1,2$ in $X_{i}$ such that

(a) $\tau_{-1}^{i}=\dagger\emptyset$ }, $X_{i}\in\tau_{n(1)^{i}}$ , $\tau_{J+1}^{i}\supset\tau_{j^{i}}$ , $-1\leqq j\leqq n(i)-1$ ;

(b) $\tau_{J^{i}}$ breaks $\tau_{j+1^{i}},$ $-1\leqq j\leqq n(i)-1,$ $i=1,2$ ;
(c-d) $\tau_{j^{i}}$ is monotone and additive, $-1\leqq j\leqq n(i),$ $i=1,2$ .

LEMMA 8. Let $\sigma_{j^{i}}=$ { $F\in\tau_{j^{i}}$ : $F$ is closed in $X_{i^{\prime}}$ and $x_{i}\not\in F$ } for $-1\leqq J\leqq$

$n(i)-1$ , and let $\sigma_{n(i)^{i}}$ be the set of all closed subsets in $X_{i}^{\prime},$ $i=1,2$ . Then, $\sigma_{j^{i}}$

breaks $\sigma_{J+1^{i}}$ in $X_{\iota^{\prime}}$ . Hence, Id $X_{i}^{\prime}\leqq IdX_{i}$ .
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PROOF. It suffices to show it for every element $F\in\sigma_{j^{i}}$ with $x_{i}\in F$. For
given closed subsets $C$ and $D$ of $F$, which are $FS$ in $X_{i}^{\prime}$ , let $f:X_{s^{\prime}}\rightarrow I$ be a
continuous map with $f(D)=0$ and $f(C)=1$ . Then, we can assume that $C$ con-
tains a neighborhood of $x_{i}$ , using the value of $f(x_{t})$ . Hence, by (b) we have
an element $L\in\tau_{j-1}^{i}$ , which is a partition between $C$ and $D$ in $X_{i}$ . It is not
difficult to see that LE $\sigma_{j-1^{i}}$ , and is a partition between $C$ and $D$ in $X_{i}^{\prime}$ . This
completes our proof of this lemma.

Put
$\sigma_{j(1)^{1}}\times\sigma_{j(2)^{2}}=\{F‘ \times F^{2} : F^{i}\in\sigma_{j(i)^{i}}, i=1,2\}$ ,

and
$\sigma_{-1}=\{\emptyset\}$ , $\sigma_{j}=\cup\{\sigma_{j(1)^{1}}\times\sigma_{j(2)^{2}} : j=j(1)+j(2)\}$

for $ 0\leqq$ ] $\leqq n(1)+n(2)$ .
Let $\sigma_{j^{*}}$ be the family consisting of all finite unions of closed subsets of

elements of the family $\sigma_{j}$ , and let $\Sigma_{j}$ be the family uniformly generated by
$\sigma_{j^{*}}$ in $\Pi$ .

Then the following lemma completes our proof of Theorem 3, since each
$\Sigma_{j}$ is obviously additive and monotone, and

$\Sigma_{-1}=\{\emptyset\}$ , $\Pi\in\Sigma_{n(1)+n(2)}$ , $\Sigma_{j+1}\supset\Sigma_{j}$ .

LEMMA 9. $\Sigma_{j-1}$ breaks $\Sigma_{j}$ for $0\leqq j\leqq n(1)+n(2)$ .

PROOF. By the same argument of the proof of Theorem 1 it suffices to
show it for the following case. Let $(x_{1}, x_{2})\in F=F_{1}\times F_{2},$ $F_{i}\in\sigma_{j(t)^{i}},$ $i=1,2,$ $j(1)$

$+j(2)=j$ , and let $C,$ $D$ be closed subsets of $F$ which are $FS$ in $\Pi$ . Then,
take partitions $P_{i}$ between $C_{i}$ and $D_{i}$ in $E_{i}$ , where $C_{i}=C\cap E_{i}$ and $D_{i}\cap E_{i}$ ,
$Q_{i}\in\sigma_{j(i)-1}^{i},$ $P_{1}=Q_{1}\times\{x_{2}\}$ , and $P_{2}=\{x_{1}\}\times Q_{2}$ . Let $K_{i}$ and $H_{i}$ be closed sets in
$F_{i}$ such that

$C_{i}\subset K_{i},$ $D_{i}\subset H_{i}$ , and $K_{i}\cap H_{i}=Q_{i},$ $K_{i}\cap H_{i}=F_{i}$ .
Then, apply Lemma 1 for the cover $\lambda$ consisting four members $F_{k}=A_{1}\times A_{2}$ ,
where each $A_{i}$ is either $K_{i}$ or $H_{i}$ . Note that $T=R_{1}\cup R_{2}\in\Sigma_{j-1}$ , where $R_{1}=$

$Q_{1}\times F_{2},$ $R_{2}=F_{1}\times Q_{2}$ , in this case. Hence, by putting $F=F_{k}$ we can reduce the
general case for the following three special cases.

(i) $F$ is disjoint from the set $E=E_{1}\cup E_{2}$ . In this case we have a partition
$L\in\Sigma_{j-1}$ between $C$ and $D$ in $F$ without any difficulties, since $\Pi_{0}$ is piecewise
rectangular and any ULF family in $F$ is also ULF in $\Pi$ by the condition $(\#\#\#)$ .

(ii) $F$ is disjoint from either $E_{i}$ (say, $E_{1}$), and one of $C$ and $D$ (say, $C$)

is disjoint from $E_{2}$ . In this case, using the condition $(\#\#\#)$ , we can assume
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that $D$ contains a neighborhood of the set $F\cap E_{2}$ in $F$. Then, this case is
reduced to the case (i).

(iii) One of $C$ and $D$ (say, $C$ ) is disjoint from $E_{1}$ and the other (say, $D$)

is disjoint from $E_{2}$ . In this case, using the condition $(\#\#\#)$ , we can assume
that $D$ contains a neighborhood of the set $F\cap E_{1}$ in $F$. Taking a partition
between $C_{2}$ and $D_{2}$ in $E_{2}$ (if necessary), this case is reduced to the case (ii).

Therefore, in all of these cases we have shown that there exists a partition
$L\in\Sigma_{j-1}$ between $C$ and $D$ in $F$, which completes our proof of Theorem 3.

COROLLARY 2. The inequality $(^{**})$ is valid when $\Pi=X\times Y$ is normal, $\Pi_{0}=$

$X_{0}\times Y_{0}$ is open in $\Pi$ , piecewise rectangular normal, both of $X_{0}$ and $Y_{0}$ satisfy
$FST(Ind)$ , and $IndX_{0}=IndX$ and $IndY_{0}=IndY$ , where $X_{0}=X\backslash \{x\}$ and $Y_{0}=$

$Y\backslash \{y\}$ . Without the assumption $IndX_{0}=IndX$ and $IndY_{0}=IndY$ we have the
inequality

$Ind(X\times Y)\leqq IndX_{0}+IndY_{0}$ .

REMARK $0$ . (a) Note that Theorems $0$ and 2 also follow from Theorem 3
by adding isolated points to factor spaces $X$ and $Y$ of a piecewise rectangular
product $X\times Y$ .

(b) Under the following condition $(\#\#)^{\prime}$ we can show Theorem 2 in more
direct way like that in Theorem 1. This case is, however, contained in our
case, since $(\#\#)^{\prime}$ together with Lemma 8 implies the condition $(\#\#)$ .

$(\#\#)^{\prime}$ There exist closed families $\sigma_{i}^{1},$ $-1\leqq i\leqq n(1)$ , consisting of subsets
of $X_{1}^{\prime}$ such that they satisfy the conditions $(a)-(d)$ in Definition 2 with $k=n(1)$

together with the following condition (e).

(e) For every two sets $C$ and $D$ there is a partition $P$ between them in
$F^{\prime}=F\backslash \{^{*}\}$ such that $[P]_{F}\in\sigma_{i-1}^{1}$ , whenever both $C$ and $D$ are closed subsets
of $F^{\prime},$ $FS$ in $X_{1}$ , and $F$ is any element of $\sigma_{i}^{1}$ .

3. Remarks and Examples.

REMARK 1. The notion of (piecewise) rectangularity is due to B. A.
Pasynkov $[9, 10]$ . When we deal with normal spaces, a rectangular product is
nothing but an F-product due to J. Nagata [8]. Hence, in this case the priority
is due to him (all the cases treated in [4] concerning the inequality $(^{**})$ are
included in this case). It is known, however, that there exist normal piecewise
rectangular products which are not rectangular [5, 10, 15, 17] (from the dehni-
tion we see that every rectangular product is piecewise rectangular).
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EXAMPLE $0$ . The Example 1 in [15] is an example which is non rectangular
but satisfies the condition of Theorem 1.

EXAMPLE 1. Without rectangularity even Corollary $0$ does not hold in
general, since it is shown by M. Wage [16] (see also [14]) that there exists a
locally compact perfectly normal product space $X\times Y$ (hence, it satisfies $FST(Ind)$ )

such that $IndX=1ndY=0<Ind(X\times Y)$ .

EXAMPLE 2. Without FST(Ind) even Corollary $0$ does not hold in general,
since it is shown by V. V. Filippov [3] that there exist two compact spaces $X$

and $Y$ such that $IndX=1,$ $lndY=2$ , but $Ind(X\times Y)>3$ .

EXAMPLE 3. The class which satisfy FST(Ind) is sufficiently large, since
all at most l-dimensional normal spaces are included in it from the following

reason: every (locally) finite union of O-dimensional subsets is O-dimensional,

since for every normal space the condition $IndX=0$ and $\dim X=0$ are equivalent.

In Corollary $0$ we assume only that factor spaces must satisfy FST(Ind).

The following example shows that the assumption that the product must satisfy
it is much stronger than ours (see also [13, p. 365]).

EXAMPLE 4. There exist two compact spaces $X$ and $Y$ such that both of
them satisfy FST(Ind), but their product space $X\times Y$ does not.

Let $Z$ be the famous Lokucievskii’s example ( $e$ . $g$ . $[2$ , Example 2.2.13]).

Put $Z=X\cup Y$ and $X\cap Y=I$, where $I$ is the unit interval and both of $X$ and $Y$

are homeomorphic to the following quotient space $K$,

$K=(L\times C)/E$ ,

where $L$ is the one-point (say $*$ ) compactification of the long line $L_{0}$ , and $C$ is
the Cantor set, and $E$ is the equivalence relation on their product $L_{0}\times C$ cor-
responding to the following decomposition of $L\times C$ : Every one-point subset
of $L_{0}\times C$ and the set $\{^{*}\}\times f^{-1}(t)$ , where $t\in I$ and $f:C\rightarrow I$ is the continuous
map from $C$ onto $I$ defined by matching the end points of each interval removed
from $I$ to obtain the Cantor set ($e$ . $g$ . $[2$ , Example 2.2.1]).

Let $r$ be the retraction from $K$ onto $I$ defined by

$r(s, c)=(*, f(c))$ for $(s, c)\in L_{0}\times C$ , and $r(t)=t$ for $t\in I$ .
For each $t\in I$ let

$K_{t}=r^{-1}(t)$ .



Product theorems in dimension theory 69

(1) Note that $\{K_{t} : t\in I\}$ is a decomposition of $K$.
Let $g:X\rightarrow K$ and $h:Y\rightarrow K$ be homeomorphisms. For each $t\in I$ put

$X_{t}=g^{-1}(K_{i}),$ , and $Y_{t}=h^{-1}(K_{l})$ .
Then, let

$Z^{*}=\bigcup_{t\in I}(X_{l}\times\{t\}\cup\{t\}\chi Y_{t})$ , and $I^{*}=\{(t, t):t\in I\}$ .
Define $p:Z\rightarrow Z^{*}$ as follows:

$p(x)=(x, t)$ for $x\in X$ and $x\in X_{t}$ , and $p(y)=(t, y)$ for $y\in Y$ and $y\in Y_{i}$ .
By (1) the above definition is well-defined. We shall show that $p$ is a

homeomorphism. Since it is one to one, it suffices to show that it is continuous.
For any point in $Z\backslash I$ it is easy to see that it is continuous. Hence, we shall
consider a point $t\in I$ . Take any open neighborhood $U$ of $p(t)=(t, t)$ . Then,
there exist two sets $V$ and $W$ , open in $X$ and $Y$ respectively, such that

$(t, t)\in L\cap(V\times W)\subset U$ .
We can also assume that

$r(g(V)\cup h(W))\subset r(g(V\cap W))=r(h(V\cap W))$

by the definition of the retraction $r$ .
Then, the set $G=V\cup W$ is a neighborhood of $t$ in $Z$ and $p(G)\subset U$ . Hence,

$p$ is continuous.
Since $IndX=IndY=1$ , both spaces satisfy $FST(Ind)$ . On the other hand,

their product does not satisfy FST(Ind), since their product contains 2-dimensional
subset $Z^{*}$ , which is a union of two l-dimensional subsets $p(X)$ and $p(Y)$ .

REMARK 2. The notion of ULFness is due to M. Kat\v{e}tov [6]. We can
shown Corollaries 1 and 2, using the following theorem due to him: A normal
spact has the following property $(K)$ if and only if it is strongly normal (that

is, collectionwise normal and countably paracompact).

$(K)$ The notion of LF ness coincides with the notion of ULFness.
It is indicated by K. Morita [7] that the notion of ULFness is effective to

study the covering dimension of nonnormal spaces (see also [5]).

EXAMPLE 5. There exist an LF family which is not ULF. Indeed, let $X$

be the famous Bing’s example [1, Example 5.1.23] which has a discrete family
$\lambda$ consisting of single points which satisfies that there is no discrete family $\mu$

consisting open sets $U$ such that $f\in U$ for each $\{f\}\in\lambda$ . Since we can show
moreover that there is no such locally finite family, $\lambda$ is never ULF from
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Lemma 5.
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