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Margaret BEATTIE*

0. Introduction.

Let H be a Hopf algebra with bijective antipode S over a commutative
ring k, and M a right H-module. Then End (M) is a right H-module algebra
over k with H-action (¢« h)(m)=3n>@m«S(hew))(hy). (S is the composi-
tion inverse of S.) This H-action on End(M) is strongly inner so that
H#End (M)= HQEnd (M). (Here the smash product is the right smash product
of [6] or [12].) Similarly, if M is a finitely generated projective k-modlule and
a left H-comodule, then End (M) is a left H-comodule algebra, the left H-
coaction is strongly inner, and End (M)# H=End (M)QH.

In this paper, we exploit the above observation to examine some well-known
duality results, along with some new examples, from the point of view that
the duality involves an endomorphism ring and a strongly inner action or co-
action.

1. Bialgebra actions, coactions and smash products.

Throughout, we work over a commutative ring k. Unless otherwise
stated, all maps are k-linear, & means )., Hom means Hom,, algebra means
a k-algebra with 1, etc. The word ring will mean a k-algebra, not necessarily
with 1. For A an algebra, 4J(A) will denote the group of multiplicative units
of A.

H will denote a bialgebra over % with comultiplication A, and counit . If
H is a Hopf algebra, S will denote the antipode; if the antipode S is bijective,
S will denote the composition inverse of S. We use Sweedler’s sigma notation,
i.e. we write AWM=, Qh, ARL-AM)=1RA-Ah)=h(1>Rh2,Qh sy, and
so on. (We will usually omit the summation index (4).) Our rings may have
left and/or right H-actions; we will denote these by arrows on the left or
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right.

DEFINITION 1.1. (i) We call a ring A a left (right) H-module ring if A is
a left (right) H-module such that hA—(ab)=(hy—aXhey—b) ((ab)y—h=
2(a—hgy)b—heyy). If A is a k-algebra, we also require that 4 acting on 1
be ¢(h) for all he H, and then A is called an H-module algebra, (i.e., A is an
H-module and H measures A to A [23, p. 138].) We call an H— H-bimodule A
an H— H-bimodule ring (algebra) if A is a left and right H-module ring (alge-
bra).

(ii) We call a ring A a left (right) H-comodule ring if A is a left (right)
H-comodule such that the H-comodule structure map preserves multiplication.
Again we use Sweedler’s sigma notation and write a—>a-HRawms HRA for
a left H-comodule map and a—3aw®ansARH for a right H-comodule
structure map on A. If A is a k-algebra then the comodule structure map
must map 1 to 1®1, and A is called an H-comodule algebra. We call an H— H-
bicomo‘dule A an H— H-bicomodule ring (algebra) if A is a left and right H-
comodule ring (algebra).

ExAMPLE 1.2. (i) The dual H*=Hom(H, k) of H is an H— H-bimodule
algebra. The left action of H on H* is given by (h— f*)(g)=f*(gh) and the
right action by (f*—h)g)=/f*(hg). If H is commutative, then clearly these
left and right actions coincide.

(ii) H is itself an H— H-bicomodule algebra with comultiplication giving
both H-comodule structure maps.

REMARK 1.3. (i) If Ais aleft H-module ring (right H-module ring, H— H-
bimodule ring) without 1, then A can be embedded in a left H-module (right
H-module, H— H-bimodule) algebra, denoted A', and A is a left (right, etc) H-
module subring and ideal of A'. This is done as follows.

Let A'=AXFk. As usual, addition in A' is componentwise addition, and
multiplication is defined by (a, a)(b, 8)=(ab+ab+Ba, aB), a, b A, a, fck;
then (0, 1) is the multiplicative identity for A'. The left H-action on A may
be extended to a left H-module action on A' by h—(a, a)=(h—a, e(h)a). Then
h—(0, 1)=(0, e(h))=¢e(h)(0, 1), and, it is easily checked that

Z(har—=(a, a)(ha—(b, B))=(h—(ab)+B(h—a)+a(h—b), e(h)aB)
=h—((a, &), B)),

so A' is a left H-module algebra.
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(ii) For A, A' as above, if A is a right (left, etc.) H-comodule ring with-
out 1, then the H-coaction may be extended to A' so that A is a H-comodule
subring. Define a right H-coaction on A! by 7(a, @)=>(a ), 0)@®au,+(0, a)R1.
Clearly (yQL)e7=(1XA)-7, 7(0, D=(0, 1)®1, and, for a, b=A, a, Bk,

7(a, a)r(b, B)=(a b, 00Raurba+2(Bacw, 00Raau,
+2(ab(0)’ 0)®b(l)+(0’ aﬂ)®l
=7(ab+ab+Ba, af)=r(a, a)b, B)),

so that 7 preserves multiplication, as required. |
Recall the definitions of left and right smash products.

DEFINITION 1.4.(i). [6], [24, p. 471] Let A be a left H-module ring and B
a left H-comodule ring. The left smash product A##B is defined to be the k-
module A®XB with multiplication defined by (a##b)(c##d)=a(bc-1,—¢)# Eboyd.
If B=H, then A##H is the usual smash product A#H [23, p. 155].

(ii) [61, [12, 1.3] Let B be a right H-module ring and A a right H-
comodule ring. The right smash product A##B is defined to be the k-module
A®B with multiplication defined by (a##b)(c#Hd)=ac,#H(b—cy)d.

REMARK 1.5. Note that the smash products in Definition 1.4 make sense
for H a coalgebra with an associative multiplication and a coassociative multi-
plication-preserving comultiplication. For example, H could be the semigroup
ring £S where S is a semigroup without identity; see Examples 1.6(ii), 2.10
and 3.8.

For A a right H-comodule algebra, a smash product structure denoted
#(H, A) on the homomorphism ring Hom (H, A), is defined in [13, p. 1166] and
a modified form is used to prove the duality results in [14].

If the meaning is clear from the context, we write a#b for a##b or a#3{b.
Next we give some examples of right smash preducts.

ExXAMPLE 1.6. (i) Let G be a group and H=#kG, the group ring. Let A
be a right 2G-comodule ring (i.e. A is G-graded) and let P be the subring of
Hom (kG, k) generated by the projection maps p,, g=G, i.e. p,(h)=0d, . If
G is finite, then X,cep, is a multiplicative identity for P, and P is a subalge-
bra of H*; otherwise P is a subring of H* without a 1. The group G acts
as automorphisms of P on the left and right by g—pr=pnre-1and pre—g=p,-1
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respectively, making P an H— H-bimodule subring of H* (with the H— H-
bimodule structure of Example 1.2(1)). For A a k-algebra, the right smash
product A#i;P is the “generalized smash product” A#G* of ; the right
smash product A#&P' is the smash product A#G of [221.

(ii) The construction of the right smash product in (i) can be extended to
rings graded by a semigroup S. First let’s take S to be cancellative and let
PSHom (kS, k) be the subring generated by the projections as before. Then
for s, t€S, p,t is 0 if there is no weS with tw=s or the projection p, if
such a (unique) w exists. Thus P is a right £S-module ring and if A is S-
graded, we may form A#iP.

If S is not cancellative, then p,«t may not be in P. Let P be the smallest
right 2S-module subring of Hom (%S, k) containing P. Then for A graded by
S, A#&P is defined ; the elements of A#&P of the form X a;#ps; form a sub-
ring of A#&P.

Abrams’ smash product for a ring graded by a category [1, Definition 2.1]
is a subring of the subring above.

(iii) Suppose T is a right G-set, and A is a G-graded ring. Let Pr be
the ring generated by orthogonal idempotents p,, tT. Then Pr is a right
kG-module ring via p,~g=p,.,, and, for A a G-graded ring, we may form
the smash product A##&Pr. If A has a 1, and T is finite, this is [20, 2.11];
if T is infinite, then A#&P?} is the smash product A#T of [2I]. Later on,
we will use this construction for H a subgroup of G and G/H the set of left
cosets of H in G. Then if (g;:i=1) is a set of coset representatives, Pg,n is
generated by the idempotents p,,; and prg—h=7pra-14,-

(iv) Let H be a Hopf algebra and U a Hopf subalgebra of H°, the finite
dual of H. Suppose A is a left H-module algebra which is U-locally finite, so
that A is a right U-comodule algebra and h—a=3Fawan,(h) for all he H [9,
p- 1577. Let B be a left H-comodule algebra; thus B is a right U-module
algebra by b—m=3Im(b_,)bw,. Then by [6, Lemma 1.9], A#4B=A#&B. O

The proofs of the next two lemmas are straightforward, and therefore
omitted.

LEMMA 1.7. (cf. [6, Lemmas 1.5, 1.7]) Suppose A is an H— H-bimodule ring
and B is a left (right) H-comodule ring. Then A## B (B#{A) is a right (left)
H-module ring with H-action induced by the H-action on A, i.e. (a##Hb)«—h=a«
h#%b (h—(b#Ra)=b#ih—a).
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Stmilarly, if A is a left (right) H-module ring, B an H—H-bicomodule ring,
then A#4#B (B##A) is a right (left) H-comodule rving with the H-comodule
structure induced by that on B. O

LEMMA 1.8. (cf. [6, Lemma 1.8]). Suppose A 1s a right H-comodule ring,
B is an H— H-bimodule ring, and C is a left H-comodule ring. Then the map
taking (a#b)#c to a#(b#c) is a natural isomorphism from (A#HFB)##C to
A#H(B#%C) where the smash products (A#$B) and (B##%C) have the left and
right H-module structure described in Lemma 1.7.

Similarly, if A is a left H-module ring, B a H— H-bicomodule ring, and C
a right H-module ring, then (A#%B)#5C is naturally isomorphic to A#H(B##C).
0.

2. Inner actions and duality for right smash products.

Let A be a right H-comodule ring and L an H— H-bimodule ring; we want
to consider (A#ZL)#tH=A##(L#5H) and discuss some situations where
A##(L#%H) 1s ring isomorphic to ARQ(L##H).

DEFINITION 2.1. [11, p. 52] Let R be an A-module ring which is a subring
of an algebra T. The H-action on R is called T-inner (or just inner if T=R)
if there exists a convolution invertible u© in Hom (H, T) with convolution in-
verse v such that for all &R, heH, h—r or r<h is JSu(hayrv(hey). If the
action is a left action and veAlg(H, T), we call the action left strongly 7-
inner; if the action is a right action and v=Alg(H, T), the action is called

right strongly T -inner.

ExXAMPLES 2.2. (i) Let H be a Hopf algebra, and A an H-module £4-
Azumaya algebra. If £ is a field, then the H-action on A is inner [18, 3.1].
If % is a semilocal ring or a von Neumann regular ring, and H is finitely gen-
erated projective over k, then the H-action on A is inner [7, Corollary 2.5].

i) If M is a right H-module, and End (M) has the H-action induced by
M mentioned in the introduction, then it is easily checked that the H-action on
End (M) is strongly inner. '

(iiii) Note that various examples of inner and strongly inner actions are

given in [8, Section 1].

The next theorem is a slight generalization of [8, Proposition 1.197 or [6,
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Lemma 1.11] which provides some insight into the role of strongly inner ac-
tions in some duality theorems for right smash products. Our applications will

involve right strongly inner actions, but of course parallel results hold for left
actions.

THEOREM 2.3. Let A be a right H-comodule ring and B a right H-module
ring which is a subring of an algebra C such that the action of H on B is right
strongly C-inner, implemented by u<=Hom (H, C) with convolution inverse v.
Then A#3%B is isomorphic to a subring of ARC, and if u(h)b and v(h)b are in
B for all heH, b& B, (for example if B is a left ideal of C), then A##B=
AQRB. If B has a 1, then this last condition says that v, veHom (H, B).

PROOF. Map A##B to ARC by ¢(a#b)=3a@v(any)b. Then A##B is
isomorphic to @(A#HB)S ARC ; the inverse map from ¢(A#HB) to A##B is
given by a®@b—an#u(ac,)b. Clearly if A and B are algebras, 1#1 maps
to 1X1. |

Before stating a useful corollary to Theorem 2.3, we give an immediate
application of the theorem.

ExAMPLE 2.4. Let H be a commutative Hopf algebra, let L be an H-
module ring and define an H— H-bimodule ring structure on L by h—m=m«h
for all he H, me L. Let A be a right H-comodule ring and consider (A##L)##H
= A#{(L#iH).

If L does not have a 1, identify L with the H— H-bimodule subring L X {0}
in L', and L##H with the subring (L X {0})#isH=L##H of L'#{H.

Now the right H-action on L##H is right strongly L'#t#H-inner (cf. [8,
Example 1.9]). For, let u: H->L'##H be defined by u(h)=1#h, where we
write 1 for the multiplicative identity (0, 1) in L'. Then v, the convolution
inverse of u, is given by v(h)=1#S(h). Since H is commutative, u and v are
both algebra maps, and, for h, g H, meL,

DA#hay)m#EGA#S(hp)=hay—m#heygS(he))=m—h#g .

Thus, by Theorem 2.3, if A is a right H-comodule algebra, (A##L)##H=
AQ(L##H), and (A#fLY#H#H=AQ(L '## H).

For example, L could be any H— H-bimodule subring of H* with the H-
action described in Example 1.2 (i). In particular, if H=kG, G an abelian
group, L might be P or P! of Example 1.6(1). Or, suppose U is a cocommuta-
tive pointed Hopf algebra over a field k£ such that G=G(U), the group of
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grouplikes, is abelian, and suppose A is a G-graded k-algebra. If L=U" is the
irreducible component of U containing 1 [23, 8.1], then (A#&L)#iGkCG=
A#io(L#ickG)= AQiU where the G-action on U is given by g—h=h«g=
ghg'. M|

COROLLARY 2.5. Let H be a Hopf algebra with bijective antipode S, let A
be a right H-comodule ring and L an H— H-bimodule ring. Let A be the natural
ring homomorphism from L##H to End(L) defined by A(m#h)t)=m(h—t), and
suppose A is an embedding. Let p be the map from H to End (L) induced by the
right H-action on L, i.e. p(h)#)=t<h, and suppose that for all hcH,
OMAML#H H)YSAL#EH). Then A#fH(L#HH)=ARQ(L#HH).

PRrRoOOF. Identify L##H with its image under 2 and give A(L##H) a right
H-module structure via i. Note that p(hg)=p(g)p(h), so that p-S is an alge-
bra map. Now the right H-action on A(L##H) is right strongly End(L)-inner
since A(m#h)—g=A(m—g#h)=3p(gw)A(m#h)p(S(gew>)) ([6] or [8, Proposition
5.13]). The statement then follows from Theorem 2.3. O

EXAMPLE 2.6. Note that the duality theorem of Blattner and Montgomery
[9, Theorem 2.1] or [19, Theorem 5], and its generalization to Hopf algebras
over Dedekind rings [10, Theorem 5] can be viewed as cases of Corollary 2.5.
For here A is an embedding [9, Proposition 2.2] or [19, Lemma 5], [10, Pro-
position 6], and the RL-condition guarantees the rest. (See also [6] for details
of this point of view.) O

EXAMPLE 2.7. Let G be a group, let H be the group ring 4G, and let
P< H* be the ring of projections described in Example 1.6(i). For A a right
kG-comodule algebra, it is shown in [4] using the Morita theory of [2], or by
direct computation in [5] for A a right #G-comodule ring, that (A#&P)#ikG
= Mp¥(A), the ring of matrices over A with rows and columns indexed by G
and with finitely many nonzero entries. Actually this duality result follows
easily from Corollary 2.5.

Identify End(P) with ME'(k), the ring of column finite matrices over %
with rows and columns indexed by G ; elements of P are viewed as column
matrices. Then A(p,#h)=E, ,», the matrix with 1 in the (g, gh)-th position
and zeroes elsewhere, and it is easy to verify that 2 is a ring isomorphism
from P#i5kG onto M@(k). Since A(P#iskG)=ME(k) is a left ideal of ML\(k),
Corollary 2.5 applies, and A##{HP#4HH)=AQP#4EH)=ARQ MP(k)= M (A).
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Note that the isomorphism in from (A#&P)#igkG to ME(A), namely
(a#pg)#h—iecaiy-1E, 4n is precisely the map taking a#(p,#h) to 2ann®
o(S(@aw;DA(p#h). O

ExXxAMPLE 2.8. For P and G as in Example 2.7, let N be a normal subgroup
of G, and let A be an N-graded ring. Consider (A#&P)#isk N=(A#ivP)ttin kN
= A#{y(P#iykN). Then A(P#ivkN)SEnd(P)is the subring T of M#(k) with
nonzero entries only in the (g, gn)-slots, g=G, neN. For meN, p(mH)e
End (P) is the matrix (E ., :)icc (We use this notation to mean the matrix with
a 1 in the mt-row and f-column for all t&G, zeroes elsewhere). 7T is not a
left ideal of MEYk) but for any meEN, (Eni)iceEs gn=Emnz ¢2T since
(mg)'gn=g'm'gncN. Therefore A#f(P#ivkEN)=ARQT. g

The next example discusses duality for the G-set G/H where H is a (not
necessarily normal) subgroup of G and G/H is the set of cosets g.H, i/, of
H in G. As in Example 1.6(iii), Ps,n is the ring generated by idempotents
Pre;s1» t€1. For G finite, this example yields [20, Corollary 2.18]. Note that

[20, 2.18] is also a corollary of the smash data approach of [15]. (See Remark
3.107)

EXAMPLE 2.9. Let G be a group with subgroup H, and let P and Py de-
note the rings generated by the projections in Hom(%kG, k) and Hom(kH, k)
respectively. Let A be a G-graded ring; we will show that (A##&P)#ink H=
M (A#iePs ).

Recall from Example 1.6(iii) that #G acts on Pg,x on the right by prg,i<g

=prg-14,1 and consider A#&Psn. Now A#ipPe/n is a right k H-comodule ring
under the map 7 defined by

T(a#ptgﬂ):ZkEI, meH Qg hmgi-l#p[g,;]@"l .

It is easily checked that 7 gives a right comodule structure; we show that 7
preserves multiplication. For a#pc,,5, b#pr, j]eA#,‘;“GPg,H, we obtain,

(@# prg2)(b# Prg ;)= 2iec@be#t Pre-151Pte 7=2nen @b ne ;- 1% Pre 3 5
since pri-1,P1s,0 is nonzero if and only if g;=t'g;n for some n<H. Then
r(ZnEHabgingj—l#ptgj])':Ekel,m,neH(abgtngj"l)ghmgj-l#p[3ﬂ®m

=2ker. m, neHaxkmn—lai‘lb“ngrl#ptxﬂ®m'

On the other hand,
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7(a# prgDT(0% Pre ;)
=(Dker.scu by g~ 1% Pra 130N Zier. nenbyng j-1# brg JQON)
=2k 1e1.h.seHg ysg;-10g ng ;1% Prg jn-14,-12,1P1g JOSH
=2ker. n.seHlg ysg;-10g R g 13 Prg 1QQSh
=2lrer n. meHOg ymn-18304g 05 ;- 13 Prg 2OM,

so that A##& P, i is a right kH-comodule ring.

Thus, since Py is a kH—k H-bimodule ring, by Lemma 1.7 it makes sense
to form the left #H-module ring (A##%Ps/u)#igPy, and we show that the left
kH-module rings (A#&Psun)#& Py and A#&P are isomorphic. Let £ map
A#ieP to (A#8Pon)#8: Py by 2(a#ps,.)=(a#pce)#p, for icl. This map
is clearly a bijection; it remains to prove that £ preserves multiplication and
the left %2 H-module structure.

Now,

Qa# Py )b Py m)=a# prg )# Pa)(b# Pre ))# Dm)
=2rer.nen(a# prg )X g png - 1# Prg )H Pr-1aPm
=2 rer(a# prg 1) bgynm-14 -1 Prg ) # Pm
=2ke1(@bg ynm-14 ;- 1% Prg jmn-1g ,-11D0g )H D
=(abginm-18 1% Prg )% bm
=82((a#pgn)b# Py m)) -

Also 2 is a left kH-module map since

Q(m'*(a#,bz,;n)):Q(a#pginm-l):(a#pEgiJ)#pnm-l:(a#ptgil)#m—"’pn .
Now we have that

(A#&P)#iuk H=((A#i5Po i) #tiu Pu)#tin k H
E(A#%PG/H)#%{(PH#EEH/?H) by Lemma 1.8
= Mip(A#&Pesg) by Example 2.7.

If A is graded by H rather than G, and H is normal then we are back in
the situation of Example 2.8. Here A#&Pein=ARPs n and MIP(ARQPs/u)=
AQRQME(Pg /)= AQT, where T is the ring of matrices described in Example
2.8. The isomorphism £2: M§*(Ps/u)—T is given by Q(peg1En.n)=Egin. gin- O

ExaMPLE 2.10. Now let S be a cancellative semigroup, let P be as in Ex-
ample 1.6(ii) and A2 as in Example 2.7. We will show that for a ring A graded
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by S, although A#is(P#iskS) is not isomorphic to ARA(P#iskS), it can be
viewed as a set of matrices with entries from A, with multiplication different
from the usual multiplication in M§'(A).

Since S is cancellative, it is still true that the map A from P#jiskS to
Mir(k)S M (k)=End (P) is an embedding. Also the right S-action on A(P#iskS)
still appears to be M$!(k)-strongly inner. For p,<m is p, if S contains a
(unique) element w with g=mw; otherwise pz«m=0. Define u,v in
Hom (kS, M¥(k)) by u(m)=(Ew, mw)wes and v(m)=(En; )ies- Then if mw=g
for some weS, u(m)A(pgz#h)vim)=FE, »» and the product is 0 otherwise, so
that u(m)A(p,#h)v(m)=A(pg#h)<m. Also note that v(ms)=v(m)v(s). The
problem is that although u(m)v(m) is the identity in M%P'(k), vim)u(m)=
(Emw, mw)wes Which is not the identity.

However, A#is(P#iskS) can still be viewed as a set of matrices over A
but with a different multiplication from the usual matrix multiplication. Con-
sider the subset of M%"(A) of matrices where elements from A, must lie in the
sg-th row and gt-th column for some g, t<S. Such a matrix with one non-
zero entry a, will be written as;E;, 4z.. Define a multiplication on this set of

matrices by

(asEsg,gt)°(buEvm,mw):asvasg.gt((Evnt.vht)heG)Evm,mw
{ asboE sy muw=0asboEson new if g=vh and ht=m for some h<S
B 0 otherwise

It is straightforward to check that this multiplication is associative and that
A##(P#iskS) is isomorphic to this ring of matrices via a,#(p,#)—asE;s; z:-
O

3. Inner coactions and duality

In this final section, we consider inner coactions and related duality theorems.

DEFINITION 3.1. (cf. [8, Definition 2.27]) Let R be a left (right) H-comodule
ring such that HXR (RQQH) is a subring of a k-algebra T. The H-coaction
on R is called T-inner (or just inner if T=HXR or RQH) if there is weU(T)
such that for all reR,

3.1.1) 27-uQr=wl@rw! (27 0@rmr=wr@Hw").
The coaction is called strongly left (right) T-inner if, for all y= R such that
w(l®y)=2h.Qr.c HOR (w(yQ@1=2r.Qh.€ RQYH),
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(3.1.2) SAh)Rr =2 hQQwlr;) (ZriQRAh)=2Zwr@LKh,) .

REMARK 3.2. If H is finitely generated projective over k, then H-coactions
correspond to H*-actions, and an H-coaction is (strongly) inner if and only if
the corresponding H*-action is (strongly) inner [8, Proposition 2.6]. O

ExAMPLE 3.3. Let H be a Hopf algebra with bijective antipode and M a
finitely generated projective left H-comodule. Since M is finitely generated
projective, we may identify Hom (M, HQM) with HREnd(M); let 2: HY
End (M)—»Hom (M, HQM) be the natural isomorphism with inverse
@ : Hom (M, HRQM)— HREnd (M).

It is shown in [17, Section 2] that End (M) is a left H-comodule algebra
with the H-comodule structure map X from End (M) to HRXEnd(M) given by

M) =3 (f Mc0y))c-1>S (M- 15)R f (Meos)cor »

[17, Propositions 2.5, 2.6, 2.11 and Lemma 2.7]. (Note that the structures in
[17] are on the right; the arguments for left comodule structures are essentially
the same.)

We show that this is a strongly inner coaction. Let ay be the comodule
structure map for M and let @(ay)=3:h:Qe,, and OSSR ay)=3;2,Q¢;<
HREnd (M). Then, for feEnd(M), meM,

Zhigj(g)?i'f'Sbj(m):Zhig(m<—1))®§0i(f(m(o>))
:Z(f(m(w))c—1)§(m(—1))®f(m(o))<o)Zx(f)(m) .

Note that @(a,) and O(SR1-ay) are multiplicative inverses in HQEnd (M) and
also that JAL)Re:=2h.Qh:@esp:, so that this coaction is left strongly
inner.

If H is finitely generated projective, this H-coaction corresponds to the
usual strongly inner right H*-action on End(M) implemented by u: H*—
End (M), where u(h*)(m)=33h*(m )M, v(g*)(m)=2g*(S(Mmc-1;))me (cf. Ex-
ample 2.2(ii)).

Finally note that this coaction is a special case of an H-coaction on
Hom (M, N), M, N, H-comodules, M finitely generated projective over % [17,
p. 572]; in [25], this structure is generalized to define a Hopf algebra analogue
to HOM (M, N), the graded homomorphisms from M to N, M, N G-graded
modules. O :

The next theorem is the coaction analogue to Theorem 2.3. We give the
result only for left strongly inner coactions, but of course an analogous result
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holds for right coactions.

THEOREM 3.4. Let A be a left H-module ring and B a left H-comodule
ring such that HQB is a subring of an algebra C. Suppose the left H-coaction
of B is strongly C-inner implemented by c=U(C). Furthermore, suppose c(1&Qb)
and ¢ '(1Qb) are in HRB for all b&B. Then A##B=AQB.

PROOF. Map ARB to A#iB by ¢(a®@b)=h,—a#b; where c(1Xb)=
Shi®b;. Then, if c(1Re)=3h,RQbs,

¢(a®b)¢(d®e):E(hi_’a#bt)(hk_"d#bk)

=3(hi—a)(bic_ yha—d)#big0k -
Now, for all ¢,

2k 0pbicC 3 he@bi gy br=c(1Qb)c™ (X hx@br)=c(1Qby)c'c(1Qe)

=c(1Qb6:)(1RQe)=D nh(i)mQb({)me Where c(1&b:))=Zmh(1)mQbE)m -
So,
0(aQb)p(dRQe)=23: m(hi—a) h(@)m—d)#b(E)ne

:Zhi(l)_)a)(hi(z)_’d)#bie by (3.1.2)
=¢(adQRbe).

The map ¢ is bijective with inverse ¢, ¢(a#b)=3g,—aQe; where ¢ '(1Kb)
=31g,Q¢;. For then ¢ ¢(aR@b)=2; ;8();hi—a@e(i); where ¢ '(1&Qb)=2g1);
e(d);. Since 1R®b=c'c(1Qb)=:c  (1Qb)(h.RQN)=23;,;8(1);hRe(@);, ¢-¢ is the
identity on A##B. Similarly ¢-¢ is the identity on AQB.

Note that if B has a 1, then ccUHYB), say ¢=>h;Xc;. Then u=
Se(h)e;cU(B), and (3.1.2) implies that u?*=u, so that u=1. Then if A also
has a 1, ¢(1RQ1)=1#1. L]

REMARK 3.5. In view of Example 3.3, one wonders if a situation parallel
to that of the Blattner-Montgomery duality theorem (see Example 2.6) holds
here. Let k£ be a field, H a Hopf algebra and L a Hopf subalgebra of H°;
suppose H and L have bijective antipodes. The smash product H##L is de-
fined (in fact by Example 1.6(iv), H##L=H#{L) and the map A: H#§L—
End (H) given by A(h#m)(g)=h(m—g)=3hg,,m(g,) is an embedding [9, Pro-
position 2.2]. Give Im(A)SEnd(H) a left H-comodule algebra structure via A,
i.e., ZA(h#m),RQRAh#EM)(y= D hyQA(hr#m). (If H is finite dimensional,
this is the comodule structure from Exampie 3.3.)

For % a field, the natural map £2: HXEnd (H)—»Hom (H, HRQH) given by
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QSh;RE)(h)=3h;RE;(h) is an embedding. Then Q(HRA(H##L)) is a subring
of Hom (H, HQH) where multiplication in Hom (H, HQH) is given by axf(h)
=(m-tw@L)(1RQa)B(h), for a, f<Hom(H, HYH), h<H. The identity in
Hom (H, HR H) is the map taking A to 1®A. Now it is easily checked that A
is a unit in Hom(H, HRQ H) with inverse (S®1A. Also for 1RQA(h#m)s
HQA(H## LYSHom (H, HRQH),

Ax(LR(h#MH(SRDANZ)=Th @A har#m)(g) ,

so that the left comodule structure on A(H#ZL) is Hom(H, HRQH)-inner. In
particular, if L=/ and we identify H with A(H#k)SEnd(H), we see that the
H-coaction A is Hom (H, HQ H)-inner even though by [8, Example 2.4], the
coaction is outer if H is not trivial.

A restriction parallel to the RL-condition of [9] in this case would seem
to be that Ac HRQA(H##L). This is a rather strong condition. For suppose
there are s,;, t;=H, m,= L such that for all heH,

AR)=Zh15Qh 2y =25: QA1 #M)(h)=235,Qt:haiymi(hee) .

Then h=3h,e(he)=3)(s;e(t,))mi(h) for all h, so that the elements s;&(Z;)
span H, i.e. H is finite dimensional over k.

However, even if A does not lie in HRQA(H##L), Theorem 3.4 can be used
to produce an example analogous to Example 2.7. O

ExAMPLE 3.6. [4], [6] Let G, H=FkG, and P be as in Example 2.7, and
let A be a ring on which G acts on the left as a group of automorphisms. By
Lemma 1.8, (A#&kG)#isP= A#i(kG#iP); we show that Theorem 3.4 implies
[5, Theorem 3.1], namely that A#&(EG#HEP)=ARQRG#EP)= Mr(A).

Identify kG#iP with M§*(k) by mapping g#ps to Egpn.n. Let M= MP(EG)
2kGRME(k) be the matrix with g in the g-th row and column and zeroes
elsewhere; we write M=(gFE; ;)sec. Then M'=(h'E, z)rce. Now, for E,, ,
eMirk), MUARE:s,, )M '=sQE;; .= sQA(s#p,). Also for all E, .=Mi(k),
M(AQE;,.) and M'(1QE; ) lie in kGRMi(k), and (AQLM(IRE, )=sQsRE; .
=sQ@QM(AQE, ), so that the kG-coaction of Mik) is strongly ME'(£G)-inner,
and Theorem 3.4 applies. Thus A#&(EG#&EP)= AQMEr(k)= Mir(A). O

ExAMPLE 3.7. The argument in Example 3.6 can be repeated for
(A#tigh H)# & P= A#is(b H#&P) where H is any subgroup of G. Then
At#tig(k H#P)= AQA(k H#£:P) is the subring of M#"(A) such that the (h, g)-th
slot may contain a nonzero entry only if hg-‘< H. O
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ExaMPLE 3.8. Example 3.6 can be generalized to cancellative semigroups.
Let S be a cancellative semigroup, let £S be the semigroup ring and let P be
as in Example 1.6(ii). Suppose A is a ring such that there is a semigroup
homomorphism ¢ from S to Aut(A); let G be the smallest subgroup of Aut(A)
containing the image of ¢. Then A is a left kG-module ring, kS is a left
kG-comodule ring via ¢, and, by a straightforward generalization of Lemma 1.8.
(A#leh S)#E&P= A#i(kS#&P).

Now map kS#&P to M%(k) by mapping s#p. to E, . as usual; this map
may no longer be onto as it was in Example 3.6 but since S is cancellative, it
is still an embedding. Now the kS-coaction is strongly M%'(kG)-inner imple-
mented by M=(c(s)E; ¢)ses, M *=(a(t)"'E; :):es, and an argument as in Example
3.6 shows that A#&(PS#&P)=ARQ(kS#isP). O

REMARK 3.9. Abrams duality theorem [1, Theorem 2.4] is a refinement of
the situation in Example 3.8. The semigroup arising from taking the morphisms
of a category and adjoining a zero element is usually not cancellative. How-
ever, if the set of nonzero elments has the cancellation property, then by con-
sidering only matrices with zero entries in the row and column indexed by 0,
and by taking ¢ from the nonzero elements of the semigroup to Aut(A), an
argument similar to that above yields [1, Theorem 2.4]. O

REMARK 3.10. Finally we note that although we were able to describe
[20, 2.18] in terms of smash products and inner actions, we seem unable to
similarly describe [20, 2.20] in terms of coactions. For, even for A=R#iskG,
the ring A does not seem to decompose as a ring into a smash product of the
form (R#kH)#k[G/H], H a (not necessarily normal) subgroup of G, since
FG=kHRkE[G/H] as coalgebras but not as rings. In [15], Koppinen is able
to generalize both of these results from [20] using quintuples called smash data
which include a bialgebra H, a right H-comodule algebra B and a left H-module
coalgebra C, so that a smash product #(H; C, B) is defined (see Remark 1.5).

We also note that other duality theorems involving the G-set G/H have
been proved by Liu Shaoxue [16]. O
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