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ON THE VANISHING OF HOCHSCHILD COHOMOLOGY
H' 4, 4 4) FOR A LOCAL ALGEBRA 4

By

Qiang ZENG

§ 0. Introduction.

Throughout this paper we assume that A4 1s a finite dimensional local
algebra over an algebraically closed field K. By considering certain subgroups
of the Hochschild cohomology groups of /-bimodule A®A for a generalized
biserial commutative algebra /A the author proved in that A is selfinjective
if and only if H'(A, ARA)=0. Here A is called to be generalized biserial if
the both composition lengths of ,(rad A)*/(rad A)**') and ((rad A)*/(rad A)*'),
<2 for all :=1, 2, ---.

On the other hand for a commutative algebra 4 with cube zero radical
using Hoshino’s results Asashiba proved in that A is selfinjective if and
only if Exti(sHomg(Ay, K), 44)=H'(A, AR A)=0. ’

One of the purposes of this paper is to show in §1 that Asashiba’s results
together with Hoshino’s can be proved directly by calculating the similar sub-
groups of the Hochschild cohomology of A-bimodule A®A with [7].

It was conjectured in that A4 is selfinjective if H' (A, ARQA)=0 for i=
1, 2, ---. The above results implies that a commutative algebra A is selfinjec-
tive if H'(A, ARQA)=0 and A is either generalized biserial or of cube zero
radical. So it is interesting to consider the same problem for an algebra with
quartic zero radical which is a homomorphic image of the polynomial ring
K[x, y] of variables x and y. In §2 we shall prove that for such algebras
we have also an affirmative answer. However it is to be noted here that for
this case it needs to consider the larger subgroups of the Hochschild cohomology
of A-bimodule AR A different than ones for the above stated cases.

As was seen in [6] and [7] for commutative algebra A it holds that the
both composition lengths of (rad A)/(rad A)* and (rad A)%*/(rad 4)*<2 implies that
/A is generalized biserial. In §3 we shall show that we can generalize the
above fact for non-commutative algebras. At the end of this section we shall
quote that for a (not necessarily commutative) positively Z-gradable algebra /A
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we can choose a set of homogeneous elements with respect to the grading of
A as a system of minimal generators of rad A.

§1. H' (A4, ARA) for algebra /1 with cube zero radical.

Let A be a local algebra over an algebraically closed field K having a cube

zero radical N. Then the following results were obtained by Asashiba and
Hoshino.

PROPOSITION 1.1. (M. Hoshino, see [1]) If HYA, AQA)=0, then dimgN*
2.

IA

THEOREM 1.2 (H. Asashiba [1]) If A is commutative and H (A, ARQA)=0,
then A is selfinjective.

Let x,, x,, -+, x, be the elements of A such that x,+N, x,+N, -+, x,+N
are a K-basis of N/N? and w,, w,, -, wn a K-basis of N°®.

Put x,x;=>,a%w, for a%cK and 1<7, j<n, and let us denote by A,
the nXn matrix (a%;) and by ‘A, the transpose of A,.

In order to prove the above results we shall introduce the following Theo-
rem 1.3.

THEOREM 1.3. Let T be the following nm®X2nm matrix

A, tA,
A, tA,
"A, A
A, YA,
142 lAz
A, L4,
A ) T A,
Am tA,
{ ..Am v A

If HY(A, AQA)=0, then rank T =Znm?.
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PROOF. Let
&
0—> ] —> AQA —> A —>0
be an exact sequence of /°-modules with a canonical homomorphism ¢: AR A
—/ defined by putting ¢(x®y)=xy, where A°=A4AKA° and A° is the opposite
ring of 4. Then
HY (A, AQA)=ExtYe(ged, 4eARA)
=Home(J, AQA)/{(P|])|@cHom (AR A, AQM)}.

Cf. [2]. Since 4J is generated by {(;=x;Q1—1Qx;|i=1, 2, ---, n} and NC
soc 4ANsoc A4 and soc 4eAR A=soc 4ARsoc A4, we can define a A°-homomor-
phism ¢: J—-AQA by giving n elements of N?*QN? as the values of ¢(¢;)’s
respectively. Let us denote by H the subgroup of H'(A, AR A) which is
generated by the residue classes of Hom o/, 4XA) whose representatives are
such ¢’s. Then by HC HY (A, AR A)=0 we have an extension ¥ : AQA—->ARA
of ¢ and we can put
VAQD=1Qh+Z%=12,Qh;+Z 1w r Qg k »

where hj=a;l+27 a5 x;+ 20, Brwe With ajo, aji, BireK for j=0,1, -, n
and g =7l + 21T riX:+ 2700w With 7o, e, 0K for k=1,2, -, m.
It follows that

w(li)2x1®ho+2?=1xtxj®hj_1®hoxi
— 271X, Qhjx i — 2w Qg X

for all 7. From x,x;=37,a};w, and the assumption that ¥(c)=¢(¢;)= N*QN*
it follows that

w(!i)=E?=1(2T=xa§jwz)®hj—2%"=1wk®gkxi

:27Ln=1wl®(27jl=1aéjhj_gzxi)
and we can put

2?=1a1lijhj_glxi:2?=1$ilsws , Suse K.
On the other hand
2?=1a%jhj—glxi=2?=1a%j(aj01+E¥=1ajrxr+2.?=lﬁjsws)
—(Tzol+22=17’szp+23”=151qwq)xi
:(2?=la%j)ajo+2¢=l<2?=la%jajr)xr'_Tloxi

’+‘2§n=1(2j=1 aéjﬁja)ws‘_ E’sn=1<2p=lrlpa§7i)ws .
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Thus we have the following simultaneous linear equations with unknown S,
and 7,,:

?:1051,3;3—2}‘)=la§n7zp=5us
for =1,2, -, n and [, s=1,2, ---, m. But for any &;, we can define A°-
homomorphism ¢: /-AR®A and by noting a};=(7, j)-component of A,, a%,=
(z, p)-component of ‘A, we get that nm?<the rank of T.

PROOF OF PROPOSITION 1.1. Since the number of the columns is 2mn it is
necessary to hold 2mn=m?n. Thus m=<2.

Now we have the following immediately

COROLLARY 1.4. (H. Asashiba [1]) If HY (A, AQA)=0 and m=2, then
A, tA, 7
A, tA,
Ag tAl
A2 tAg
is regular.

LEMMA 1.5. Let A be a commutative algebra with N*=0. If H A, AQA)
=0, then soc A=N".

PROOF. We may assume that dimg(rad 4/(rad 4)?=2 because otherwise A
is uniserial. Take x; <(soc A)\N* and define A°-homomorphism ¢: J—(soc 4)
X(soc )T AR A by putting ¢(e;)=x;,Qx;, for some 7,#, and ¢(¢;)=0 for all
i#i,. Then by the assumption that H'(A4, AQRA4)=0 we have an extension
D: AQA->ARA of ¢ with

¢(1®1)=l®ho+27}=1x1‘®h1+2£ﬂ=1wk®gk .

It follows from @(¢;)=x;&Qx;, that —h, x; =x,, a contradiction, for x, and
x;, are K-linearly independent.

PROOF OF THEOREM 1.2. By it is enough to prove m=1.
Suppose m=1. Then by [Proposition 1.1l m=2 but then T is non-regular since
A;='A; for i=1, 2. This implies H(A, AR A)+0 and a contradiction.

§2. The case where /4 is a homomorphic image of K[x, y]/(x, y)*

As mensioned in the introduction we shall consider for an algebra A with
quartic zero radical which is a homomorphic image of the polynomial ring
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K[x, y] of variables x and y. However / is same with a homomorphic image
of K[x, v]/(x, v)!, since A is an artin ring and K is an algebraically closed
field.

At the beginning we shall prove

LEMMA 2.1. Let A be a homomorphic image of K[x, y1/(x, y)*. Then A
is generalized biserial if A is selfinjective.

PROOF. Suppose that A is selfinjective but not generalized biserial. Then
{x®+(rad A)}, xy-+(rad A4)°, y2+(rad A4)*} is a free K-basis of (rad A)*/(rad )?,
because otherwise they are K-linearly dependent and hence 4 is a homomorphic
image of K[x, v]/((x, y), f), where the polynomial fK[x, y] has a non-zero
homogeneous term of degree two and then A is generalized biserial as was
proved in [6]. Hence we can suppose that A is one of the following cases:

Case 0: A=K[x, y1/(x, v)*;

Case 1: A=K[x, y]/((x, ¥)*, f1) where 0+ fi=ax*+bx*y+cxy*+dy® with
a, b, c and deK.

Case II: A=K[x, y1/((x, ¥)*, fi, f.) where f, and f, are K-linearly inde-
pendent and f,=a;x*+b,;x*y+c;xy*+d;y® with a,, b;, ¢; and d;=K for i=1, 2.

Case Ill: A=K[x, y1/((x, ¥)*, f1, fs, fs) Where f,, f,and f, are K-linearly
independent and f;=a;x*+b;x®*y+c;xy*+d,;y® with a;, b;, ¢; and d;=K for
=1, 2, 3.

It is easy to see that if A is one of the Case 0—II, then soc 4 is not simple.
Hence it is enough to consider the Case IIl only because A is selfinjective and
soc 4 is simple. Since A is not generalized biserial the series of composition
lengths of factor modules with respect to the upper Loewy series of A is (1, 2,
3, 1), that is, dimgA4/(rad A)=1, dimg (rad A)/(rad 4)*=2, dimy (rad A)?/(rad A)*
=3 and dimg (rad A4)*=1.

Now we observe the lower Loewy series of 4. At first, it does not happen
that dimyg soc? 4/soc 4=3 and dimg soc 4=1. Because otherwise the series of
composition lengths of factor modules with respect to the upper Loewy series
of DA, where D denotes the usual selfduality Homg(—, K), is (1, 3, *, *) but
DA=/ and this is a contradiction. Hence the series of composition lengths of
factor modules with respect to the lower Loewy series of A is either (x, *, 2, 1)
or (%, %, 1, 1). But they do not happen because x2, xy and y?*<=(rad A)*\(rad A)*
and (rad A4)* (Csoc 4) is simple by the K-linearly independent assumption of
f1, fo and f;. It concludes that A is generalized biserial.
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COROLLARY 2.2. Let A be isomorphic to K[x, y1/((x, ¥)', f1, f2 [f3) where
f1, f2 and fs are K-linearly independent and f,=a,x*-+b;x*y+c;xy*+d;y® with
a;, by, ¢c; and d; <K for i=1, 2, 3, then there exists an element a<(rad A)*\(rad A)*

such that a<=soc A.
Now our main purpose of this section is to prove

THEOREM 2.3. Let A be a homomorphic image of K[x, yl/(x, y)*. If
H'(A, AR A)=0, then A is selfinjective.

Note that it was proved in that the theorem is true if A is generalized
biserial. Thus it is enough to prove that if A4 is not generalized biserial, then
HY (A, AQA)+0. Throughout this section we assume hereafter that A is not
generalized biserial.

Let us denote x®1—1Qx and y®R1—1Qy by ¢, and ¢, respectively.

LEMMA 2.4. Let A be not a generalized biserial. If Ae,=pe, for A, ps ¢,
then A=at,+2, and p=ac,+p, with some a=K and 2,, p,=(rad A°)*.

PrROOF. Put i=a, ,(1QD)+a. (x@1)+a, (1Qx)+a, (yQ®D+a, ,(1Qy)+4,
and p=b, ,(1Q1)+b. (xQ@1)+b,, :(1Qx)+by (YR + b1, ,(1RQy)+ . With A, p e
(rad A%?%. Then it is clear that {a,,(1Q1)4a. (xQ@1)+a, (1Qx)+a, ,(1Qy)+
ay (YR Xty = {61, (1R 1D) + bz (x @) +by, 2(1Q x)+by (¥ Q1)+ by, ,(1Q )} Xeo
mod (rad A°¢)°. That 1s  a, .+ a. . (X*Ql)+(a, :—a. ) xQx)—a, 1Rx*)+
@y (YR —a, (YR x)+ay, ,(xRy)— a1, (1R xY)= b1, 162 +b2 (2 YR1)— b, (2K y)
by, L(YRX)— b1, (1@ 3)+by (YD) (b, y— by )Y )~ by, (1) mod (rad(4°)®
Since x%, xy and y* are K-linearly independent mod (rad 4)* we have that
a,=0=b,,, a,,=0=a, ., b, ,=0=b,,, a, ,=b,,=—a, ,=—b:,,. Now put
a,,=a for some a=K.

Let
€
0—> ] — ARQA —> A4 —>0

be an exact sequence of the left A4¢-modules with a canonical homomorphism ¢
defined by putting e(s®t)=st for s, t= 4. Then 4./ is generated by ¢, and ¢,.
And

H\(A, AQA)=Homye(J, AQA)/{(P|])|P=Hm (AR A, AQA)}.

Since soc (AR A)=(soc 1 A)R(soc 4,), for any elements u, and u,&(soc,A)R
(soc 44) we can define a A°%homomorphism f: /—ARA by putting f(¢,)=u,
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and f(¢c)=1u,. In and in §1 we have consider a subgroup 4 of H'(A, AQA)
which is generated by the residue classes of Hom 4(/, A& A1) whose representa-
tives are such homomorphisms f’s.

However in the proof of it needs to consider some ./°-homo-
morphisms g: J—A®A which do not belong to H. Then the following lemma
is useful to check whether a map from J to 4A®/ is a A°-homomorphism.

LEMMA 2.5. Take two elements v and 8 belonging to rad (AR A) and define
Fi1J=ARA by putting f(ae,+Be)=ar+Bo for any a, B A°. If d¢c,=7¢,, then
f is a A¢-homomorphism.

PROOF. If A,=pe, for any A, p=A°, then by Lemma 2.4 A=a¢,+24, and
p=ac+p, with 2, p,=(rad 4°2.  Hence 2.f(cy), puf(ez)E(rad A9)"'=0. There-
fore d¢,=7¢, implies Af(¢c,)=pf(¢c;). Thus f is well-defined.

PROOF OF THEOREM 2.3. As in the proof of Lemma 2.1, we shall divide
the proof of this theorem into the following cases:

Case 0: A=K[x, v1/(x, y)*;

Case 1: A=K[x, y1/(x, ), f1) where 0+ f,=ax*+bx*y+cxy*+dy® with
a, b, ¢c and de K.

Case II: A=K[x, y1/{(x, y)*, f1, f») where f, and f, are K-linearly inde-
pendent and f;=a;x*+b;x2y+c,xy*+d;y® with a,, b;, ¢; and d;=K for /=1, 2.

Case IIl: A=K[x, y1/((x, )%, f1, f2 fs) where f,, f,and f, are K-linearly
independent and f;=a,x*+b;x®y+c;xy*+d;y® with a,, b, ¢, and d;=K for
1=1, 2, 3.

Now for all cases 0-III we shall denote the defining ideal by [ and denote
the residue classes u-+I for uK[x, y], that is an element of 4, simply by u.

At first we shall prove for the Case 0: A=K[x, y1/(x, y)*. We define a
K-homomorphism f: /—ARA by setting f(¢,)=y*®y® and f(¢,)=0. Since
YRy csoc (AR A), f is obviously well-defined as a A°-homomorphism. But f
cannot be extended to any ¢: AR A—->ARA. Because if ¢: AQA—ARA is an
extension of f, then ¢ is defined by ¢(1Q1)=verv@h, since 4QA is generated
by 1®1 as a /A°module, where h,=h,(x, y) is a K-linear combination of V=
{1, x, v, x%, xy, y%, x% x%y, xy? and y°} the K-basis of 4. And

Pe)=y'Qy’ (i)
P(e2)=0 (i)
But 90(51):206va®(;117_ xhxv)"'zuEV\lxvlvEVlu@(_Xhu):_1®xh1+x®(h1“‘ xhx)



370 Qiang ZENG

—yQxh,+x*Q(he—xh o)+ xYQ(hy—xhey) =Y Q xh s+ X°Q (N s—xh 3)+ 2y
(hzy—xhxzy)—i—xy2®(hy2——xh”2)—y3®xhyg, thus from (i) —x/h =", but this is
a contradiction because xh ;+y® does not belong to (x, y)*.

Now we shall prove for the Case 1: A=K[x, y1/((x, v)*, f.). Here we may
assume that fi=ax*+bx*y+cxy*+dy*=s(x—ayXx—ByXx—ry) with s#0, a,
B and r= K because K is assumed to be algebraically closed. Therefore accord-
ing to (1) a=8=7; (2) a=B+7r; (3) a#B, a#r and B+r, we can change the
variables of the polynomial ring K[x, y] so that f, is one of the following
three cases: (1) fi=x*; (2) fi=x%y; 3) fi=xy(x—y). But for any case, if
we define f: J—>AXRA by setting f(¢,)=y*Qy*esoc 4 AR A) and f(¢,)=0, then
f is obviously well-defined and f has no any extension to ARA—->ARA by a
similar argument as in Case 0. Namely xhya-l—y3 does not belong to ((x, ¥)*, f.).

Next we shall prove for the Case Il: A=K[x, v]/((x, ¥), f1, f2) wWhere f,,
f. are K-linearly independent and f;,=a;x*+b;x*y+c;xy*+d;y® for i=1, 2. As
we considered at Case I, 4 has to be one of the following three cases:

(D fi=x%, fa=ax’y+bxy*+cy*;

2) fi=x%y, fr=ax’+bxy’+cy’;

@) fi=x*4—x3%, fi=ax’+bx’y+cy’.

For case (1), if ¢=0, we define f: /> AR/ by setting ¢,—y*®y* and ¢,—0,

then f is clearly well-defined and has no any extension to AR/ as we prove
in the Case 0.

If ¢#0, we may put ¢=1. Then soc A={x%y, xy*> (=Kx*y+Kxy?) and
yi=—ax*y—bxy’csoc 4. So we can take {1, x, y, x% xy, y%, x%y, xy?} as a
K-basis of A. Define f: J—>A®A by setting f(¢,)=xy*Qy*+xyRy*=xy*Ry*
—xyQ(ax*y+bxy®) and f(¢;)=0. Then 6f(6)=(yQ1—-1Ry)Nxy*Ry*+xyRy*)
=0=¢, f(¢,), hence by f is well-defined. Now if ¢: ARQA—ARA is an
extension of f with (p(l(g)l)::lcg)hl-H«:QZ)M—+—y®hy—i—xZ(X)hIZ-i—xy(X)hry—{-yz®hy2
+x2y®hzzv+xy2®h”2. Then

P(e)=xY*Ry*—x yQ(ax*y+bxy*) (i)

¢(¢2)=0 (i)
From (i) we get that —xh,=0 and hvz—xhwzzyz. By the second equation, the
polynomial 4, has nonzero term of y%, but it contradicts to the first equation.

For case (2), if a=0, we define f: J—>A®A by setting f(¢,)=0 and f(¢,)=
x*Q@x®, then f is clearly well-defined and has no extension to ARA as we
proved in the Case 0.
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If ¢=0, similarly defined f: J—>AXA by setting f(¢,)=y*Qy* and f(¢,)=0,
then f is clearly well-defined and has no any extension to A®/ as we proved
in the Case 0.

If ac+0 and b=0, we may put a=1. Then soc 4=<{xy?% »*> and x*=-—cy
=soc 4. So we can take {1, x, y, x%, xv, ¥%, x»% ¥°} as a K-basis of 4. De-
fine f: J—»ARXA by setting

3

6 —> x '@y
ts —> —c XY RxE .

Then ¢f(0) =(yRL-1Qy)Nxy*Qy*) = —xy* Q¥ =(xQ1—1Qx)(— ¢ 'x y*Qx*) =
¢.f(¢;), hence by f is well-defined. Now if ¢: ARQA—>ARA is an
extension of f with (IQD)=1Rh,+x&h.+yRQh,+x*Q@h 2+ xyRNhzy+ ¥ Qh 2
+xy°®h, o+ ®h . Then
P(t)=xy*Qy* (i)
Ple)=—c ' xy*Qx%. (ii)
From (i) we get that —xh,,=0 and hy2~xh$yg:y2. By the last equation hyg
has nonzero term of y°, but it contradicts to —xh ,=0.
If abc+0, we may put b=1. Then soc 4=<{x? y*> and xy’=—ax®*—cy’e

soc 4. So we can take {1, x, y, x% xy, y% x°% »°} as a K-basis of 4. Define
fiJ—>ARA by setting

6 —> (PR —xyQy*
6z —> a(x*Qy*).

Then ¢ f(t:) =(x®1—-1Qx)a(x*Qy*) = a(x’Ry*) = (ax*)Q ¥’ =(—cy*—xy* )Ry’ =
(YR1—1R@W[e(¥*Ry2)— x yQy*1=¢,f(¢,), hence by f 1s well-defined.
Now if ¢: ARQA—->ARA is an extension of f with (IR1)=1RXh,+xRh,.+
y@hy+x2®hxz+xy®hxy+y2®hy2+x3®hza+y3®hyg, Then

0()=c(¥*QRy)—xyRy* (i)
o(t)=a(x*Qy*) (ii)

From (i) we get that —xh ,=0 and —chp—xhs=cy®’. By the last equation
hy2 has nonzero term of y?, but it contradicts to —xhyzzO.

For case (3), if a=0, we define f: J>AR® by setting f(¢,)=0 and f(c,)
=x*®x®, then f is clearly well-defined and has no extension to A®A as we
proved in the Case 0.

If ¢=0, similarly define f: J-ARA by setting f(,)=7y*®y* and f(¢,)=0,
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then f is clearly well-defined and has no any extension to A®/4 as we proved
in the Case 0.

If ac+0 and =0, we may put a=1 and then soc A=<{xy? y*> with x*=
—cy*ssoc 4. So we can take {1, x, y, x%, xvy, ¥%, x?, ¥*} as a K-basis of A.
Define f: J—>AXA by setting

(H —> 0
tr —> Y'Qx*+x'Qy’ .
Then ¢,f(c)=0=(x@1-1Qx)¥*Rx*+x*Qy*)=—y*R x>+ x*®y*=¢, f(¢,), hence
by f is well-defined. If ¢: AQA—ARA is an extension of f with
go(l@l):1®h,+x®hz+y®hy+x2®hx2+xy®hw+y2®hy2+xy2®hw2+y3®hy3.
Then
¢(e)=0 (1)
()= Qx>+ 22 R y* . (ii)
From (i) we get —xh,=0 and from (ii) A,,—yh s=x* By the last equation
hy2 has nonzero term of x2, but it contradicts to ——xhyZ::O.
If abc#0, we may put a=1. Then soc 4=<xy?, ¥*> and x*=—bxy*—cy®

esoc 4. So we can take {1, x, v, x%, xy, %, x»% ¥°} as a K-basis of 4. De-
fine f: J->ARA by setting

6 —>0
ts —> VRQx:2—(c ' x2+bc ' x )R x®.
Then 6f(()=0=(xR1—1QRx) {¥*Rx>—(c 'x2+bc 'xy)Rx%} =¢,f(c2) hence by
f is well-defined. If ¢: ARQA—>ARA 1s an extension of f with
P1RD=1Rh:1 +xQh:+yQhy+x*Qh 2+ x YR hzy+ V2Qh o+ x V2RI o+ ¥ Rh s
Then
©(e,)=0 (i)
P(t)=2*Qx*—(c™' x> +bc ' x y)Qx° . (1i)
From (i) we get —xh,,=0 and from (i) h,—yh,s=x* By the last equation
h, has nonzero term of x? but it contradicts to —xh ,=0.

Finally we shall prove for the Case Ill: A=K[x, y1/(x, ¥)*, f1, f2 f3)
where f,, f., f: are K-linearly independent and f;=a;x*+b;x%y+c,xy*+d;y*
with a,, b;, ¢; and d,=K for i=1, 2, 3. By [Corollary 2.2l we know that there
exist two nontrivial elements a and B belonging to soc 4 such that a=ax*+
bxy-+cy®* with a, b, cc K and B<rad®4.

Now define f: J—A®A by putting f(¢;)=a®a for i=1, 2, then f is clearly
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well-defined.

If a#0, we may put ¢=1 and then x*=a—bxy—cy® So we can take
{1, x, v, xy, ¥ a, B} as a K-basis of 4. If ¢: ARA—->ARA is an extension
of f with ¢(IR=1RXh+x1xQh,+yRh,+xyQhs,+*@h+a@h.+BRhs.
Then

ple)=aQa (1)
0(t)=—1Qyh,—xQyh+yQ(hi—yh )+ x YQ(he—Yhazy)
+Y*QR(hy—yh 2)—a@yha—BRYh+x Y Qhoy+ ¥ QQh e
=aR®a . (2)
Since xy?*=*Fk,B and y*=k,B8 for some k,, k,= K we have by (2) that —yh,=a,
a contradiction.
If ¢+0, we may put ¢=1 and then y*=a—ax®—bxy. So we can take
{1, x, y, x%, xy, a, B} as a K-basis of 4. If ¢: AQA—->ARA is an extension
of f with o(1QD=1RQn+xQQh+yRQh,+x*h s +xYRh.y+aRh.+BRhs. Then
ple)=aRQa n
ple)=ala . (2)
By (1) we have similarly that —xh,=a, a contradiction.
If a=0=c¢, then a=bxy and we may put b=1. So we can take {l, x, v,
x%, % a, B} as a K-basis of 4. If ¢: AQA—-ARA is an extension of f with
gp(l@l):l@hl+x®hx+y®hy+x2®hx2+y2®hyg—l—a®ha—|—,8®h,g. Then

p(t)=aQa (
p(t)=aQa . (2)

Then by (1) we have that h.,=xh _,, h,=xy+xh,, and ——xhy2=0. By (2) we
have that h,=xy+yhz,, hyzth2 and —yh _,=0. If h,, has nonzero term of
v, ha=xy+yh.y#xh_, since yh., has nonzero term of y? it is a contradiction.
If h,, has nonzero term of x, h,=xy-+xh.,+yh, since xh,, has nonzero
term of x2, also a contradiction. Finally if both the terms of x and y in A,
are zero, then hy=xy+xhzy=#yhy2 because hy2 has no term of x by xhy2=0.
This is also a contradiction.

§3. Miscellaneous results.

As was easily seen in and for commutative algebra 4 over an
algebraically closed field K it holds that the both composition lengths of
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(rad A4)/(rad A)* and (rad A4)*/(rad 4)*<2 implies that 4 is generalized biserial.
We shall generalize the above fact for non-commutative algebras.

PROPOSITION 3.1. A local K-algebra A is generalized biserial if and only
if so is A/(rad A)°.

PROOF. At first we would like to remark A is not assumed to be com-
mutative. It is enough to proved only the “if” part. If dimg(rad 4)/(rad A4)
=1, then A is uniserial. So we can take two elements x and y of A such
that {x+(rad A4)?, y+(rad A4)*} generates (rad A/(rad A).

If (ax+by)*=0 mod (rad 4)* for any a, b= K, then A/(rad A)* is isomorphic
to the exterior algebra over 2-dimensional K-vector space and xy=—yx
mod (rad A4)*. Consequently A/(rad A4)° is selfinjective. Now (rad A4)*/(rad A)*
is generated by {x-(rad A), x?y-+(rad A)*, xyx+(rad A)*, yxy-+(rad A)*, yx?
+(rad A)*, y*x-(rad A)*, xy*+(rad A)*, y*+(rad 4)*}. But each of them belongs
to (rad A4)* because x2, y*=0 mod (rad 41)* and xy=—yx mod (rad 4)* and hence
(rad A)*C(rad A)*. It follows from Nakayama Lemma that (rad A4)*=0.

Now we may assume that there exists an element y of /4 such that x*%#0
mod (rad 4)*. By the assumption dimg(rad 4)*/(rad 4)*<2, we proceed at first
the proof for the following

Case 1: (rad A4)*/(rd A)* is spanned by {x*+4(rad 4)}, xy+(rad 4)’}. We may
put y?’=ax?+bxy and yx=cx*+dxy mod(rad A4)* with a, b, ¢ and d=K. Since
(rad A)* = (rad A)rad A)* it holds that (rad A4)*/(rad A4)* = {x*4(rad A4)*, x*y+
(rad A)*, yx?4(rad A)*, yxy-+(rad A)*>. But (rad A)*/(rad 4)* is spanned by
{x®*+(rad A)%, x?y+(rad A)*}. Because we have that xy’=x(ax*+bxy)=ax*+
bx?y, yx’=(yx)x=(cx*+dxy)x =cx*+dxyx, but xyx=x(yx)= x(cx*4dxy)=
cx*+dx?y and yxy=(yx)x=(cx*+dxy)x=cx®*y+dxy* mod (rad A4)'.

Now we shall proceed the proof by induction on exponents of rad 4. Sup-
pose that (rad 4)"~%/(rad A)*~* is spanned by {x"~?+(rad 4)"~', x*~*y+(rad A)"~'}.
Then (rad A)*~'/(rad A)* = {x"~' 4 (rad A)*, x*~*y 4 (rad A)", yx™~*+ (rad A)*,
yx**y+(red A)*y. But yx"??=(yx)x" *=(cx’+dxy)x"*=cx" ' +dx(yx)x" =
cx™ '+ dx(cx? + dxy)x*t = (c+ed)x™ ' + d?x2(yx)x™"° = (c+cd + cd®x™t +
d*x¥(yx)x" = . =c(14+d+d*+ - +d" H)x" 1 4-d 2 x" Py, yx" Py =[c(1+d+d?
4 o FdPHx 2 d 3k 3y )y = c(1+d+d*+ - +dP)x" Py +d P x Py and
x*3y?=x""%ax®+bxy)=ax"'+bx"*y mod (rad 4)*, hence (rad A)*~'/(rad A)"
is spanned by {x*"!'4(rad A)", x*~?y+(rad A)"}.

Case 2: xy-+(rad A)® is linearly dependent to x*+(rad A4)* and (rad 4)*/(rad 4)°
is spanned by {x®+(rad 1)*, yx+(rad 4)°’}. Then we may put that y’=ax*+
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byx mod (rad A)* with a, b= K. Considering (rad A4)*/(rad A)*=<{x*+(rad A)*, yx*
+(rad 4)*, y*x +(rad A)*>, but y*x =(ax®+byx)x =ax®*+byx?mod (rad A4)*, so
(rad A)*/rad A)* is spanned by {x®*+(rad A)*, yx*+(rad A)*}.

Now we shall proceed the proof by induction on exponents of rad 4. Sup-
pose that (rad 4)"~%/(rad A)"~* is spanned by {x"~*+(rad A)""!, yx™~*+(rad A)"~'}.
Then (rad A4)"-!'/(rad A)" =<{x"'+(rad A)*, yx"~2+(rad A)*, y2x™~*+(rad A)").
But y2x"*=(ax®+byx)x"* = ax™'+byx"?mod (rad A4)*, hence (rad A)""!/
(rad A)" is spanned by {x"~'4-(rad A)*, yx™~24(rad A)"}.

Case 3: xy-+(rad 4)* and yx-(rad 4)* are both linearly dependent to x*-+
(rad 4)*. Then (rad A4)?/(rad A)* is spanned by {x*4(rad A)%, y?>4-(rad A)%}, and
so it is clear that (rad 4)"/(rad A)"*! is spanned by {x™+(rad A)"*!, y*+4(rad A)**!}
for n=3. It completes the proof.

COROLLARY 3.2. Let A be a generalized biserial local algebra. If
dimg(rad )" /(rad AH**'<1 for some integer n>0, then dimg(rad A)*/(rad A)*+
<1 for all s=n. '

PROOF. Use the spanning systems of (rad A4)°/(rad A4)*** which we have
obtained in the proof of the previous proposition for s=n.

Let A=A,P5A4,P --- PA, be a positively Z-grading of K-algebra A such that
rad A=4,D - DA, Adv=Kand A, A;CA;,; for 7, j=0. If dimg(rad A)/(rad A)*
=t, we have a minimal system {x,, x,, ---, x;} of generators of rad 4. Put

(1) szzi‘:,aj'i for ]:1, 2, e, 1 and aj,,-EE/Ii .

In the proof of [7, Proposition 4.1] we proved the fact stated in the follow-
ing proposition for t=2 and 4 being commutative. Now we shall prove

PROPOSITION 3.3. There is a set B={a;, s, =As,11=74, sp=<n and k=1, 2,
.o, t} such that B is a minimal system of generators of rad /.

PrROOF. Let us denote by a4 the residue class of a= /A modulo (rad 4)2.
From (1) we have that ¥,=3).a;; for j=1,2, -, f. If follows that there
exists a set {&;,.,|k=1,2, ---,t} such that it becomes a K-basis of (rad A)/
(rad 4)*. Then it is clear that {a;,s,|k=1,2, ---,t} generates rad A, since

rad 4 is nilpotent.
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