PRODUCT THEOREMS IN DIMENSION THEORY

Dedicated to Professor Y. Kodama on the occasion of his 60 th birthday

By

Boris A. Pasynkov and Kôichi Tsuda

Introduction.

Throughout this paper we assume that all spaces are just topological spaces, otherwise specified. We start from the following theorem:

Theorem 0 [10]. Let $X \times Y$ be piecewise rectangular. Then,

$$
\text { (*) } \quad \operatorname{Id}(X \times Y) \leqq \operatorname{Id} X+\operatorname{Id} Y \text {. }
$$

Where $\operatorname{In} Z$ for a space Z is a dimension function introduced by B. A. Pasynkov [9], and we will give its definition in the following section of this paper as well as the definition of piecewise rectangularity.

Corollary 0 [10]. Let $X \times Y$ be normal, piecewise rectangular, and let each of X and Y satisfy a finite sum theorem for Ind (FST(Ind) for short). Then we have

$$
\text { (**) } \quad \operatorname{Ind}(X \times Y) \leqq \operatorname{Ind} X+\text { Ind } Y .
$$

The proofs for these results have not yet been published. The central ideas for those were presented by the first author at General Topology and Geometric Topology Symposium held at Tsukuba in 1990; the simplest case when $X \times Y$ is compact was talked there. Detailed proofs for Theorem 0 and Corollary 0 were given also by the first author when he visited Tsukuba in 1991 (see [12]). On this occasion we discussed the following conjecture:

Conjecture. Let $\Pi=X_{1}{ }^{\prime} \times X_{2}, * \in X_{1}{ }^{\prime}, X_{1}=X_{1}{ }^{\prime} \backslash\{*\}$, and the product $\Pi_{0}=$ $X_{1} \times X_{2}$ be piecewise rectangular and satisfy the following condition (\#).
(\#) Every set H is functionally separated from $\{*\} \times X_{2}$ whenever H is closed in Π and $H \cap\left(\{*\} \times X_{2}\right)=\varnothing$. Then, we have Id $\Pi \leqq \operatorname{Id} X_{1}{ }^{\prime}+\operatorname{Id} X_{2}$.

In this paper we shall prove this conjecture for the following cases:

Theorem 1. The conjecture is trure, when Π_{0} is rectangular.

Theorem 2. It is true when it satisfies the following condition (\#\#) as well as the condition (\#):

$$
\text { (\#\#) } \operatorname{Id} X_{1}=\operatorname{Id} X_{1}^{\prime} .
$$

Moreover, we will show the following theorem.
Theorem 3. Let $\Pi=X_{1}{ }^{\prime} \times X_{2}{ }^{\prime}, x_{i} \in X_{i}{ }^{\prime}, X_{i}=X_{i}{ }^{\prime} \backslash\left\{x_{i}\right\}$, and the product $\Pi_{0}=$ $X_{1} \times X_{2}$ be piecewise rectangular satisfying the following condition (\#\#\#):
(\#\#\#) Every set H is functionally separated from E_{i} whenever H is closed in Π, and $H \cap E_{i}=\varnothing$, where $E_{1}=X_{1}{ }^{\prime} \times\left\{x_{2}\right\}$ and $E_{2}=\left\{x_{1}\right\} \times X_{2}{ }^{\prime}$. Then, we have Id $\Pi \leqq \operatorname{Id} X_{1}+\operatorname{Id} X_{2}$.

Conventions. We shall use the following conventions. The set $\partial_{F} U$ denotes the boundary of the set U in F. For a subset A of a space B the set $[A]_{B}$ denotes the closure of A in B. Some Greek letters are used to denote some families consisting of subsets of a space (in particular, ω does not mean the first infinite ordinal).

1. Definitions and Preliminaries.

We start from definitions (for the simplicity we only deal with a product with two factors, and see $[10,11]$ for general cases). A subset of a product space $\Pi=X_{1} \times X_{2}$ is said to be a functionally open rectangle (FORect, for short) if it is of the form $U_{1} \times U_{2}$, where each U_{i} is a functionally open in X_{i}. A clopen (that is, both closed and open) subset of a FORect is called a functionally open rectangular piece (FORectP, for short). A cover of Π by FORect (resp. FORectP) sets is called functionally open rectangular (FORect, for short) (resp. functionally open piecewise rectangular (FOPRect, for short).

Definition 0 [10]. A product Π is called piecewise rectangular (resp. rectangular) if each finite functionally open cover has a σ-locally finite FOPRect (resp. FORect) refinement.

Let λ and ω be families of subsets of X. Then λ is called finite relative to ω if for any $O \in \omega$ the family $\{F \in \lambda: F \cap O \neq \varnothing\}$ is finite. λ is called uniformly locally finite (ULF, for short) if λ is finite relative to a functionally open locally finite (FOLF, for short) cover of X (see [6], and Remark 2).

Let λ and μ be closed families (that is, families of closed subsets) of a
space X. Then we shall call λ breaks μ if for every $F \in \mu$ and for any two closed subsets A and B of F, which are functionally separated (FS, for short) in X, there exists an element $C \in \lambda$ contained in F, which is a partition between A and B in F (see [9]).

Definition 1 [12]. A family λ^{\prime} consiting of subsets of X uniformly generates a family λ if for every $L \in \lambda$ there is a ULF family μ_{L} consisting of closed subsets of some members of λ^{\prime} such that $L=\cup \mu_{L}$.

Definition 2 [9]. We define $\operatorname{Id} X=-1$ if and only if $X=\varnothing$. We put Id $X \leqq n$ for $n=0,1,2, \cdots$, if there are $k+2$ closed families $\sigma_{i},-1 \leqq i \leqq k \leqq n$, in X satisfying the following conditions:
a) $\sigma_{-1}=\{\varnothing\}, X \in \sigma_{k}, \sigma_{i+1} \supset \sigma_{i},-1 \leqq i \leqq k-1$;
b) σ_{i} breaks σ_{i+1};
c) For any members A and B of σ_{i} their union $A \cup B$ is also a member of σ_{i} (in this case we say that the family σ_{i} is additive).
d) Any closed subset of a member of σ_{i} is also a member of σ_{i} (in this case we say that the family σ_{i} is monotone).

The following lemmas are used by the first author to prove Theorem 0 , and those proofs can be seen in [12].

Lemma 1. Let C and D be disjoint closed subsets of X. Let λ be a locally finite closed cover of X, and assume that for each $F \in \lambda$ there exists a partition P_{F} in F between $C \cap F$ and $D \cap F$. Then there exists a partition P in X between C and D such that

$$
\begin{gathered}
\cup\left\{P_{F}: F \in \lambda\right\} \cup T \supset P \text {, where } \\
T=\left\{x \in X: x \in F \cap F^{\prime} \text { for some distinct } F \text { and } F^{\prime} \text { of } \lambda\right\} .
\end{gathered}
$$

Lemma 2. Let μ^{\prime} and λ^{\prime} be closed families, and μ and λ be the families uniformly generated by them, respectively. Then, λ breaks μ if μ^{\prime} is additive and λ^{\prime} breaks μ^{\prime}.

Lemma 3. If families $\lambda_{\alpha}, \alpha \in A$, are ULF in X and the family $\mu=\left\{\cup \lambda_{\alpha}\right.$: $\alpha \in A\}$ is also ULF in X, then the whole family $\lambda=\cup\left\{\lambda_{\alpha}, \alpha \in A\right\}$ is ULF in X again.

Lemma 4. Let C and D be disjoint closed subsets of a closed subset F of X, and let ω be an open cover of F having the following properties:
a) Every member of ω is disjoint from either C or D;
b) ω is a union of countably many ULF subfamilies ω_{i} satisfying that there exists a FOLF cover Ω of X for which the cover $\Omega \wedge F=\{U \cap F: U \in \Omega\}$ refines the countable cover $\left\{\cup \omega_{i}\right\}$. Then there exists a closed family λ, which is ULF in X, satisfying that for each $L \in \lambda$ there exists $O \in \omega$ with $\partial_{F} O \supset L$, and that the set $\cup \lambda$ is partition between C and D in F.

Using these lemmas we can show the following corollaries.
Corollary 1 (Uniformly locally finite sum theorem). Let X be normal and satisfy FST(Ind). Then Ind $X \leqq n$ if it can be represented as a union of a ULF covering of at most n-dimensional (in the sense of Ind) closed subsets.

The following corollary has been proved by the first author for the case X is paracompact.

Corollary 2 (Locally finite sum theorem). Let X be strongly normal (see the final section for its definition) satisfying FST(Ind). Then, Corollary 1 holds for every locally finite closed cover.

Corollary 3 [B. A. Pasynkov, unpublished]. Let G be a normal topological group satisfying FST(Ind). Then Ind $G=l o c$ Ind G.

The following lemma can be quoted from a paper of K . Morita [7].
Lemma 5. Let $X \supset Q_{\alpha} \supset F_{\alpha} \supset U_{\alpha}$, and O_{α} and F_{α} be functionally open ($F O$, for short) and functionally closed (FC, for short) subsets, respectively. Then the famuly $\left\{U_{\alpha}\right\}$ is ULF in X if the family $\left\{O_{\alpha}\right\}$ is locally finite in X.

Lemma 6. Let S be a closed subsets of a space X with following properties:
(a) Every set H is FS from S in X, whenever H is closed in X and is disjoint from S;
(b) There exist two closed, monotone, additive families λ and μ in X satisfying that for any $F \in \mu$ there exists a functionally open neighborhood (FONbd, for short) O of S and a $P \in \lambda$ which is a partion between ${ }^{\circ} C=C \cap[O]$ and ${ }^{\circ} D=D \cap$ $[O]$ in ${ }^{\circ} F=F \cap[O]$, whenever C and D are closed subsets of F and are $F S$ in X;
(c) λ^{\prime} breaks μ^{\prime}, where λ^{\prime} and μ^{\prime} are the subfamilies of λ and μ consisting of all the elements disjoint from S, respectively. Then λ breaks μ.

Proof. Let C and D be closed subsets in $F \in \mu$, which are FS in X. Then,
we have
d) a FONbd O of S and a $P_{1} \in \lambda$ such that P_{1} is a partition between ${ }^{\circ} C$ and ${ }^{\circ} D$ in ${ }^{\circ} F$;
e) a FONbd U of S such that two sets [U] and $X \backslash O$ are FS in X. Take $P_{2} \in \lambda$ which is a partition between $C_{U}=C \backslash U$ and $D_{U}=D \backslash U$ in $F_{U}=F \backslash U$. Since $F_{o}=F \backslash O$ and $U_{F}=F \cap[U]$ are FS in X, so is also F_{o} and $F_{\partial U}=F \cap \partial U$. Since $F_{U} \in \mu^{\prime}$, there exists a partition $P_{3} \in \lambda$ between F_{O} and $F_{\partial U}$ in F_{U}.

It is not difficult to show that there exist two disjoint open sets G_{1} and G_{2} in F such that $F \backslash P_{3}=G_{1} \cup G_{2}, F_{U} \supset H=G_{1} \cap P_{3},{ }^{o} F \supset K=G_{2} \cup P_{3}$. Hence, it holds that H and K are closed, $P_{3}=H \cap K \in \lambda, P_{1} \cap K$ is a partition between $C \cap K$ and $D \cap K$ in K, and that $P_{2} \cap H$ is a partition between $C \cap H$ and $D \cap H$ in H.

By Lemma 1 we have a partition P between C and D in F with $P_{1} \cup P_{2} \cup$ $P_{3} \supset P$. Hence, λ breaks μ, and this completes the proof.

2. Proofs of our theorems.

We start from a construction of the following special closed families.
By the definition of Id it is possible to choose closed families $\sigma_{j}{ }^{i}, j=-1$, $0, \cdots, n(i), i=1,2$, in X_{1} and X_{2} such that
(a) $\sigma_{-1}{ }^{i}=\{\varnothing\}, X_{1}{ }^{\prime} \in \sigma_{n(1)}{ }^{1}, X_{2} \in \sigma_{n(2)}{ }^{2}, \sigma_{j+1}{ }^{i} \supset \sigma_{j}{ }^{i},-1 \leqq j \leqq n(i)-1$;
(b) $\sigma_{j}{ }^{i}$ breaks $\sigma_{j+1}{ }^{i},-1 \leqq j \leqq n(i)-1, i=1,2$;
(c) $\sigma_{j}{ }^{i}$ is monotone and additive, $-1 \leqq j \leqq n(i), i=1,2$.

Put $\sigma_{j(1)}{ }^{1} \times \sigma_{j(2)}{ }^{2}=\left\{F^{1} \times F^{2}: F^{i} \in \sigma_{j(i)}{ }^{i}, i=1,2\right\}$, and

$$
\sigma_{-1}=\{\varnothing\}, \quad \sigma_{j}=\cup\left\{\sigma_{j(1)}{ }^{1} \times \sigma_{j(2)}{ }^{2}: j=j(1)+j(2)\right\}
$$

for $0 \leqq j \leqq n(1)+n(2)$.
Let $\sigma_{j}{ }^{*}$ be the family consisting of all finite unions of closed subsets of elements of the family σ_{j}, and $\sigma_{j}{ }^{* *}=\left\{F \in \sigma_{j}{ }^{*}: F \cap S=\varnothing\right\}$. Let $\Sigma_{j}{ }^{\prime}$ be the family uniformly generated by $\sigma_{j}{ }^{* *}$ in Π, and

$$
\Sigma_{j}=\Sigma_{j}{ }^{\prime} \cup \sigma_{j}{ }^{*} .
$$

The following lemma together with Lemma 6 completes our proof of Theorem 1 , since each Σ_{j} is obviously additive and monotone, and

$$
\Sigma_{-1}=\{\varnothing\}, \quad \Pi \in \Sigma_{n(1)+n(2)}, \quad \Sigma_{j+1} \supset \Sigma_{j} .
$$

Note that it satisfies the condition (b) in Lemma 6 since (\#) holds and we can apply Lemma 1, putting $X=F$, for each element F of $\sigma_{j}{ }^{* *}$.

LEMMA 7. $\quad \Sigma_{j-1}{ }^{\prime}$ breaks Σ_{j}^{\prime} for $0 \leqq j \leqq n(1)+n(2)$.

Proof. By Lemma 2 it is sufficient to prove that $\Sigma_{j-1}{ }^{\prime}$ breaks $\sigma_{j}{ }^{* *}$. Let $F \in \sigma_{j}{ }^{* *}$. For the sake of simplicity we can assume that $F=G \cup H$, where G and H are closed subsets of rectangles $G^{1} \times G^{2}, H^{1} \times H^{2}, G^{i} \in \sigma_{j(i)}{ }^{i}, H^{i} \in \sigma_{t(i)}{ }^{i}$, $i=1,2$, respectively, satisfying $j(1)+j(2)=t(1)+t(2)=j$.

When $j(i)=t(i), i=1,2$, it reduces to the case when F is a closed subset of a single rectangle, since $\left(G^{1} \cup H^{1}\right) \times\left(G^{2} \cup H^{2}\right) \supset F$ and $G^{i} \cup H^{i} \in \sigma_{j(i)}{ }^{i}, i=1,2$.

When $j(i) \neq t(i), i=1,2$, then it also reduces to the above case, since $\sigma_{j-1} \ni$ $\left(G^{1} \cap H^{1}\right) \times\left(G^{2} \cap H^{2}\right) \supset G \cap H$ and Lemma 1 holds. Thus, let $F \in \sigma_{j}{ }^{* *}, F^{1} \times F^{2} \supset F$, $F^{i} \in \sigma_{j(i)}{ }^{i}, i=1,2, j(1)+j(2)=j$, and let C, D be closed subsets of F which is $F S$ in Π. Using (\#) we have $F O$ sets W, W_{1} and W_{2} and $F C$ sets H and H_{1} in Π such that

$$
\begin{equation*}
\Pi \backslash F \supset W_{2} \supset H \supset W \supset H_{1} \supset W_{1} \supset S . \tag{1}
\end{equation*}
$$

There exist $F O$ sets O_{C} and O_{D} in Π such that

$$
\begin{equation*}
C \cap O_{C}=\varnothing, \quad D \cap O_{D}=\varnothing \text { and } O_{C} \cup O_{D}=\Pi \backslash H \tag{2}
\end{equation*}
$$

Since Π_{0} is rectangular, there exists a σ-locally finite FORect family ω such that ω refines the binary cover $\left\{O_{C}, O_{D}\right\}$ so that each of its elements is disjoint from either C or D by (2), and
(3) $\cup \omega=O_{C} \cup O_{D}=\Pi \backslash H$. Let $\omega_{j}=\left\{O_{\alpha}: \alpha \in A_{j}\right\}$ be $L F$ in Π_{0}, and $\omega=\bigcup_{j=0}^{\infty} \omega_{j}$.

Put $O_{\alpha}=O_{\alpha}{ }^{1} \times O_{\alpha}{ }^{2}$, where $Q_{\alpha}{ }^{i}$ is an $F O$ in $X_{i}, i=1,2$. Let $x \in O_{\alpha}{ }^{2}$. Then $\left(O_{\alpha}{ }^{1} \times\{x\}\right) \cap\left(W \cap\left(X_{1}{ }^{\prime} \times\{x\}\right)\right)=\varnothing$, since $H \cap O_{\alpha}{ }^{1} \times\{x\}=\varnothing$. So that if we take a continuous function $f: X_{1} \times\{x\} \rightarrow[0,1]$, with $f^{-1}(0,1]=O_{\alpha}{ }^{1} \times\{x\}$, then the function f^{\prime}, which is equal to 0 at the point $(*, x)$ and coincides with f on $X_{1} \times\{x\}$, is continuous. Hence, $Q_{\alpha}{ }^{1}$ is $F O$ set in $X_{1}{ }^{\prime}$. Let $f_{\alpha}{ }^{i}$ be a continuous function from either $X_{1}{ }^{\prime}$ or X_{2} to [0, 1] such that $O_{\alpha}{ }^{i}=\left(f_{\alpha}{ }^{i}\right)^{-1}(0,1]$, respectively. Let
$F_{\alpha}{ }^{i}=\left(f_{\alpha}\right)^{-1}[1 / t, 1], V_{a t}{ }^{i}=\left(f_{\alpha}{ }^{i}\right)^{-1}(1 / t, 1], t=2,3, \cdots$. Then, for each set $F_{\alpha t}{ }^{i} \cap F^{i}$ there exists an open set $G_{\alpha t}{ }^{i}$ in F^{i} such that

$$
\begin{equation*}
V_{\alpha t+1}^{i} \supset\left[G_{\alpha t^{i}}\right] \supset G_{\alpha t^{i}} \supset F_{\alpha t^{i}}^{i} \cap F^{i}, \quad \partial_{F i}\left(G_{\alpha t^{i}}\right) \in \sigma_{j(i)-1}^{i} . \tag{4}
\end{equation*}
$$

Then, by Lemma 5 the families $\nu_{j t}=\left\{V_{\alpha t}: \alpha \in A_{j}\right\}, j=0,1,2, \cdots, t=2,3, \cdots$, are ULF in Π_{0}, since $O_{\alpha} \supset F_{\alpha t} \supset\left[V_{\alpha t}\right]$, where
(5) $\quad V_{\alpha t}=V_{\alpha t}{ }^{1} \times V_{\alpha t}{ }^{2}$ are $F O$, and the sets $F_{\alpha t}{ }^{1} \times F_{\alpha t}{ }^{2}$ are $F C$ in both spaces Π and Π_{0}.

Hence, let $\nu_{j t}$ be finite relative to a FOLF cover μ of Π_{0}. Then, $\nu_{j t}$ is

ULF in Π also, since it is finite relative to the FOLF cover $\left\{Q \backslash H_{1}: Q \in \mu\right\} \cup$ $\{W\}$ of $I I$. Obviously, [V] is disjoint from either C or D for every $V \in \nu_{j t}$. Hence, so is the set
(6) $G_{\alpha t}=G_{\alpha t}{ }^{1} \times G_{\alpha t}{ }^{2} \subset V_{\alpha t+1}$, and the family $\gamma_{j t}=\left\{G_{\alpha t}: \alpha \in A_{j}\right\}$ is ULF in Π
by (4) and $\nu_{j t+1}$ is ULF in Π.
If $x \in F$ then there exist j and $\alpha \in A_{j}$ such that $x \in F_{\alpha t}$, and hence $x \in G_{\alpha t}$. It follows that the family $\gamma=\cup\left\{\gamma_{j t}: j \geqq 0, t \geqq 2\right\}$ covers F consisting of open sets in $F^{*}=F^{1} \times F^{2}$. Let $G_{j t}=\cup \gamma_{j t}$. Then,

$$
\begin{equation*}
G_{j t} \supset\left(\cup_{\nu j t}\right) \cap F^{*}, \tag{7}
\end{equation*}
$$

since $G_{\alpha t}{ }^{i} \supset F_{\alpha t}{ }^{i} \cap F^{i} \supset V_{\alpha t}{ }^{i} \cap F^{i}, i=1,2$, and $G_{\alpha t} \supset V_{\alpha t} \cap F^{*}$. Because $V_{\alpha t}$ are $F O$ in Π by (5) and the family $\nu_{j t}$ is ULF in Π, it holds that the sets $\cup_{\nu j t}$ are $F O$ in Π, and that the family $\Omega=\left\{\cup_{j t}: j \geqq 0, t \geqq 2\right\} \cup\{W\}$ is a $F O$ countable cover of Π. Hence, we can assume that Ω is $L F$, since any $F O$ countable cover has an $L F$ and $F O$ countable refinement. So that by (6), (7), and Lemma 4 there exists a closed family λ, which is ULF in Π, such that for each $L \in \lambda$ there exists $G_{\alpha t} \in \gamma_{j t}$ satisfying that

$$
L \subset\left(\partial_{F *} G_{\alpha t}\right) \cap F=F \cap\left(\left(\partial G_{\alpha t}^{1} \times G_{\alpha t}^{2}\right) \cup\left(G_{\alpha t}^{1} \times \partial G_{\alpha t}^{2}\right)\right),
$$

which is an element of $\sigma_{j-1}{ }^{* *}$ and that $P=\cup \lambda$ is a partition between C and D in F. Obviously, since the set P is a member of $\Sigma_{j-1}{ }^{\prime}$, our proof is completed.

Corollary 1. The inequality (**) is valid when $X \times Y$ is normal, both factor spaces X and Y satisfy FST(Ind), the one point set $\left\{^{*}\right\}$ is closed in Y and $X \times$ $\left(Y \backslash\left\{^{*}\right\}\right)$ is rectangular.

We will give a proof of Theorem 3. We start from reconstruction of the following special closed families.

By the definition of Id it is possible to choose closed families $\tau_{j}{ }^{i}, j=-1$, $0, \cdots, n(i), i=1,2$ in X_{i} such that
(a) $\quad \tau_{-1}{ }^{i}=\{\varnothing\}, \quad X_{i} \in \tau_{n(1)}{ }^{i}, \quad \tau_{j+1}{ }^{i} \supset \tau_{j}{ }^{i}, \quad-1 \leqq j \leqq n(i)-1$;
(b) $\tau_{j}{ }^{i}$ breaks $\tau_{j+1}{ }^{i},-1 \leqq j \leqq n(i)-1, i=1,2$;
(c-d) $\tau_{j}{ }^{i}$ is monotone and additive, $-1 \leqq j \leqq n(i), i=1,2$.
Lemma 8. Let $\sigma_{j}{ }^{i}=\left\{F \in \tau_{j}{ }^{i}: F\right.$ is closed in $X_{i}{ }^{\prime}$ and $\left.x_{i} \notin F\right\}$ for $-1 \leqq j \leqq$ $n(i)-1$, and let $\sigma_{n(i)}{ }^{i}$ be the set of all closed subsets in $X_{i}{ }^{\prime}, i=1,2$. Then, $\sigma_{j}{ }^{i}$ breaks $\sigma_{j+1}{ }^{i}$ in $X_{i}{ }^{\prime}$. Hence, $\operatorname{Id} X_{i}{ }^{\prime} \leqq \operatorname{Id} X_{i}$.

Proof. It suffices to show it for every element $F \in \sigma_{j}{ }^{i}$ with $x_{i} \in F$. For given closed subsets C and D of F, which are $F S$ in $X_{i}{ }^{\prime}$, let $f: X_{i}{ }^{\prime} \rightarrow I$ be a continuous map with $f(D)=0$ and $f(C)=1$. Then, we can assume that C contains a neighborhood of x_{i}, using the value of $f\left(x_{i}\right)$. Hence, by (b) we have an element $L \in \tau_{j-1}{ }^{i}$, which is a partition between C and D in X_{i}. It is not difficult to see that $L \in \sigma_{j-1}{ }^{i}$, and is a partition between C and D in $X_{i}{ }^{\prime}$. This completes our proof of this lemma.

Put
and

$$
\begin{aligned}
& \sigma_{j(1)}{ }^{1} \times \sigma_{j(2)}{ }^{2}=\left\{F^{1} \times F^{2}: F^{i} \in \sigma_{j(i)}^{i}, i=1,2\right\}, \\
& \sigma_{-1}=\{\varnothing\}, \quad \sigma_{j}=\cup\left\{\sigma_{j(1)} \times \sigma_{j(2)}{ }^{2}: j=j(1)+j(2)\right\}
\end{aligned}
$$

for $0 \leqq j \leqq n(1)+n(2)$.
Let $\sigma_{j}{ }^{*}$ be the family consisting of all finite unions of closed subsets of elements of the family σ_{j}, and let Σ_{j} be the family uniformly generated by $\sigma_{j}{ }^{*}$ in Π.

Then the following lemma completes our proof of Theorem 3, since each Σ_{j} is obviously additive and monotone, and

$$
\Sigma_{-1}=\{\varnothing\}, \quad \Pi \in \Sigma_{n(1)+n(2)}, \quad \Sigma_{j+1} \supset \Sigma_{j} .
$$

Lemma 9. $\quad \Sigma_{j-1}$ breaks Σ_{j} for $0 \leqq j \leqq n(1)+n(2)$.
Proof. By the same argument of the proof of Theorem 1 it suffices to show it for the following case. Let ($\left.x_{1}, x_{2}\right) \in F=F_{1} \times F_{2}, F_{i} \in \sigma_{j(i)}{ }^{i}, i=1,2, j(1)$ $+j(2)=j$, and let C, D be closed subsets of F which are $F S$ in Π. Then, take partitions P_{i} between C_{i} and D_{i} in E_{i}, where $C_{i}=C \cap E_{i}$ and $D_{i} \cap E_{i}$, $Q_{i} \in \sigma_{j(i)-1}{ }^{i}, P_{1}=Q_{1} \times\left\{x_{2}\right\}$, and $P_{2}=\left\{x_{1}\right\} \times Q_{2}$. Let K_{i} and H_{i} be closed sets in F_{i} such that

$$
C_{i} \subset K_{i}, D_{i} \subset H_{i}, \quad \text { and } \quad K_{i} \cap H_{i}=Q_{i}, K_{i} \cap H_{i}=F_{i} .
$$

Then, apply Lemma 1 for the cover λ consisting four members $F_{k}=A_{1} \times A_{2}$, where each A_{i} is either K_{i} or H_{i}. Note that $T=R_{1} \cup R_{2} \in \Sigma_{j-1}$, where $R_{1}=$ $Q_{1} \times F_{2}, R_{2}=F_{1} \times Q_{2}$, in this case. Hence, by putting $F=F_{k}$ we can reduce the general case for the following three special cases.
(i) F is disjoint from the set $E=E_{1} \cup E_{2}$. In this case we have a partition $L \in \Sigma_{j-1}$ between C and D in F without any difficulties, since Π_{0} is piecewise rectangular and any ULF family in F is also ULF in Π by the condition (\#\#\#).
(ii) F is disjoint from either E_{i} (say, E_{1}), and one of C and D (say, C) is disjoint from E_{2}. In this case, using the condition (\#\#\#), we can assume
that D contains a neighborhood of the set $F \cap E_{2}$ in F. Then, this case is reduced to the case (i).
(iii) One of C and D (say, C) is disjoint from E_{1} and the other (say, D) is disjoint from E_{2}. In this case, using the condition (\#\#\#), we can assume that D contains a neighborhood of the set $F \cap E_{1}$ in F. Taking a partition between C_{2} and D_{2} in E_{2} (if necessary), this case is reduced to the case (ii). Therefore, in all of these cases we have shown that there exists a partition $L \in \Sigma_{j-1}$ between C and D in F, which completes our proof of Theorem 3.

Corollary 2. The inequality (**) is valid when $\Pi=X \times Y$ is normal, $\Pi_{0}=$ $X_{0} \times Y_{0}$ is open in Π, piecewise rectangular normal, both of X_{0} and Y_{0} satisfy FST (Ind), and Ind $X_{0}=\operatorname{Ind} X$ and Ind $Y_{0}=\operatorname{Ind} Y$, where $X_{0}=X \backslash\{x\}$ and $Y_{0}=$ $Y \backslash\{y\}$. Without the assumption Ind $X_{0}=\operatorname{Ind} X$ and Ind $Y_{0}=$ Ind Y we have the inequality

$$
\operatorname{Ind}(X \times Y) \leqq \operatorname{Ind} X_{0}+\operatorname{Ind} Y_{0}
$$

Remark 0. (a) Note that Theorems 0 and 2 also follow from Theorem 3 by adding isolated points to factor spaces X and Y of a piecewise rectangular product $X \times Y$.
(b) Under the following condition (\#\#)' we can show Theorem 2 in more direct way like that in Theorem 1. This case is, however, contained in our case, since (\#\#)' together with Lemma 8 implies the condition (\#\#).
(\#\#)' There exist closed families $\sigma^{1}{ }_{i},-1 \leqq i \leqq n(1)$, consisting of subsets of $X_{1}{ }^{\prime}$ such that they satisfy the conditions (a)-(d) in Definition 2 with $k=n(1)$ together with the following condition (e).
(e) For every two sets C and D there is a partition P between them in $F^{\prime}=F \backslash\left\{^{*}\right\}$ such that $[P]_{F} \in \sigma^{1}{ }_{i-1}$, whenever both C and D are closed subsets of $F^{\prime}, F S$ in X_{1}, and F is any element of $\boldsymbol{\sigma}^{1}{ }_{i}$.

3. Remarks and Examples.

Remark 1. The notion of (piecewise) rectangularity is due to B. A. Pasynkov [9, 10]. When we deal with normal spaces, a rectangular product is nothing but an F-product due to J. Nagata [8]. Hence, in this case the priority is due to him (all the cases treated in [4] concerning the inequality (**) are included in this case). It is known, however, that there exist normal piecewise rectangular products which are not rectangular [5, 10, 15, 17] (from the definition we see that every rectangular product is piecewise rectangular).

Example 0. The Example 1 in [15] is an example which is non rectangular but satisfies the condition of Theorem 1.

Example 1. Without rectangularity even Corollary 0 does not hold in general, since it is shown by M. Wage [16] (see also [14]) that there exists a locally compact perfectly normal product space $X \times Y$ (hence, it satisfies FST(Ind)) such that $\operatorname{Ind} X=\operatorname{Ind} Y=0<\operatorname{Ind}(X \times Y)$.

Example 2. Without FST(Ind) even Corollary 0 does not hold in general, since it is shown by V. V. Filippov [3] that there exist two compact spaces X and Y such that Ind $X=1$, Ind $Y=2$, but $\operatorname{Ind}(X \times Y)>3$.

Example 3. The class which satisfy FST(Ind) is sufficiently large, since all at most 1-dimensional normal spaces are included in it from the following reason : every (locally) finite union of 0 -dimensional subsets is 0 -dimensional, since for every normal space the condition $\operatorname{Ind} X=0$ and $\operatorname{dim} X=0$ are equivalent.

In Corollary 0 we assume only that factor spaces must satisfy FST(Ind). The following example shows that the assumption that the product must satisfy it is much stronger than ours (see also [13, p. 365]).

Example 4. There exist two compact spaces X and Y such that both of them satisfy FST(Ind), but their product space $X \times Y$ does not.

Let Z be the famous Lokucievskii's example (e.g. [2, Example 2.2.13]). Put $Z=X \cup Y$ and $X \cap Y=I$, where I is the unit interval and both of X and Y are homeomorphic to the following quotient space K,

$$
K=(L \times C) / E,
$$

where L is the one-point (say ${ }^{*}$) compactification of the long line L_{0}, and C is the Cantor set, and E is the equivalence relation on their product $L_{0} \times C$ corresponding to the following decomposition of $L \times C$: Every one-point subset of $L_{0} \times C$ and the set $\{*\} \times f^{-1}(t)$, where $t \in I$ and $f: C \rightarrow I$ is the continuous map from C onto I defined by matching the end points of each interval removed from I to obtain the Cantor set (e.g. [2, Example 2.2.1]).

Let r be the retraction from K onto I defined by

$$
r(s, c)=(*, f(c)) \text { for }(s, c) \in L_{0} \times C, \text { and } r(t)=t \text { for } t \in I .
$$

For each $t \in I$ let

$$
K_{t}=r^{-1}(t) .
$$

(1) Note that $\left\{K_{t}: t \in I\right\}$ is a decomposition of K.

Let $g: X \rightarrow K$ and $h: Y \rightarrow K$ be homeomorphisms. For each $t \in I$ put

$$
X_{t}=g^{-1}\left(K_{t}\right), \quad \text { and } \quad Y_{t}=h^{-1}\left(K_{t}\right) .
$$

Then, let

$$
Z^{*}=\cup_{t \in I}\left(X_{t} \times\{t\} \cup\{t\} \times Y_{t}\right), \quad \text { and } \quad I^{*}=\{(t, t): t \in I\}
$$

Define $p: Z \rightarrow Z^{*}$ as follows:

$$
p(x)=(x, t) \text { for } x \in X \text { and } x \in X_{t} \text {, and } p(y)=(t, y) \text { for } y \in Y \text { and } y \in Y_{t} .
$$

By (1) the above definition is well-defined. We shall show that p is a homeomorphism. Since it is one to one, it suffices to show that it is continuous. For any point in $Z \backslash I$ it is easy to see that it is continuous. Hence, we shall consider a point $t \in I$. Take any open neighborhood U of $p(t)=(t, t)$. Then, there exist two sets V and W, open in X and Y respectively, such that

$$
(t, t) \in L \cap(V \times W) \subset U
$$

We can also assume that

$$
r(g(V) \cup h(W)) \subset r(g(V \cap W))=r(h(V \cap W))
$$

by the definition of the retraction r.
Then, the set $G=V \cup W$ is a neighborhood of t in Z and $p(G) \subset U$. Hence, p is continuous.

Since Ind $X=$ Ind $Y=1$, both spaces satisfy FST (Ind). On the other hand, their product does not satisfy FST(Ind), since their product contains 2-dimensional subset Z^{*}, which is a union of two 1 -dimensional subsets $p(X)$ and $p(Y)$.

Remark 2. The notion of ULFness is due to M. Katětov [6]. We can shown Corollaries 1 and 2, using the following theorem due to him: A normal spact has the following property (K) if and only if it is strongly normal (that is, collectionwise normal and countably paracompact).
(K) The notion of LF ness coincides with the notion of ULFness.
It is indicated by K. Morita [7] that the notion of ULFness is effective to study the covering dimension of nonnormal spaces (see also [5]).

Example 5. There exist an LF family which is not ULF. Indeed, let X be the famous Bing's example [1, Example 5.1.23] which has a discrete family λ consisting of single points which satisfies that there is no discrete family μ consisting open sets U such that $f \in U$ for each $\{f\} \in \lambda$. Since we can show moreover that there is no such locally finite family, λ is never ULF from

Acknowledgement.

The authors express their deeply thanks to the referee for valuable comments and improvements concerning the first version of this paper. The second author would like to express his special thanks to Professors Y. Yajima and M. Tsuda for their constant encouragements.

References

[1] R. Engelking, General Topology, Helderman Verlag, Berlin, 1989.
[2] -, Dimension Theory, North-Holland, Amsterdam, 1978.
[3] V.V. Filippov, On the inductive dimension of the product of bicompacta, Dokl. Akad. Nauk SSSR 202 (1972) 1016-1019=Soviet Math. Dokl. 13 (1972), 250254.
[4] -, On the dimension of topological spaces (in Russian), Fund. Math. 105 (1980), 181-212.
[5] T. Hoshina and K. Morita, On rectangular products of topological spaces, Topology Appl. 11 (1980), 47-57.
[6] M. Katětov, On the extension of locally finite coverings (in Russian), Colloq. Math. 6 (1958), 145-151.
[7] K. Morita, Dimension of general topological spaces, Surveys in General Topology 297-336, Academic Press, 1980.
[8] J. Nagata, Product theorems in dimension theory I, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 15 (1967), 439-448.
[9] B.A. Pasynkov, On the dimension of rectangular products, Dokl. Akad. Nauk SSSS 221 (1975) 291-294=Soviet Math. Dokl. 16 (1975), 344-347.
[10] -, On the monotonicity of dimension, Dokl. Akad. Nauk SSSR 267 (1982) $548-552=$ Soviet Math. Dokl. 26 (1982), 654-658.
[11] -, On dimension theory, I. M. James \& E. Kronheimer (ed.) Aspects of Topology (In memory of Hugh Dowker 1912-1982), London Math. Soc. Lecture Note Ser. 93 (1985), 227-250.
[12] - Lecture Notes in Tsukuba 1991 (to appear).
[13] A. R. Pears, Dimension Theory of general spaces, Cambridge, 1975.
[14] K. Tsuda, An n-dimensional version of Wage's example, Colloq. Math. 49 (1984), 15-19.
[15] ——, Rectangularity versus piecewise rectangularity of product spaces, Canad. Math. Bull. 30 (1987), 49-56.
[16] M. Wage, The dimension of product spaces, Proc. Natl. Acad. Sci. U.S.A. (1978), 4571-4672.
[17] Y. Yajima, Topological games and products III, Fund. Math. 117 (1983), 224-238.

> Chair of General Topology and Geometry Department of Mathematics and Mechanics Moscow State University, Moscow 119899, U.S.S.R.
> Department of Mathematics, Ehime University Matsuyama, 790, Japan

