FOURTH ORDER SEMILINEAR PARABOLIC EQUATIONS

By

Tomasz Deotko

1. Introduction.

The aim of this paper is to give a simple proof of the existence of a smooth solution to the semilinear parabolic equation with fourth order elliptic operator:

$$
\begin{equation*}
u_{t}=-\varepsilon^{2} \Delta^{2} u+f\left(t, x, u, u_{x}, u_{x x}\right)=: L(t, x, u), \tag{1}
\end{equation*}
$$

$x \in \Omega \subset R^{n}, \Omega$ is a bounded domain, $t \in\left[0, T_{\max }\right), T_{\max } \leqq+\infty$, where $\Delta^{2}=\Delta \cdot \Delta$, u_{x} is a vector of partial derivatives $\left(u_{x_{1}}, \cdots, u_{x_{n}}\right)$ and $u_{x x}$ stands for the Hessian matrix $\left[u_{x_{i} x_{j}}\right], i, j=1, \cdots, n$. We consider (1) together with initial-boundary conditions

$$
\begin{gather*}
u(0, x)=u_{0}(x), \quad x \in \Omega, \tag{2}\\
\frac{\partial u}{\partial n}=\frac{\partial(\Delta u)}{\partial n}=0 \quad \text { when } \quad x \in \partial \Omega .
\end{gather*}
$$

Schematically we may write (3) as $B_{1} u=B_{2} u=0$.
In recent years a rapidly growing interest has been evinced in special problems such as the Cahn-Hilliard or the Kuramoto-Sivashinsky equations covered by our general form (1). Recently weak solutions for these special problems were considered in Temam's monograph [12]. The methods used here are an extension of those in previous papers [5, 6] devoted to the study of second order equations. General scheme of our proof of local existence (construction of the set X, considerations following (19)) is similar to the classical proof of the Picard theorem for solutions of ordinary differential equations.

2. Motivation.

We have two tasks in this paper. In Part I we prove local in time classical solvability of (1)-(3). We cannot expect global (that is in an arbitrarily large time interval) solvability of (1)-(3) under the weak assumption of local Lipschitz continuity of the nonlinear term f only (because of the possible rapid growth

[^0]of f with respect to u, u_{x} or $u_{x x}$. However, the technique and estimates developed in reaching our first task allow immediate verification in Part II for a special problem (Cahn-Hilliard or Kuramoto-Sivashinsky equations) of global Lipschitz continuity of its specific nonlinearities, which in turn guarantees global solvability of this problem. Using our technique it is possible (see e.g. [6]) to find effective estimates of the life time of solutions to various problems with blowing-up solutions, blowing-up derivatives, etc.. The last may be of special interest for the numerical calculations as an indication of how long the solution of the approximated problem exists.

3. Assumptions.

Let us assume that $\partial \Omega \in C^{4+\mu}$ with some $\mu \in(0,1)$, the function f is locally Lipschitz continuous with respect to its arguments $t, u, u_{x_{i}}, u_{x_{i} x_{j}}(i, j=1, \cdots, n)$ and locally Hölder continuous with respect to x (exponent μ) in the set $[0, T] \times \bar{\Omega} \times R^{1+n+n^{2}}$. When $n>3$, for existence of the Hölder solution to (1)-(3) we need additionally to assume that the partial derivatives $f_{t}, f_{u}, f_{u_{x_{i}}}, f_{u_{x_{i} x_{j}}}$ fulfill the assumptions just mentioned for f (here and in what follows we use the simplified notation for partial derivatives, e.g. f_{t} denotes $\left.\partial f / \partial t\right)$. By "Hölder solution" of (1)-(3) we mean the classical solution of the problem being Hölder continuous together with all the derivatives appearing in (1). The initial function $u_{0} \in C^{4+\mu}(\bar{\Omega})$ fulfills the compatibility conditions required for a smooth solution :

$$
\frac{\partial u_{0}}{\partial n}=\frac{\partial\left(\Delta u_{0}\right)}{\partial n}=0 \quad \text { for } x \in \partial \Omega,
$$

moreover, when $n>3$

$$
\frac{\partial L\left(0, x, u_{0}\right)}{\partial n}=\frac{\partial\left(\Delta L\left(0, x, u_{0}\right)\right)}{\partial n}=0 \quad \text { for } x \in \partial \Omega
$$

4. Basic estimates and inequalities.

It is well known that a system ($\Delta^{2},\left\{B_{1}, B_{2}\right\}, \Omega$) defines a "regular elliptic boundary value problem" in the sense of [7], p. 76 also [11], pp. 165, 221, 273. Moreover, our considerations will remain valid for boundary conditions other than (3); e.g. for the Dirichlet condition:

$$
B_{1}^{\prime} u \equiv u=0, \quad B_{2}^{\prime} u \equiv \frac{\partial u}{\partial n}=0 \quad \text { on } \partial \Omega,
$$

The system ($\Delta^{2},\left\{B_{1}^{\prime}, B_{2}^{\prime}\right\}, \Omega$) also defines a regular elliptic boundary value
problem. It is known ([7], p. 75), that for such problems the Calderon-Zygmund estimates are valid i.e.:

$$
\begin{equation*}
\underset{1<p<\infty}{\forall} \underset{c>0}{\exists}\|v\|_{W^{4}, p}(\Omega) \leqq c\left(\left\|\Delta^{2} v\right\|_{L^{p}(\Omega)}+\|v\|_{L^{p}(\Omega)}\right), \tag{4}
\end{equation*}
$$

where v is an arbitrary $C^{4}(\bar{\Omega})$ function satisfying homogeneous boundary conditions; $B_{1} v=B_{2} v=0$ on $\partial \Omega$. We need a version of such an estimate valid for second order elliptic operators (known also [9] as "the second fundamental inequality for elliptic operators"):

$$
\begin{equation*}
\|v\|_{W^{2, p}(\Omega)} \leqq c_{p, r}\left(\|\Delta v\|_{L^{p}(\Omega)}+\|v\|_{L^{r}(\Omega)}\right) \tag{5}
\end{equation*}
$$

where $q \geqq 1, p>1, v \in W^{2, p}(\Omega)$ and $\partial v / \partial n=0$ on $\partial \Omega$. The. second terms on the right sides of (4), (5) will be replaced by $|\bar{v}|=\left||\Omega|^{-1} \int_{\Omega} v(x) d x\right|$.

Further, we need a version of the interpolation inequality for intermediate derivatives [1], p. 75: For $\Omega \subset R^{n}$ having the uniform cone property, $\varepsilon_{0}>0$ fixed, there exists a constant $K=K\left(\varepsilon_{0}, m, \Omega\right)$ for every $v \in W^{m, 2}(\Omega)$, such that

$$
\begin{equation*}
\underset{0<s \leq \varepsilon_{0}}{\forall} \underset{0 \leq j \leq m-1}{\forall}|v|_{j, 2}^{2} \leqq \varepsilon^{\prime}|v|_{m, p}^{2}+C_{\varepsilon^{\prime}}|v|_{0, p}^{2} \tag{6}
\end{equation*}
$$

where $|v|_{j, 2}=\left\{\sum_{|\alpha|=j} \int_{\Omega}\left|D^{\alpha} v\right|^{2} d x\right\}^{1 / 2}, \varepsilon^{\prime}=2 K^{2} \varepsilon^{2}$ and $C_{\varepsilon^{\prime}}=2 K^{2} \varepsilon^{-(2 j / m-j)}$. We also claim an estimate ([1], p. 108);

$$
\begin{equation*}
\underset{c>0}{\exists} \underset{v \in W^{1}, p(\Omega)}{\forall}\|v\|_{L^{\infty}(\Omega)} \leqq C\|v\|_{W^{1}, p(\Omega)}, \quad p l>n, \tag{7}
\end{equation*}
$$

where $\Omega \subset R^{n}$ has the cone property. Finally ([8], p. 37), when $\partial \Omega \in C^{m}$, then

$$
\begin{equation*}
\|v\|_{W^{k}, p(\Omega)} \leqq C^{\prime}\|v\|_{W^{m, q(\Omega)}}^{\theta}\|v\|_{L^{r}(\Omega)}^{1-\theta}, \tag{8}
\end{equation*}
$$

with $p \geqq q, p \geqq r, 0 \leqq \theta \leqq 1$ and $k-n / p \leqq \theta(m-n / q)-(1-\theta) n / r$.

Part I. General theory.

5. Local solvability of the problem (1)-(3).

Let us note that, due to Lipschitz continuty of f, uniqueness of the Hölder (and weaker) solution of (1)-(3) is guaranteed. The proof, in which we consider the difference of two solutions, is very similar to that of Lemma 2 and will be omitted.

We define the range of arguments of the nonlinear function f; let $t \geqq 0$, $x \in \bar{\Omega}, v \in R, p=\left(p_{1}, \cdots, p_{n}\right) \in R^{n}, q=\left[q_{i j}\right] \in R^{n^{2}}$ and set

$$
\begin{equation*}
X:=\left\{(t, x, v, p, q) ; t \in[0, T], x \in \bar{\Omega},\left(|v|^{2}+\sum_{i}\left|p_{i}\right|^{2}+\sum_{i, j}\left|q_{i j}\right|^{2}\right)^{1 / 2} \leqq R\right\} \tag{9}
\end{equation*}
$$

where T and R are fixed positive numbers. The expression bounded in (9) by R corresponds, for the composite function $f\left(t, x, u, u_{x}, u_{x x}\right)$ in (1), to $W^{2, \infty}(\Omega)$ norm of u. Let us denote the Lipschitz constants, inside X, for f with respect to $t, v, p_{i}, q_{i j}(i, j=1, \cdots, n)$ by $L_{1}, L_{3}, L_{4}, L_{5}$ respectively (e.g. L_{5} is suitable for each $\left.q_{i j}, i, j=1, \cdots, n\right)$. Also let $|f(t, x, 0,0,0)| \leqq N$ for $t \in[0, T], x \in \bar{\Omega}$.

We shall start with the formulation of Lemma 1 necessary to present the main result of Part I; Theorem 1. Because the proof of this lemma is very technical, it will be left until the Appendix.

Lemma 1. As long as the Hölder solution of (1)-(3) remains in X, the following estimates hold; when the dimension $n \leqq 3$, then

$$
\begin{equation*}
\|u(t, \cdot)\|_{W^{2}, \infty(\Omega)}^{2} \leqq \nu\left(\int_{\Omega} u_{t}^{2} d x+N^{2}|\Omega|\right)+C_{\nu} \int_{\Omega} u^{2} d x \tag{10}
\end{equation*}
$$

also

$$
\begin{equation*}
\|u(t, \cdot)\|_{W^{2},(2 n / n-2)(\Omega)}^{2} \leqq \nu\left(\int_{\Omega} u_{t}^{2} d x+N^{2}|\Omega|\right)+C_{\nu} \int_{\Omega} u^{2} d x \tag{11}
\end{equation*}
$$

for the space dimension $n \geqq 4$. Here $\nu \in\left(0, \nu_{0}\right]$ (ν_{0} given in (55)), C_{ν} increases when ν decreases and $|\Omega|$ denotes the Lebesgue measure of Ω.

We are now ready to formulate:
Theorem 1. For two arbitrary positive numbers r, R and initial function u_{0} satisfying the condition

$$
\begin{equation*}
\nu\left[\int_{\Omega} L^{2}\left(0, x, u_{0}\right) d x+N^{2}|\Omega|\right]+C_{\nu} \int_{\Omega} u_{0}^{2}(x) d x \leqq r^{2}<R^{2} \tag{12}
\end{equation*}
$$

(the constants ν and C_{ν} were chosen in Lemma 1) there is a time $T_{0}, 0<T_{0} \leqq T$, such that the Hölder solution of (1)-(3) corresponding to u_{0} exists at least until the time T_{0}.

Comment. Condition (12) defines certain neighbourhood of the zero function in $W^{2, \infty}(\Omega)$ to which u_{0} should belong. When u_{0} has too large norm we shall transform the problem (1)-(3) onto equivalent one for the new unknown function $v:=u-u_{0}$;

$$
v_{t}=-\varepsilon^{2} \Delta^{2} v+\bar{f}\left(t, x, v, v_{x}, v_{x x}\right)
$$

with $\bar{f}\left(t, x, v, v_{x}, v_{x x}\right):=-\varepsilon^{2} \Delta^{2} u_{0}+f\left(t, x, v+u_{0},\left(v+u_{0}\right)_{x},\left(v+u_{0}\right)_{x x}\right)$ and homogeneous (zero) initial and boundary conditions corresponding to (2), (3). The estimate (12) for the transformed problem reads

$$
\begin{equation*}
\nu\left\{\int_{\Omega}\left[-\varepsilon^{2} \Delta^{2} u_{0}+f\left(0, x, u_{0}, u_{0 x}, u_{0 x x}\right)\right]^{2} d x+N^{2}|\Omega|\right\} \leqq r^{2}<R^{2} \tag{12'}
\end{equation*}
$$

and is evidently fulfilled, provided $\nu>0$ is chosen sufficiently small. All the results obtained for u and (1)-(3) stay valid for v and the transformed problem.

The proof of Theorem 1 is divided into several steps. We start with two simple a priori estimates for $\|u(t, \cdot)\|_{L^{2}(\Omega)}$ and $\left\|u_{t}(t, \cdot)\right\|_{L^{2}(\Omega)}$ valid while u remains in X.

Lemma 2 (First a priori estimate). As long as u remains in X, we have an estimate

$$
\begin{equation*}
\int_{\Omega} u^{2}(t, x) d x \leqq e^{c t}\left[\int_{\Omega} u_{0}^{2}(x) d x+\frac{N|\Omega|}{c}\left(1-e^{-c t}\right)\right], \tag{13}
\end{equation*}
$$

$c=c\left(L_{3}, L_{4}, L_{5}, N, \varepsilon\right)$ being a constant.
Proof. Multiplying (1) by u and integrating over Ω, we get:

$$
\frac{1}{2} \frac{d}{d t} \int_{\Omega} u^{2} d x=-\varepsilon^{2} \int_{\Omega} \Delta^{2} u u d x+\int_{\Omega} f u d x
$$

Integreting by parts, noting (3)

$$
-\varepsilon^{2} \int_{\Omega} \Delta^{2} u u d x=-\varepsilon^{2} \int_{\Omega}(\Delta u)^{2} d x
$$

from the Lipschitz continuity of f inside X and the Cauchy inequality we find:

$$
\begin{align*}
& \int_{\Omega} f\left(t, x, u, u_{x}, u_{x x}\right) u d x \tag{14}\\
& =\int_{\Omega}\left[f\left(t, x, u, u_{x}, u_{x x}\right)-f\left(t, x, 0, u_{x}, u_{x x}\right)+f\left(t, x, 0, u_{x}, u_{x x}\right)\right. \\
& \left.\quad-f\left(t, x, 0,0, u_{x x}\right)+\cdots+f(t, x, 0,0,0)\right] u d x \\
& \leqq \frac{\gamma}{2}\left[L_{4} \int_{\Omega} \sum_{i} u_{x_{i}}^{2} d x+L_{5} \int_{\Omega} \sum_{i, j} u_{x_{i} x_{j}}^{2} d x\right] \\
& \quad+\left[L_{3}+\frac{N}{2}+\frac{L_{4} n}{2 \gamma}+\frac{L_{5} n^{2}}{2 \gamma}\right] \int_{\Omega} u^{2} d x+\frac{N}{2}|\Omega| .
\end{align*}
$$

Estimating the first term on the right side of (14) through (5) with $p=r=2$, and choosing $\gamma=\gamma_{0}$ sufficiently small that

$$
c_{2,2}^{2} \gamma_{0} \max \left\{L_{4}, L_{6}\right\}=\varepsilon^{2},
$$

we finally get

$$
\frac{1}{2} \frac{d}{d t} \int_{\Omega} u^{2} d x \leqq\left[L_{3}+\frac{N}{2}+\frac{L_{4} n}{2 r_{0}}+\frac{L_{5} n^{2}}{2 r_{0}}+\varepsilon^{2}\right] \int_{\Omega} u^{2} d x+\frac{N}{2}|\Omega|,
$$

which is equivalent to (13). The proof is completed.

We proceed to the next a priori estimate:

Lemma 3 (Second a priori estimate). As long as the solution u remains in X;

$$
\begin{equation*}
\int_{\Omega} u_{t}^{2}(t, x) d x \leqq\left[\int_{\Omega} L^{2}\left(0, x, u_{0}\right) d x+\frac{c_{2}}{c_{1}}\left(1-e^{-c_{1} t}\right)\right] e^{c_{1} t} \tag{15}
\end{equation*}
$$

where $c_{1}=c_{1}\left(L_{3}, L_{4}, L_{5}, \varepsilon\right)$ and $c_{2}=c_{2}\left(L_{1}, \varepsilon\right)$ is proportional to c_{1}^{-1}.
Proof. The difference quotient $u_{h}(t, x)=h^{-1}(u(t+h, x)-u(t, x))(h>0$ is fixed) solves the equation :

$$
\begin{equation*}
u_{n t}=-\varepsilon^{2} \Delta^{2} u_{h}+h^{-1}\left[\left.f\right|_{t=t+h}-\left.f\right|_{t=t}\right] . \tag{16}
\end{equation*}
$$

Multiplying (16) by u_{h}, integrating over Ω and by parts, we find that:

$$
\begin{aligned}
\frac{1}{2} & \frac{d}{d t} \int_{\Omega} u_{n}^{2} d x=-\varepsilon^{2} \int_{\Omega}\left(\Delta u_{h}\right)^{2} d x \\
& +h^{-1} \int_{\Omega}\left[f\left(t+h, x, u(t+h, x), u_{x}(t+h, x), u_{x x}(t+h, x)\right)\right. \\
& -f\left(t, x, u(t+h, x), u_{x}(t+h, x), u_{x x}(t+h, x)\right)+\cdots \\
& \left.-f\left(t, x, u(t, x), u_{x}(t, x), u_{x x}(t, x)\right)\right] u_{n} d x \\
\leqq & -\varepsilon^{2} \int_{\Omega}\left(\Delta u_{h}\right)^{2} d x+\frac{\gamma}{2}\left[L_{4} \int_{\Omega} \sum_{i} u_{h x_{i}}^{2} d x+L_{5} \int_{\Omega} \sum_{i, j} u_{h x_{i} x_{j}}^{2} d x+L_{1}^{2}|\Omega|\right] \\
& +\frac{1}{2 \gamma}\left(1+L_{3}+L_{4}+L_{5}\right) \int_{\Omega} u_{n}^{2} d x,
\end{aligned}
$$

making use of the Lipschitz conditions and Cauchy inequality and, in particular, an estimate:

$$
\begin{aligned}
& h^{-1} \int_{\Omega}\left[f\left(t+h, x, u(t+h, x), u_{x}(t+h, x), u_{x x}(t+h, x)\right)\right. \\
& \left.\quad-f\left(t, x, u(t+h, x), u_{x}(t+h, x), u_{x x}(t+h, x)\right)\right] u_{h} d x \\
& \leqq \\
& \leqq \frac{\gamma}{2} \int_{\Omega} L_{1}^{2} d x+\frac{1}{2 \gamma} \int_{\Omega} u_{n}^{2} d x=\frac{\gamma}{2} L_{1}^{2}|\Omega|+\frac{1}{2 \gamma} \int_{\Omega} u_{n}^{2} d x .
\end{aligned}
$$

Noting that u_{h} fulfils the same boundary conditions as u did, by (5), for $\gamma=\gamma_{0}$ we find that

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} u_{h}^{2}(t, x) d x \leqq \gamma_{0}^{-1}\left(1+L_{3}+L_{4}+L_{5}+\gamma_{0} \varepsilon^{2}\right) \int_{\Omega} u_{h}^{2}(t, x) d x+\gamma_{0} L_{1}^{2}|\Omega| \tag{17}
\end{equation*}
$$

which leads to an estimate

$$
\begin{equation*}
\int_{\Omega} u_{h}^{2}(t, x) d x \leqq\left[\int_{\Omega} u_{\hbar}^{2}(0, x) d x+\frac{c_{2}}{c_{1}}\left(1-e^{-c_{1} t}\right)\right] e^{c_{1} t}, \tag{18}
\end{equation*}
$$

with $c_{1}=\gamma_{0}^{-1}\left(1+L_{3}+L_{4}+L_{5}+\gamma_{0} \varepsilon^{2}\right), c_{2}=\gamma_{0} L_{1}^{2}|\Omega|$. Passing in (18) with h to 0^{+}, noting that for the smooth solution we consider u_{h} tends to u_{t} when $h \rightarrow 0^{+}$and $u_{t}(0, x)$ will be found from (1) with $t=0$, we justify (15). The proof is completed.

For the time being we restrict our considerations to space dimension $n \leqq 3$, higher dimensions will be treated in the Appendix. For $n \leqq 3$ we will now specify the value T_{0} mentioned in the formulation of Theorem 1.

In the definition (9) of X we have introduced the time interval [$0, T$], for which the Lipschitz constants for f were chosen. Next, from Lemmas 2, 3 we have increasing with t estimates (13), (15), which together with (10) in Lemma 1 give:

$$
\begin{align*}
& \|u(t, \cdot)\|_{W^{2}, \infty(\Omega)}^{2} \leqq \nu\left[\int_{\Omega} u_{t}^{2} d x+N^{2}|\Omega|\right]+C_{\nu} \int_{\Omega} u^{2} d x \tag{19}\\
& \leqq \nu\left[\left(\int_{\Omega} L^{2}\left(0, x, u_{0}\right) d x+\frac{c_{2}}{c_{1}}\left(1-e^{-c_{1} t}\right)\right) e^{c_{1} t}+N^{2}|\Omega|\right] \\
& \quad+C_{\nu} e^{c t}\left[\int_{\Omega} u_{0}^{2}(x) d x+\frac{N|\Omega|}{c}\left(1-e^{-c t}\right)\right] .
\end{align*}
$$

The estimate (19) is valid as long as u remains in X. But the right side of (19) increases with t, starting for $t=0$ from a value not exceeding r^{2} (compare (12)). Defining T_{0} as equal to $\min \{T, \tau\}$, where τ is the time for which the right side of (19) reaches the value R^{2}, we are sure that $u(t, \cdot)$ remains in X for $t \leqq T_{0}$ and $n \leqq 3$. Moreover, the composite function $f\left(t, x, u, u_{x}, u_{x x}\right)$ is uniformly Lipschitz continuous (constants $L_{1}, L_{3}, L_{4}, L_{5}$) and bounded in $Q_{T_{0}}=$ $\left[0, T_{0}\right] \times \bar{\Omega}$.

The remaining part of the proof of Theorem 1 for $n \leqq 3$ is based on estimates of solutions of linear $2 b$-parabolic equations (here $b=2$) in $W_{q}^{m, 2 b m}\left(Q_{T_{0}}\right)$ space (see [10], Chapt. VII, § 10). As a consequence of Theorem 10.4 reported there (with $m=1, b=2, t=4, s=0, l=0$; hence $l+t=4$), we have:

$$
\begin{equation*}
u \in W_{q}^{1,4}\left(Q_{r_{0}}\right) \quad \text { with arbitrary } q \in(1, \infty), \tag{20}
\end{equation*}
$$

which means boundedness of the $W_{q}^{1,4}$ norm of u;

$$
\begin{equation*}
\left.\sum_{j=0}^{4} \sum_{4 r+s=j}\left\|D_{t}^{r} D_{x}^{s} u\right\|_{L^{q}\left(Q_{T_{0}}\right)}\right)<+\infty . \tag{21}
\end{equation*}
$$

In particular $u_{t} \in L^{q}\left(Q_{T_{0}}\right)$ and $u_{x_{i} x_{j} x_{k} x_{l}} \in L^{q}\left(Q_{r_{0}}\right)$ for any $q \in(1, \infty)$.
To obtain a priori estimates for the Hölder solution of (1)-(3) we shall use the following:

Lemma 4. For $n \leqq 3$, under our basic assumption that f is locally Lipschitz continuous with respect to $t, u, u_{x_{i}}, u_{x_{i} x_{j}}(i, j=1, \cdots, n)$ and Hölder continuous (exponent μ) with respect to x and that $u_{0} \in C^{4+\mu}(\bar{\Omega})$ satisfies compatibility conditions

$$
\begin{equation*}
\frac{\partial u_{0}}{\partial n}=\frac{\partial\left(\Delta u_{0}\right)}{\partial n}=0 \quad \text { for } x \in \partial \Omega, \tag{22}
\end{equation*}
$$

the solution u will be estimated a priori in the Hölder space $C^{1+(\bar{\mu} / 4) \cdot 4+\bar{\mu}}\left(Q_{T_{0}}\right)$, $\bar{\mu}=\min \{2 / 9, \mu\}$.

Outline of the proof. As a consequence of (20) with $q=2 n+2$ we find that $u, u_{t}, u_{x_{i}} \in L^{2 n+2}\left(Q_{T_{0}}\right)$ which, with the use of the Sobolev theorem, ensures that

$$
\begin{equation*}
u \in C^{1 / 2,1 / 2}\left(Q_{T_{0}}\right) . \tag{23}
\end{equation*}
$$

Since as a consequence of (15) $u_{t} \in L^{\infty}\left(0, T_{0} ; L^{2}(\Omega)\right)$, then by (19) and (1)

$$
\varepsilon^{2} \Delta^{2} u=-u_{t}+f\left(\cdot, \cdot, u, u_{x}, u_{x x}\right) \in L^{\infty}\left(0, T_{0} ; L^{2}(\Omega)\right)
$$

and further, by the elliptic regularity [7,11], $u \in L^{\infty}\left(0, T_{0} ; W^{4,2}(\Omega)\right)$. Again by the Sobolev theorem (in dimension $n \leqq 3) W^{4.2}(\Omega) \subset C^{2+(1 / 2)}(\bar{\Omega})$, hence

$$
\begin{equation*}
u \in L^{\infty}\left(0, T_{0} ; C^{2+(1 / 2)}(\bar{\Omega})\right) \tag{24}
\end{equation*}
$$

Using Lemma 3.1, Chapt. II of [10] subsequently to $u_{x_{i}}$ and then to $u_{x_{i} x_{j}}(i, j$ $=1, \cdots, n$), in the presence of (23), (24) we find that $u_{x_{i}} \in C^{1 / 6,1 / 2}\left(Q_{T_{0}}\right)$, moreover

$$
\begin{equation*}
u_{x_{i} x_{j}} \in C^{1 / 18,1 / 2}\left(Q_{T_{0}}\right) . \tag{25}
\end{equation*}
$$

Finally, from the Lipschitz, Hölder continuity of f inside X and (25) the composite function $f\left(t, x, u, u_{x}, u_{x x}\right)$ belongs to $C^{1 / 18, \mu^{\prime}}\left(Q_{r_{0}}\right)$ for $\mu^{\prime}=\min \{1 / 2, \mu\}$. From Theorem 10.1, Chapt. VII of [10] (with $l-s=\bar{\mu}, t+s=4$ and $l+t=4+\bar{\mu}$):

$$
u \in C^{1+(\bar{\mu} / 4), 4+\bar{\mu}}\left(Q_{T_{0}}\right), \quad \bar{\mu}=\min \left\{\frac{2}{9}, \mu^{\prime}\right\},
$$

(here the letter C is used instead of H in [10]), and we have the required esti-
mate of u in the Hölder space. The proof of Lemma 4 is completed.
Until now a number of a priori estimates for the hypothetical solution of (1)-(3) have been given. With these estimates, however, the proper proof of existence of the Hölder solution to (1)-(3) based on the Leray-Schauder Principle ("method of continuity") is standard and will be omitted here (compare e.g. $[10,5])$. The proof of Theorem 1 for $n \leqq 3$ is thus finished.

Part II. Applications.

6. Global existence of solution for the Cahn-Hilliard equation.

It is simple to conclude from the considerations of Part I, that if we are able to assure global in a time interval [$0, T_{1}$] Lipschitz continuity of the function $f\left(t, x, u, u_{x}, u_{x x}\right)$ (and its derivatives when $n>3$), then the solution (being as smooth as the data allow) exists at least for $t \in\left[0, T_{1}\right]$. Obviously we cannot expect such global Lipschitz continuity for general f in (1) (perhaps of a very complicated nature), but we may prove it for a number of special problems such as the Cahn-Hilliard equation. Here we will follow the presentation of this equation in [12], p. 147. Let us consider;

$$
\begin{equation*}
u_{t}=-\varepsilon^{2} \Delta^{2} u+\Delta(F(u)), \tag{26}
\end{equation*}
$$

$x \in \Omega \subset R^{n}, n \leqq 3$, together with conditions (2), (3). Here F is a polynomial of the order $2 p-1$ (moreover $p=2$ if $n=3$),

$$
\begin{equation*}
F(u)=\sum_{j=1}^{2 p-1} a_{j} u^{j}, \quad p \in N, p \geqq 2, \tag{27}
\end{equation*}
$$

with positive leading coefficient; $a_{2 p-1}>0$. The prototype was $\bar{F}(u)=\beta u^{3}-\alpha u$ with $\beta, \alpha>0$.

Since $\Delta(F(u))^{\prime}=F^{\prime}(u) \Delta u+F^{\prime \prime}(u)|\nabla u|^{2}$ is locally Lipschitz continuous ($F^{\prime}, F^{\prime \prime}$ are locally bounded), then the assumptions of Part I are satisfied (provided that $u_{0}, \partial \Omega$ are smooth and (22) is filfilled) and we have free local in time existence of the Hölder solution to (26), (2), (3). However, if we can justify, using a priori estimates, Lipschitz continuity of

$$
\begin{equation*}
f\left(t, x, u, u_{x}, u_{x x}\right)=\Delta(F(u))=F^{\prime}(u) \Delta u+F^{\prime \prime}(u)|\nabla u|^{2} \tag{28}
\end{equation*}
$$

in $\left[0, T_{1}\right]$ ($T_{1}>0$ will be fixed from now on), we will have proved the existence of the global Hölder solution to the Cahn-Hilliard equation. We need to estimate a priori $\|u(t, \cdot)\|_{L^{\infty}(\Omega)}$ and $\|\Delta u(t, \cdot)\|_{L^{\infty}(\Omega)}$ for $t \in\left[0, T_{1}\right]$. These two estimates are in order simple consequence of the one given in [12], p. 156:

$$
\begin{equation*}
\|\Delta(F(u))\|_{L^{2}(\Omega)}^{2} \leqq k\left(1+\left\|\Delta^{2} u\right\|_{L^{2}(\Omega)}^{2 \sigma}\right), \tag{29}
\end{equation*}
$$

where $k>0$ and $\sigma \in[0,1)$ are constants independent of u (dependent on the special form (27) of F, k also on $\left.\left\|\nabla u_{0}\right\|_{L^{2}(\Omega)}\right)$. We have:

Lemma 5. For a sufficiently regular solution of the Cahn-Hilliard equation $(n \leqq 3)$ the two a priori estimates are valid:

$$
\begin{equation*}
\|u(t, \cdot)-\bar{u}\|_{L^{\infty}(\Omega)} \leqq c\left(\left\|\Delta u_{0}\right\|_{L^{2}(\Omega)}^{2}+m t\right)^{1 / 2} \tag{30}
\end{equation*}
$$

with $\bar{u}=|\Omega|^{-1} \int_{\Omega} u_{0}(x) d x$, also

$$
\begin{equation*}
\|\Delta u(t, \cdot)\|_{L^{\infty}(\Omega)} \leqq C\left(\left\|u_{0}\right\|_{W^{4,2(\Omega)}}, T_{1}\right) \tag{31}
\end{equation*}
$$

where C is a positive function increasing with respect to both arguments.

Proof. We start with the proof of (30). Because of (3), integrating (26) over Ω we find that

$$
\frac{d}{d t} \int_{\Omega} u(t, x) d x=0
$$

hence the mean value \bar{u} is preserved in time. Multiplying (26) by $\Delta^{2} u$ and integrating over Ω we get:

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t} \int_{\Omega}(\Delta u)^{2} d x=-\varepsilon^{2} \int_{\Omega}\left(\Delta^{2} u\right)^{2} d x+\int_{\Omega} \Delta(F(u)) \Delta^{2} u d x \tag{32}\\
& \quad \leqq\left(-\varepsilon^{2}+\frac{\varepsilon^{2}}{2}\right) \int_{\Omega}\left(\Delta^{2} u\right)^{2} d x+\frac{1}{2 \varepsilon^{2}} \int_{\Omega}[\Delta(F(u))]^{2} d x \\
& \quad \leqq-\frac{\varepsilon^{2}}{2} \int_{\Omega}\left(\Delta^{2} u\right)^{2} d x+\frac{k}{2 \varepsilon^{2}}\left[1+\left(\int_{\Omega}\left(\Delta^{2} u\right)^{2} d x\right)^{\sigma}\right]
\end{align*}
$$

where (29) was also used. The right side of (32) is a function of $z:=\int_{\Omega}\left(\Delta^{2} u\right)^{2} d x$, having the form $\left(-\varepsilon^{2} z+\left(k / \varepsilon^{2}\right) z^{\sigma}+\left(k / \varepsilon^{2}\right)\right)$ and therefore must be bounded from above, say by m, for $z \geqq 0$. Hence:

$$
\begin{equation*}
\int_{\Omega}(\Delta u)^{2} d x \leqq \int_{\Omega}\left(\Delta u_{0}\right)^{2} d x+2 m t \tag{33}
\end{equation*}
$$

Since, for $n \leqq 3$, as a consequence of (7) and (5)

$$
\begin{equation*}
\|u(t, \cdot)-\bar{u}\|_{L^{\infty}(\Omega)} \leqq c\|\Delta u(t, \cdot)\|_{L^{2}(\Omega)} \tag{34}
\end{equation*}
$$

we have (30). Note the slow growth of the right side of (30) of the order $t^{1 / 2}$. To obtain (31) we shall consider first u_{t} in $L^{2}(\Omega)$. Formally we proceed as in the proof of Lemma 3, but now without using implicit Lipschitz constants.

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} \int_{\Omega} u_{h}^{2} d x=-\varepsilon^{2} \int_{\Omega}\left(\Delta u_{h}\right)^{2} d x+\int_{\Omega}[\Delta(F(u))]_{h} u_{h} d x \\
& \quad=-\varepsilon^{2} \int_{\Omega}\left(\Delta u_{h}\right)^{2} d x+\int_{\Omega}(F(u))_{h} \Delta u_{h} d x \\
& \quad \leqq-\varepsilon^{2} \int_{\Omega}\left(\Delta u_{h}\right)^{2} d x+\int_{\Omega} F^{\prime}(\tilde{u}) u_{h} \Delta u_{h} d x
\end{aligned}
$$

As a consequence of (30); $\left|F^{\prime}(u)\right| \leqq K$, hence

$$
\frac{d}{d t} \int_{\Omega} u_{n}^{2} d x \leqq-\varepsilon^{2} \int_{\Omega}\left(\Delta u_{h}\right)^{2} d x+(K / \varepsilon)^{2} \int_{\Omega} u_{\hbar}^{2} d x,
$$

and, for $h \rightarrow 0^{+}$

$$
\begin{equation*}
\int_{\Omega} u_{t}^{2}(t, x) d x \leqq \int_{\Omega}\left[-\varepsilon^{2} \Delta^{2} u_{0}+\Delta\left(F\left(u_{0}\right)\right)\right]^{2} d x \exp \left[(K / \varepsilon)^{2} t\right] \tag{35}
\end{equation*}
$$

Finally, from (26)

$$
\begin{equation*}
\varepsilon^{2} \Delta^{2} u=-u_{t}+F^{\prime}(u) \Delta u+F^{\prime \prime}(u)|\nabla u|^{2}, \tag{36}
\end{equation*}
$$

where from (30), $F^{\prime}(u)$ and $F^{\prime \prime}(u)$ are in $L^{\infty}\left(\left[0, T_{1}\right] \times \bar{\Omega}\right), \Delta u$ is in $L^{\infty}\left(0, T_{1} ; L^{2}(\Omega)\right)$ as a result of (33), u_{t} is in $L^{\infty}\left(0, T_{1} ; L^{2}(\Omega)\right)$ as follows from (35). Hence, as a consequence of the Sobolev inequality and (5)

$$
\|\nabla u\|_{L^{4}(\Omega)} \leqq \text { const. }\left(\|\Delta u\|_{L^{2}(\Omega)}+|\bar{u}|\right), \quad n \leqq 3,
$$

also $|\nabla u|^{2} \in L^{\infty}\left(0, T_{1} ; L^{2}(\Omega)\right)$. We have now verified that the right side of (36) belongs to $L^{\infty}\left(0, T_{1} ; L^{2}(\Omega)\right)$, thus $\Delta^{2} u \in L^{\infty}\left(0, T_{1} ; L^{2}(\Omega)\right)$, which from (7), (4) for $n \leqq 3$ means that $\Delta u \in L^{\infty}\left(\left[0, T_{1}\right] \times \bar{\Omega}\right)$. Also $|\nabla u|$ is bounded in [0, $\left.T_{1}\right] \times \bar{\Omega}$. The proof of Lemma 5 is completed.

For $n \leqq 3$ we have thus verified existence of the global Hölder solution to (26), (2), (3).

Remark 1. The polynomial form of F in [12] is rather restricting. Under a weak assumption only;

$$
\begin{equation*}
\underset{M>0}{\exists} \underset{\substack{\in R}}{\forall}-\int_{0}^{r} F(\boldsymbol{z}) d z \leqq M, \tag{37}
\end{equation*}
$$

evidently satisfied by any F admitted by other authors [2,3], we have the time independent estimate

$$
\begin{align*}
& \|u(t, \cdot)-\bar{u}\|_{L^{2}(\Omega)}^{2} \leqq c_{3}\|\nabla u(t, \cdot)\|_{L^{2}(\Omega)}^{2} \leqq \text { const. } \tag{38}\\
& \quad=c_{3}\left\{\left\|\nabla u_{0}\right\|_{L^{2}(\Omega)}^{2}+\frac{2}{\varepsilon^{2}}\left[\int_{\Omega} \int_{0}^{u_{0}(x)} F(z) d z d x+M|\Omega|\right]\right\},
\end{align*}
$$

c_{3} being a constant in the Poincaré inequality. Estimate (38) is a simple consequence of (37) and the existence of a Liapunov functional for the solution of (26), (2), (3);

$$
\begin{equation*}
\frac{d}{d t}\left[\frac{\varepsilon^{2}}{2} \int_{\Omega} \sum_{i} u_{x_{i}}^{2}(t, x) d x+\int_{\Omega} \int_{0}^{u(t, x)} F(z) d z d x\right] \leqq 0 \tag{39}
\end{equation*}
$$

7. Kuramoto-Sivashinsky equation.

Considering [12], p. 137, let us study the problem

$$
\begin{equation*}
u_{t}=-\nu u_{x x x x}-u_{x x}-\frac{1}{2}\left(u_{x}\right)^{2}, \tag{40}
\end{equation*}
$$

$t \geqq 0, x \in[-L / 2, L / 2]$, equipped by the space-periodic boundary conditions

$$
\begin{gather*}
\frac{\partial^{j} u}{\partial x^{j}}\left(t,-\frac{L}{2}\right)=\frac{\partial^{j} u}{\partial x^{j}}\left(t, \frac{L}{2}\right), \quad j=0,1,2,3, \tag{41}\\
u(0, x)=u_{0}(x) \quad \text { for } x \in\left[-\frac{L}{2}, \frac{L}{2}\right] . \tag{42}
\end{gather*}
$$

We note that as a consequence of (41) (all the unspecified integrals here are taken over [$-L / 2, L / 2]$);

$$
\int u_{x}(t, x) d x=\int u_{x x}(t, x) d x=\int u_{x x x}(t, x) d x=\int u_{x x x x}(t, x) d x=0
$$

since, e.g.

$$
\begin{equation*}
\int u_{x}(t, x) d x=u\left(t, \frac{L}{2}\right)-u\left(t,-\frac{L}{2}\right)=0 . \tag{43}
\end{equation*}
$$

With this observation it is easy to check that the expression

$$
\begin{equation*}
\left[\int\left(\varphi^{(k)}(x)\right)^{2} d x+\left|\int \varphi(x) d x\right|\right]^{1 / 2}, \quad k=1,2,3,4 \tag{44}
\end{equation*}
$$

define equivalent norms in $H^{k}(-L / 2, L / 2)$ for functions satisfying (41) (or first k conditions in (41) when $k<4$). For space-periodic boundary conditions (41) the last observation replaces the Calderon-Zygmund estimates (4), (5).

For the problem (40)-(42) the term f has the form:

$$
\begin{equation*}
f\left(t, x, u, u_{x}, u_{x x}\right)=-u_{x x}-\frac{1}{2}\left(u_{x}\right)^{2}, \tag{45}
\end{equation*}
$$

hence, to show global existence of the solution, we shall find a global in time L^{∞} a priori estimate of u_{x}. This estimate will be obtained in two steps.

First step. Estimate of $\int\left(u_{x}\right)^{2} d x$.
Multiplying (40) by $u_{x x}$ and integrating over [$\left.-L / 2, L / 2\right]$ we find that:

$$
-\frac{1}{2} \frac{d}{d t} \int\left(u_{x}\right)^{2} d x=\nu \int\left(u_{x x x}\right)^{2} d x-\int\left(u_{x x}\right)^{2} d x-\frac{1}{2} \int\left(u_{x}\right)^{2} u_{x x} d x,
$$

but

$$
\int\left(u_{x}\right)^{2} u_{x x} d x=\frac{1}{3} \int\left[\left(u_{x}\right)^{3}\right]_{x} d x=0
$$

because of (41), hence applying (6) we obtain

$$
\begin{aligned}
& \frac{d}{d t} \int\left(u_{x}\right)^{2} d x=-2 \nu \int\left(u_{x x x}\right)^{2} d x-\int\left(u_{x x}\right)^{2} d x \\
& \quad \leqq(-2 \nu+2 \nu) \int\left(u_{x x x}\right)^{2} d x+2 C_{\nu} \int\left(u_{x}\right)^{2} d x
\end{aligned}
$$

or

$$
\begin{align*}
& \int\left(u_{x}\right)^{2}(t, x) d x \leqq \int\left(u_{0 x}\right)^{2} d x \exp \left(2 C_{\nu} t\right) \tag{46}\\
& \leqq \int\left(u_{0 x}\right)^{2} d x \exp \left(2 C_{\nu} T_{1}\right)=: m_{0}^{2} .
\end{align*}
$$

Second step. Estimate of $\int\left(u_{x x}\right)^{2} d x$.
Multiplying (40) by $u_{x x x x}$ and integrating over [$-L / 2, L / 2$] we find:

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int\left(u_{x x}\right)^{2} d x=-\nu \int\left(u_{x x x x}\right)^{2} d x+\int\left(u_{x x x}\right)^{2} d x-\frac{1}{2} \int\left(u_{x}\right)^{2} u_{x x x x} d x, \tag{47}
\end{equation*}
$$

next, using (46) and the Poincaré inequality we have

$$
\begin{aligned}
\left|\int\left(u_{x}\right)^{2} u_{x x x x} d x\right| & \leqq\left\|u_{x}\right\|_{L^{\infty}}\left\|u_{x}\right\|_{L^{2}}\left\|u_{x x x x}\right\|_{L^{2}} \\
& \leqq m_{0}\left(\frac{\delta}{2}\left\|u_{x x x x}\right\|_{L^{2}}^{2}+\frac{c_{3}}{2 \delta}\left\|u_{x x}\right\|_{L^{2}}^{2}\right) .
\end{aligned}
$$

Choosing $m_{0}(\delta / 2)=\nu$ (hence $\left(m_{0} c_{3} / 2 \delta\right)=\left(\nu c_{3} / \delta^{2}\right)$, and using (6) to estimate the third derivative in (47), we obtain

$$
\frac{1}{2} \frac{d}{d t} \int\left(u_{x x}\right)^{2} d x \leqq\left(-\nu+\frac{\nu}{2}+\frac{\nu}{2}\right) \int\left(u_{x x x x}\right)^{2} d x+\left[C_{\nu / 2}+\frac{\nu c_{3}}{2 \delta^{2}}\right] \int\left(u_{x x}\right)^{2} d x
$$

which together with (46) and the inequality following from (7) and (43)

$$
\begin{equation*}
\left\|u_{x}(t, \cdot)\right\|_{L^{\infty} \infty}^{2} \leqq c \int\left(u_{x x}\right)^{2}(t, x) d x \quad(n=1) \tag{48}
\end{equation*}
$$

justify the required $L^{\infty}\left(\left[0, T_{1}\right] \times[-L / 2, L / 2]\right)$ estimate of u_{x}. From our general result it is clear that there exists a global Hölder solution of the problem (40)(42). Our considerations are completed.

Part III. Appendix.

8. Proof of Lemma 1 .

Since in fact the proof of (11) coincides with that of

$$
\begin{equation*}
\|u(t, \cdot)\|_{W^{2}, \infty(\Omega)}^{2} \leqq \nu\left(\int_{\Omega} u_{t}^{2} d x+N^{2}|\Omega|\right)+C_{\nu} \int_{\Omega} u^{2} d x \tag{10}
\end{equation*}
$$

we will present only the first proof. For $w:=u_{x_{i x_{j}}}$, as a consequence of (7) with $p=4, l=1, n \leqq 3$:

$$
\begin{equation*}
\|w\|_{L^{\infty}(\Omega)} \leqq C\|w\|_{W^{1,4(\Omega)}} \leqq C C^{\prime}\|w\|_{W^{2,2(\Omega)}}^{7 / 8}\|w\|_{L^{2}(\Omega)}^{1 / 8}, \tag{49}
\end{equation*}
$$

where the inequality (8) has also been used. Now, from the Young inequality

$$
\begin{equation*}
\|w\|_{L^{\infty}(\Omega)} \leqq \frac{\boldsymbol{\delta}}{2}\|w\|_{W^{2}, 2(\Omega)}+C(\boldsymbol{\delta})\|w\|_{L^{2}(\Omega)} \tag{50}
\end{equation*}
$$

(with $C(\delta)=$ const. δ^{-7}), hence from (6) we may claim

$$
\begin{equation*}
\left\|u_{x_{i} x_{j}}\right\|_{L^{\infty}(\Omega)} \leqq \delta\|u\|_{W^{4}, 2(\Omega)}+\bar{C}_{\delta}\|u\|_{L^{2}(\Omega)} \quad(n \leqq 3) \tag{51}
\end{equation*}
$$

As a consequence of (1), when u remains in X

$$
\begin{align*}
& \int_{\Omega}\left(\Delta^{2} u\right)^{2} d x=\varepsilon^{-4} \int_{\Omega}\left[u_{t}-f\left(t, x, u, u_{x}, u_{x x}\right)\right]^{2} d x \tag{52}\\
& \leqq 3 \varepsilon^{-4} \int_{\Omega}\left[u_{t}^{2}+f^{2}(t, x, 0,0,0)+\left(f(t, x, 0,0,0)-f\left(t, x, u, u_{x}, u_{x x}\right)\right)^{2}\right] d x \\
& \leqq 3 \varepsilon^{-4} \int_{\Omega}\left[u_{t}^{2}+N^{2}\right] d x+c_{\Lambda} \varepsilon^{-4}\|u\|_{W^{2}, 2(\Omega)}^{2}
\end{align*}
$$

where $c_{4}=c_{4}\left(L_{3}, L_{4}, L_{5}\right)$. As a result of (4), (51)

$$
\begin{aligned}
& \left\|u_{x_{i} x_{j}}\right\|_{L^{2}(\Omega)} \leqq 2 \delta^{2}\|u\|_{W^{4}, 2(\Omega)}^{2}+2\left(\bar{C}_{\delta)^{2}}\|u\|_{L^{2}(\Omega)}^{2}\right. \\
& \quad \leqq 2 c^{2} \delta^{2}\left(\left\|\Delta^{2} u\right\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\Omega)}\right)^{2}+2\left(\bar{C}_{\delta)^{2}}\|u\|_{L^{2}(\Omega)}^{2} .\right.
\end{aligned}
$$

Next, from (52)

$$
\begin{gather*}
\left\|u_{x_{i} x_{j}}\right\|_{L^{2}(\Omega)}^{2} \leqq 12 \varepsilon^{-4} c^{2} \delta^{2}\left[\int_{\Omega}\left(u_{t}^{2}+N^{2}\right) d x+\frac{c^{4}}{3}\|u\|_{W^{2}, 2(\Omega)}^{2}\right] \tag{53}\\
+\left(4 c^{2} \delta^{2}+2\left(\bar{C}_{\delta}\right)^{2}\right)\|u\|_{L^{2}(\Omega)}^{2} .
\end{gather*}
$$

As a consequence of (7) with $p=n+1$ and (5) with $p=n+1, r=2$, we may show that

$$
\begin{aligned}
\|u\|_{W^{1}, \infty(\Omega)}^{2} & \leqq c\left(\|\Delta u\|_{L^{n+1}(\Omega)}^{2}+\|u\|_{L^{2}(\Omega)}^{2}\right) \\
& \leqq c_{5}\left(\|\Delta u\|_{L^{\infty}(\Omega)}^{2}+\|u\|_{L^{2}(\Omega)}^{2}\right) .
\end{aligned}
$$

Summing (53) with respect to i, j or with respect to i, i to get the bound for $\sum_{i, j}\left\|u_{x_{i} x_{j}}\right\|_{L^{\infty}(\Omega)}^{2}$ or $\|\Delta u\|_{L^{\infty}(\Omega)}^{2}$, respectively, we finally have
$\|u\|_{W^{2}, \infty}^{2}(\Omega) \leqq\left(n^{2}+c_{5} n\right) \cdot($ right side of $\quad(53))+c_{5}\|u\|_{L^{2}(\Omega)}^{2}$, which, for $\nu:=24 \varepsilon^{-4} c^{2} \delta^{2}\left(n^{2}+c_{5} n\right)$ and δ taken so small that

$$
\begin{equation*}
12 \varepsilon^{-4} c^{2} \delta^{2}\left(n^{2}+c_{5} n\right) \frac{c_{4}}{3}|\Omega| \leqq \frac{1}{2} \tag{54}
\end{equation*}
$$

gives (10). Condition (54) defines the value ν_{0} mentioned in Lemma 1 ($\left.\nu \in\left(0, \nu_{0}\right]\right)$ in such a way, that

$$
\begin{equation*}
\frac{1}{3} \nu_{0} c_{4}|\Omega|=1 \tag{55}
\end{equation*}
$$

The proof of (11) is similar to that of (10) with one exception, instead of (49) our starting point is an estimate (valid for $n \geqq 4$);

$$
\begin{equation*}
\|w\|_{L^{2 n / n-2(\Omega)}} \leqq C\|w\|_{W^{1,2(\Omega)}} \leqq C C^{\prime}\|w\|_{W^{2}, 2(\Omega)}^{1 / 2}\|w\|_{L^{2}(\Omega)}^{1 / 2}, \tag{56}
\end{equation*}
$$

used for $w=u_{x_{i} x_{j}}$ as previously. The proof of Lemma 1 is completed.

9. Space dimensiens $n>3$.

We have now complete information necessary to obtain the a priori estimates of u in $W^{2, \infty}(\Omega)$ for arbitrary n. To simplify notation we denote by T_{2} a positive time such that

$$
\begin{equation*}
\|u\|_{L^{\infty}\left(0, T_{2} ; W^{2, \infty}(\Omega)\right)} \leqq R, \tag{57}
\end{equation*}
$$

which is equivalent to saying that u remains in X until a time T_{2} (such $T_{2}>0$ exists due to continuity of the Hölder solution and (12); we need to estimate it). The key idea of our further proof is that estimates obtained for u will be valid as well for u_{t} solving the equation

$$
u_{t t}=-\varepsilon^{2} \Delta^{2} u_{t}+f_{t}+f_{u} u_{t}+\sum_{i} f_{u_{x_{i}}} u_{t x_{i}}+\sum_{i, j} f_{u_{x_{i} x_{j}}} u_{t x_{i} x_{j}} .
$$

From (11) and Lemmas 2, 3 we have

$$
\begin{equation*}
u \in L^{\infty}\left(0, T_{2} ; W^{2,2 n / n-2}(\Omega)\right), \tag{58}
\end{equation*}
$$

and from an estimate similar to (11), valid for u_{t} (we need our supplementary assumptions on f, u_{0} to justify it):

$$
\begin{equation*}
u_{t} \in L^{\infty}\left(0, T_{2} ; W^{2,2 n / n-2}(\Omega)\right), \tag{59}
\end{equation*}
$$

and, as a consequence of (1), (58) and (59)

$$
\varepsilon^{2} \Delta^{2} u=-u_{t}+f\left(t, x, u, u_{x}, u_{x x}\right) \in L^{\infty}\left(0, T_{2} ; L^{2 n / n-2}(\Omega)\right)
$$

Then from the elliptic regularity theory [7, 11]:

$$
\begin{equation*}
u \in L^{\infty}\left(0, T_{2} ; W^{4,2 n / n-2}(\Omega)\right) \tag{60}
\end{equation*}
$$

For $n \leqq 5$, as a consequence of (7)

$$
W^{2, \infty}(\Omega) \subset W^{4,2 n / n-2}(\Omega),
$$

thus using (60) we have verified (57). At this point we will fix the time T_{0} (for $n=4,5$) in a similar way as previously for $n \leqq 3$ in considerations following (19).

Next, for $u=6, \cdots, 9$, using (60), the analogous estimate for u_{t};

$$
\begin{equation*}
u_{t} \in L^{\infty}\left(0, T_{2} ; W^{4,2 n / n-2}(\Omega)\right) \tag{61}
\end{equation*}
$$

(requiring new assumptions on f, u_{0}) and (1) we justify that

$$
u \in L^{\infty}\left(0, T_{2} ; W^{6,2 n / n-2}(\Omega)\right) \subset L^{\infty}\left(0, T_{2} ; W^{2, \infty}(\Omega)\right)
$$

We shall continue this procedure for larger n.
Remark 2. In spite of certain technical complications involved in our proofs, the general idea of Theorem 1 is simple. It is based on Lemmas $1,2,3$ giving a priori estimates and on the theory of linear problems known in literature. Moreover, our a priori estimates technique offers the possibility of effective estimates (as in [6]) of the life time of solutions. As a competitive technique we should mention the semigroups theory and its generalizations; compare e.g. [7, 4, 13].

Acknowledgements. The author is very grateful to the Referee and to Dr. J. Cholewa for their remarks improving the manuscript of the paper.

References

[1] Adams, R.A., Sobolev Spaces, Academic Press, New York, 1975.
[2] Alikakos, N.D. and McKinney, W.R., Remarks on the equilibrium theory for the Cahn-Hilliard equation in one space dimension, in; Reaction-Diffusion Equations, K.7. Brown and A.A. Lasey (Eds.), Oxford University Press, 1990, pp. 75-94.
[3] Alikakos, N., Bates, P. and Fusco, G., Slow motion for the Cahn-Hilliard equation in one space dimension, J. Differential Equations, 09 (1981), 81-135.
[4] Amann, H., Quasilinear evolution equations and parabolic systems, Trans. Amer. Math. Soc. 293 (1986), 191-227.
[5] Dxotko, T., Parabolic Equations in Divergence Form. Theory of Global Solutions., Wydawnictwo Uniwersytetu Slaskiego, Katowice, 1987.
[6] Dłotko, T., Local solvability of semilinear parabolic equations, Hokkaido Math. J. 20 (1991), 481-496.
[7] Friedman, A., Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969.
[8] Henry, D., Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.
[9] Ladyzhenskaya, O. A. and Ural'tseva, N. N., Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968.
[10] Ladyženskaja, O. A., Solonnikov, V.A. and Ural'ceva, N. N., Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967.
[11] Lions, J.L. and Magenes, E., Problèmes aux Limites non Homogènes et Applications, Vol. I, Dunod, Paris, 1968.
[12] Teman, R., Infinite- Dimensional Dynamical Spstems in Mechanics and Physics, Springer-Verlag, New York, 1988.
[13] von Wahl, W., Global solutions to evolution equations of parabolic type, in : Proc. Conf. Bologna on Differential Equations in Banach Spaces, Springer-Verlag, Lecture Notes in Mathematics, in preparation.
Institute of Mathematics
Silesian University
$40-007$ Katowice, Poland

This paper was originated while the author was visiting Center for Dynamical Systems and Nonlinear Studies, Georgia Institute of Technology in Atlanta, U.S. A.

[^0]: Received April 26, 1991, Revised October 29, 1991.

