TSUKUBA ]. MATH.
Vol. 16 No. 2 (1992), 487—494

WEAKLY NORMAL FILTERS AND LARGE CARDLINALS

By
Yoshihiro ABE

0. Introduction.

In this paper, £ denotes an uncountable regular cardinal and A a cardinal
=k. For any such pair, P,A is the set {xCA: |x|<k}.

An “ideal on P.A” is always a “proper, nonprincipal, k-complete, fine ideal
on P.A” unless specified. (An ideal I is fine if for all a<i, {xEPi: a&x}<l.)
For any ideal I, I"=P(P.,A)—1I and I* is the filter dual to I.

DEFINITON. An ideal [ as well as I* are said to be weakly normal iff for
every regressive function f: P,A—4,

Ar<Dx=Pi: fx)<riel®).

The above definition is a translation of Kanamori’s “weak normality” for
filters on & in [5]. There is another weak normality presented by Mignone
[10]. It is known that our notion is Mignone’s weak normality plus some
saturation property and every cfA-saturated normal ideal on P.A has our weak
normality.

£ is said to be A-compact if there is a fine ultrafilter on P,A. If & is A-
compact, P.A carries many fine ultrafilters. Moreover every fine ultrafilter has
a weakly normal fine ultrafilter which is Rudin-Keisler ordering below it. So,
it may be a natural question whether « is large if a weakly normal filter on
P, exists.

In §1, we consider a case where one can say « is large.

Kunen-Paris [7] and Kunen [6] consider the possibility of S(x, %) holding
for various &, 7 where

S(k, n)=There is a k-complete y-saturated ideal on #. §2 is devoted to an
application of their methods to weakly normal ideals on FP4.

Much of our notation is standard, and Jech [4] or [7] should be consulted.

§ 1. r may be strong compact.

For a reader’s convenience, we give a proof of a lemma which appears
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in [2].

LEMMA 1.1. If I is weakly normal, then there is no disjoint family of
cf 2-many sets in I*.

PROOF. Suppose that {A,: a<cfA}CI" is a pairwise disjoint family. Let
{4« a<cfA} be a cofinal increasing sequence in . We can assume that 4,C
{/Z\a} for all a<cfA. Define a regressive function f: P.A—2 so that f”A,={2.}.
Then B={xcP.i: f(x)<7}I* for some r<<A. Now pick a A,>7. By the
definition of f, A.C f"'({2a}) and f~'({2.})NB=0. This contradicts to A,=I".

O

If P.A carries a weakly normal ideal I and cfA<k, I is k-saturated. So, «

is measurable in some inner model. In general, we can say at least £ is not
small.

LEMMA 1.2. (See Matsubara [9]) Let £k=06" and I an ideal on P.A. I} Y<12,
cfr>0 and X=1I*, then X can be decomposed into y-many disjoint I-positive subsets.

THEOREM 1.3. If P.A carries a weakly normal ideal, then k is weakly inac-
cessible.

PROOF. There is no c¢fi-many disjoint sets in I". Hence k is weakly
inaccessible by 1.2 if ¢fA=«x. When c¢fA<k, I is cfA-saturated, and there is no
A-saturated ideal on P.A if £ is a successor cardinal. [

If ¢cfA2 is small, k¥ becomes very large. In fact we have a direct analogue
of Proposition 3.8 in DiPrisco and Marek [3].

THEOREM 1.4. Let 2</*< . If there is a weakly normal ideal on P2,
then k is A-compact.

SKETCH OF PROOF. Assuming that every set X<I®™ can be partitioned
into two disjoint sets in /¥, we construct a tree TC /" with fewer than xk-many
branches such that P,A is the union of the intersections of each branches which
are all sets in I.

So, there is a set XeI* which is not a union of two disjoint sets in I¥.
Then I|X={YCP.i: YNX<I} is a prime ideal and (I|X)* is a x-complete fine
ultrafilter on P.A. [0

COROLLARY 1.5. Suppose that cfA=w and P.A carries a weakly normal ideal.
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Then & is A-compact.
Combining weakly compactness, the method of 1.4 yields following.

THFOREM 1.6. [If k is weakly compact, P.,A carries a k-saturated ideal and

cfA=k, then g is A-compact.

PROOF. Assume that every X<JI* is a disjoint union of two sets in I™.
A tree T with ath level T, is defined as follows.

To={PA} .

For X=T,, the immediate successors of X are two sets in /% such that
X 1is their disjoint union.

For a limit, T,={NS: S is an a-branch}NI".

Since [ is k-saturated, |T,|<k for each a<k. Also every T,+#0 since &
1s inaccessible and I is k-complete.

By the tree property, there is a branch B through T. Let B={A,: a<k}
and A,=A,;\JAL.,. Then {A,.,: a<k} is an almost disjoint family which
contradicts the k-saturation of 1. [

We have shown that & 1s A-compact if there is a weakly normal ideal on
P.2 and one of (a) and (b) is satisfied.

(a) 2<cf/1<lc

(b) « is weakly compact and cfi=k«.

§2. £ may not be very large.

Next we examine the other situation and present some consistency results
such that & is not A-compact although P.A1 bears weakly normal ideals.
1.4 and 1.6 impose limitations on £ and A.

We need several lemmas.

LEMMA 2.1. Let I be weakly normal. If f: X—2 is a regressive function
and X1, then {xeX: f(x)S7}<It for some Y<A.

PROOF. We extend f to g: P.A—A which is also regressive and g|X=/.
Then Y={xcP1: gx)<r}=I* for some y<Aand Z=XNYel*. g|Z=f|Z.
O

This lemma says that our weak normality is stronger than Mignone’s vir-

sion of weak normality.
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LEMMA 2.2. {x: cf(supx)<k}<=I* for every weakly normal ideal.

PROOF. We only have to show that {x:supxex}<I. Then we have {x:
x is cofinal in sup x} =7* and the lemma is proved.

Suppose that {x: supx=x}<=I*. By the previous lemma, there is a 7<2
such that {x: supx<7}<I*. Now {x: xCr+1}<I® contradicting that I is
fine. O

LEMMA 2.3. Suppose that I is weakly normal and a<<min(cfi, k). Then
{x: cf(sup x)>a}=T*.

PROOF. Assume that {x: cf(supx)<a}<I*. Since a<k and [ is k-complete,
there is an a,<a such that A={x: cf(sup x)=aJ=I*. I|A is also weakly
normal and A= (| A)*.

Let {B:|&<a,} be a cofinal increasing sequence in sup x for each x&A.
fe: A—2 can be defined so that B < fe(x)cx. Now, for every £<a, we have
7e<A such that {xeA: f(x)<7: (| A)*. Since ay<a<cfi, r=sup{r:: E<a,}
<A. Then A;={xcA: fe(x)<r} = |A)* for each {<a, and B=N{A;: §<ao}
= | A)*. But sup x<7 for every x< B, which is a contradiction. O

LEMMA 2.4. Let 6>w. Suppose that I is a weakly normal ideal such that
{x&P.A: cf(supx)=0}<I* and P is a 0-c.c. forcing notion in V. Then I
generates a weakly normal ideal | on P.A in the generic extension V[G].

ProOF. In V[G], J is defined by Xe&J* iff YCX for some Y &I*. By
our assumption and 2.2, §<«k. Hence J is an ideal on P.4 extending I.

Let f be a regressive function on P4 in V[G] and f its name always
denoting a regressive function on P.A. In V, for each x&P.4, let A,={acsx:
pf(x)=a for some p=P}.

Since P satisfies the 0 chain condition, |A,.|<d. Hence {x:sup A.<sup x}
eI* because {x: cf(sup x)=0}=I*. Using the weak normality, we have a
7<2 such that B={x:sup A.<r}=I*. For each xB, 1—f(x)<y. Clearly
every condition forces “BC {x: f(x)<7}” and B is a member of J*. 0O

We only had to require {x: c¢f(sup x)=d6}=I", since I|X is also weakly
normal for any XeI”.

We can now show that the inaccessibility of « is necessary in [Theorem 1.4l

THEOREM 2.5. It is consistent that there is a weakly normal ideal on P2
with w<<cfA<k and k is not inaccesstble.
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PrRoOF. Assume that g is inaccessible, w<<cfi<k, and [ is a weakly normal
ideal on P,A in the ground model. We blow up 2¢ to £ by c.c.c. forcing. All
the cardinals and cofinalities are preserved and I generates a weakly normal

ideal in the generic extension by 2.3 and 2.4. [

Two problems remain: Is it posiible that P,A carries a weakly normal
ideal and & is inaccessible (weakly compact) and nevertheless & is not A-compact?
[s it consistent that « is inaccessible, not weakly compact and there is a weakly
ideal on P.A?

For this purpose We state P.A generalization of what Kunen and Paris [7]
did for saturated ideals on x that is measurable in the ground model.

Let G be Q-generic over V and U is a V —k-complete V-weakly normal
filter on P(P.A)N\V which lies in V[G] i.e., We have in V[G]

1) UcPPANV and 0&U

2 XeUANXCYeP(PIINV-YeU

B) {Xa: a<d}eVNPUINI<k—N{X,: a<ldteU

(4) For every a<i, {xeP ANV : asx}sU

(5) For each f=V which is regressive on P,ANV, there is a y<4 such
that {xePANV: f(x)Zr}<U.

In addition, assume that @ satisfies the c¢f4A-c.c. and U is a name such that

[U is a V—k-complete V-weakly normal filter on P(PANV]2@=1. In V,
let F={XCP.A: [XsUE®=1}.

LEMMA 2.6. F is a weakly normal filter on PA.

PROOF. F is clearly a filter on P.A. For its weak normality, let f: P.A—2
regressive. Then, [{x&P.A: f(x)<r}<U for some y<A]B®=]1.

For p=Q, p(7) is the ordinal such that p forces “p(y) is the least ordinal
7 so that {xePA: f(x)Zr}U”.

Set A={r<A: r=p() for some p}.

Since Q is a cfA-c.c. notion, p and p’ are incompatible if p()=p' (), A<
cfA. So, B=sup A<i and [{x: f(x)S<B}=U]*®=1. Hence {x=Pi: f(x)<B}
eF. O

The situation of lemma is familiar in the large cardinal theory.

Suppose that cfA=k, R=P*Q, G is P-generic over V and H is Q-generic
over V[G], [Q is cfA-c.c.]?®=1, and there exists a V[G]—&-complete V[G]-
weakly normal filter on P(P,A)N\V[G] in V[GI[H]. Then we can find a
weakly normal filter on P4 in V[G].



492 Yoshihiro ABE

Assume that V = GCH+k is supercompact, and R is a usual backward
Easton forcing adding a** subsets to every inaccessible a<k. Let G’ be R-
generic over V. Then V[G]k« is supercompact-+there is a normal ultrafilter
on P.A. R=PxQ where [Q adds «** subsets to k]?¥® =1 and V[G]=V[G,][H],
G, is P-generic and H is Q-generic over V[G]. Since V[G,]E2f=k*+2%=at**
for any inaccessible @<k, x is a inaccessible cardinal that is not measurable in
VIG,]. Moreover Q satisfies k*-c.c. in V[G,]. Hence we get a weakly normal
filter on P2 in V[G,] if cfi=«".

However, it is not clear whether & is weakly compact or not in this con-
struction. So, we follow Kunen’s argument in [6].

Again we start from the universe V, where k is supercompact. Without
loss of generality, supercompactness of & is indestructible under kdirected closed
forcing (Ref. [8]). Let V,=V,[G], G is V~generic over P adding a Cohen subset
of k. Since P is k-directed closed, & is supercompact in V,.V,=V [H][K], H
is Q-generic over V,, K is R-generic over V,[H7], where Q is a notion of forc-
ing which adds a £-Suslin tree T, and R is T itself.

V.e=3U : V [H]-weakly normal filter on P(P,A)N\V[H]
and

Vo [H]=Q is the k-c.c.+cfA=k
We have a weakly normal filter in V[ H] and « is inaccessible but not weakly

compact since there is a x-Suslin tree. We have proved;

THEOREM 2.7. Con (3x(x is supercompact)) implies Con (x(x is not weakly
compact-+k is inacessible+ P.A carries a weakly normal filter +cfi=k)).

Next we try the case where & is weakly compact but not measurable. It
is impossible that ¢fA<x by [Theorem 1.4, 1.6. The following lemma is standard.

LEMMA 2.8. Let j: V—>M be a A-supercompact embedding with the critical
point k, PCV,, jJ(P)=P®DQ, G be j(P)-generic. If U is defined as;
phim> XU iff for some P-term X' plpX=X'CP.2
ME®jwe i (X)),

and

then V[GIE=U 1s a V[ G,]-k-complete V[G,]-normal ultrafilter on PANV[G,],
where G, is V-generic on P. (Note that j(p)=p for all p=P.)

PrRooF. U is trivially a proper fine filter. Let 7€V[G,] and z(a)eU for
all a<d<k. For some peG, pVa<d(t'(a)=t(a)sU). So, p forces in M that
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7"2=j(7(@)). (¢’ is a P-term that that every condition forces that /=, (a).)
Then j(P)Ij)=MNa<sj(@(a)). Hence plj”A<j(#’) in M, which says that U
is V[G,]-k-complete.

To show that U is ultra, pick a P-terms X and X° which always denotes
X and P.,A—X respectively for given XeP.ANV[G,]. If X is not in U, then
we can find a pG such that pi——j57A<s(X) since {p: p decides “;7A<7(X)”}
is dense in j(P). So, pls7Asj(X¢ and PA—Xe<U.

For the normality of U, let f: P.A—A be a regressive function in V[G,]
and f be its P-name. Then j(P)I-j(/)G"AH<j”2. VIGIDM[G] and j(f) (j”2)
=Jj(a) for some a<<4 in M[G]. So, “j(f/)(j”A)=j(a)” is forced by some p=G.
In V[G,], let X={x&P.Ai: f(x)=a} and X be its P-name. j(P)l-7j(X)=
{xEPjmj(D): J(fH)(x)=j(@)}. Hence p forces “;”i<;j(X)” and XeU. O

THEOREM 2.9. [f the existence of a supercompact cardinal is consistent, it
is also consistent that k is weakly compact, not measurable, and there is a weakly
normal filter on P.,A with cfA=k™.

PROOF. We follow the proof of Theorem 4.4 in [7]. Let P be a forcing
notion adding one generic subset to each inaccessible cardinal less than «.
7:V—M is an elementary embedding with the critical point # and M is closed
under 2%-sequences. Note that c¢fi=«*. We can furthere assume that 2:>2.

J(P)=PPBOPR, where Q adds a subset to £ and R treats inaccessibles
between «£ and j(x) in M. So, Q satisfies the g*-c.c. and R is A*-closed. Let
Gi, Gy, G be V-generic over P, Q, R respectively. By the lemma, we have a
VIG.]-k-complete V[G,]-normal ultrafilter on P,ANV[G,] in VLG, XG;X Gs].

P(P2INV[G,XG3] = P(P.ANVLG,] since R is A*-closed and A=(1<%)V=
(2<IC)V[G1]:(2<K)V[G1><G3]'

Now, U is a V[G,XGs]-k-complete V[ G, X G;]-normal ultrafilter on P(P.A)N
VIG:XGs] in VG, XG,XGs].

Since @ is £*-c.c., we can find a weakly normal filter on P2 in V[G,XG,]
using Lemma 2.6. It is known that £ is weakly compact but not measurable
in V[G,XGs]. O

Recent work of Abe and Matsubara show that weakly normal filters on
P2 exist if there is a precipitous ideal / with no pairwis disjoint family of
c¢fA-many sets in I™.
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