HOMOGENEOUS LORENTZ MANIFOLDS WITH ISOTROPY SUBGROUP U(2) OR SO(2)

Dedicated to Professor Tsunero Takahasi on his 60th birthday

By

Hiroo Matsuda

1. Introduction.

Let (M, \langle , \rangle) be an *n*-dimensional connected Lorentz manifold with metric \langle , \rangle of signature $(-, +, \dots, +)$. In this note, we assume that an isometry group has *compact* isotropy subgroup at every point in M.

In [8], we showed that, if $n \ge 6$, there is no r-dimensional isometry group for $(n-1)(n-2)/2+3 \le r \le n(n-1)/2-1$, and we determined simply connected ndimensional Lorentz manifolds admitting an isometry of dimension (n-1)(n-2)/2+2 for $n \ge 6$. However, there exists a 5-dimensional Lorentz manifold admitting a 9 (=(5-1)(5-2)/2+3=5(5-1)/2-1)-dimensional isometry group (see Remark 1.3 in [8]). In §3, we will determine simply connected 5-dimensional Lorentz manifolds admitting an isometry group of dimension 9. That is, we have the following Theorem A.

THEOREM A. Let (M, \langle , \rangle) be a simply connected 5-dimensional Lorentz manifold admitting a connected 9-dimensional isometry group G with compact isotropy subgroup at every point in M. Then (M, \langle , \rangle) is one of the following:

(1) (M, \langle , \rangle) is isometric to $(\mathbf{R} \times M_2, -dt^2 + ds^2)$ where (M_2, ds^2) is a 2-dimensional simply connected complex space form;

(2) (M, \langle , \rangle) is isometric to a simply connected 5-dimensional Lie group with a left-invariant Lorentz metric \langle , \rangle and G is isomorphic to a semi-direct product $U(2) \rtimes M$;

(3) (M, \langle , \rangle) is a principal fibre bundle, with a 1-dimensional structure group, over a 2-dimensional simply connected complex space form.

In [6], [7], we determined *n*-dimensional Lorentz manifolds admitting an isometry group of dimension n(n-1)/2+1 (for $n \ge 4$). In §4, we will determine simply connected *n*-dimensional Lorentz manifolds admitting a connected isometry group of dimension n(n-1)/2+1 for n=3. This is, we have the follow-

Received June 4, 1991. Revised October 4, 1991.

ing Theorem B.

THEOREM B. Let (M, \langle , \rangle) be a simply connected 3-dimensional Lorentz manifold admitting a connected 4-dimensional isometry group G with compact isotropy subgroup at every point in M. Then (M, \langle , \rangle) is one of the following:

(1) (M, \langle , \rangle) is isometric to $(\mathbf{R} \times M_2, -dt^2 + ds^2)$ where (M_2, ds^2) is a simply connected 2-dimensional Riemannian space form;

(2) (M, \langle , \rangle) is isometric to a simply connected 3-dimensional Lie group with a left-invariant Lorentz metric and G is isomorphic to a semi-direct product $SO(2) \rtimes M$;

(3) (M, \langle , \rangle) is a principal fibre bundle, with a 1-dimensional structure group, over a simply connected 2-dimensional Riemannian space form.

In [8], we determined simply connected *n*-dimensional Lorentz manifolds M admitting an isometry group of dimension (n-1)(n-2)/2+2 for $n \ge 6$. In §4, we will determine simply connected *n*-dimensional Lorentz manifolds M admitting an isometry group of dimension (n-1)(n-2)/2+2 for n=4. That is, we will show the following Theorem C.

THEORFM C. Let (M, \langle , \rangle) be a simply connected 4-dimensional Lorentz manifold admitting a connected 5-dimensional isometry group G with compact isotropy subgroup at every point in M. Then (M, \langle , \rangle) is one of the following:

(1) (M, \langle , \rangle) is isometric to $(M_1 \times M_2, ds_1^2 + ds_2^2)$ where (M_1, ds_1^2) is a simply connected 2-dimensional Lie group with a left-invariant Lorentz metric ds_1^2 and (M_2, ds_2^2) is a simply connected 2-dimensional Riemannian space form;

(2) (M, \langle , \rangle) is isometric to a simply connected 4-dimensional Lie group with a left-invariant Lorentz metric and G is a semi-direct product $SO(2) \rtimes M$;

(3) (M, \langle , \rangle) is a principal fibre bundle, with a 2-dimensional abelian structure group, over a simply connected 2-dimensional Riemannian space form.

The author would like to express his thanks to the referee for his kind advice.

2. Preliminaries.

Let (M, \langle , \rangle) be a connected Lorentz manifold with metric \langle , \rangle of signature $(-, +, \dots, +)$ and let G be a connected isometry group acting on M such that the isotropy subgroup H at $o \in M$ is compact. Then the linear isotropy subgroup $\widetilde{H} = \{dh; h \in H\}$ is a closed subgroup of $O(1, n-1) = \{A \in GL(n, R); {}^{t}ASA = S\}$ where S is the matrix

$$\begin{pmatrix} -1 & 0 \\ 0 & I_{n-1} \end{pmatrix}$$

 $(I_{n-1} \text{ is the unit matrix of degree } n-1)$. So \tilde{H} is conjugate to a closed subgroup of $O(1) \times O(n-1)$.

PROPOSITION 2.1. Let (M, \langle , \rangle) be a simply connected 5-dimensional Lorentz manifold admitting a 9-dimensional isometry group G with compact isotropy subgroup at every point in M. Then G acts on M transitively and the linear isotropy subgroup is conjugate to $1 \times U(2)$.

PROOF. Suppose that G does not act on M transitively. Then dim $G(o) \leq 4(o \in M)$. Hence the dimension of the isotropy subgroup H at o is not less than 5. On the other hand, since H is compact, the linear isotropy subgroup is isomorphic to a subgroup of $O(1) \times O(4)$, so dim $H \leq 4(4-1)/2 = 6$. Thus $5 \leq \dim H \leq 6$. Then we have dim H=6(c.f., [2], [9]), so that we have dim G(o) = 3, which contradicts Lemma 1.2 in [8]. Therefore G is transitive on M.

Since M is simply connected, H is connected and the linear isotropy subgroup \tilde{H} is isomorphic to a subgroup of $1 \times SO(4)$. Since dim $H=\dim G-\dim M$ =4, \tilde{H} is conjugate to $1 \times U(2)$ (c.f., [9]).

By the same way as the proof of Proposition 2.1, we have

PROPOSITION 2.2. Let (M, \langle , \rangle) be a simply connected 4(resp. 3)-dimensional Lorentz manifold admitting a 5(resp. 4)-dimensional isometry group with compact isotropy subgroup at every point in M. Then G acts on M transitively and the linear isotropy subgroup is conjugate to $I_2 \times SO(2)$ (resp. $1 \times SO(2)$).

In view of Propositions 2.1 and 2.2, we consider homogeneous Lorentz manifolds G/H=M (*H* is the isotropy subgroup of *G* at some point $o \in M$). We denote Lie algebras of *G* and *H* by g and h respectively. Since *H* is compact, there exists a subspace m of g such that

$$\mathfrak{g}=\mathfrak{h}\oplus\mathfrak{m}$$
, $[\mathfrak{h},\mathfrak{m}]\subseteq\mathfrak{m}$.

Let $\pi: G \to G/H = M$ be the natural projection. We identify the tangent space T_oM and m by $d\pi$. The Lorentz inner product on T_oM induces the Lorentz inner product \langle , \rangle_m on m so that $d\pi: m \to T_oM$ is a linear isometry.

3. Proof of Theorem A.

Let (M, \langle , \rangle) be a simply connected 5-dimensional Lorentz manifold admitting a connected isometry group G of dimension 9. By the Proposition 2.1, M is a simply connected homogeneous Lorentz manifold G/H and the linear isotropy subgroup is conjugate to $1 \times U(2)$. Then Ad(H) acts on m as $1 \times U(2)$, so there exists a 1-dimensional subspace m_1 and a 4-dimensional subspace m_2 of m such that

$$\mathfrak{m} = \mathfrak{m}_1 \oplus \mathfrak{m}_2$$

and Ad(H)=id. on \mathfrak{m}_1 (so, $[\mathfrak{h}, \mathfrak{m}_1]=\{0\}$), Ad(H)=U(2) on \mathfrak{m}_2 . Since U(2) acts on \mathfrak{m}_2 irreducibly and contains $-I_2$, we have Lemma 3.1 by using Schur's Lemma.

LEMMA 3.1. \mathfrak{m}_2 is spacelike and \mathfrak{m}_1 is perpendicular to \mathfrak{m}_2 (so, \mathfrak{m}_1 is timelike).

Let p_0 , p_1 and p_2 be orthogonal projections from g to \mathfrak{h} , \mathfrak{m}_1 and \mathfrak{m}_2 respectively. Since \mathfrak{h} , \mathfrak{m}_1 and \mathfrak{m}_2 are Ad(H)-invariant, we see

(3.1) $p_i A d(h) = A d(h) p_i$ (*i*=0, 1, 2)

for any $h \in H$. Since there exists $E \in \mathfrak{h}$ such that

 $Ad(\exp tE) = \begin{pmatrix} \cos tI_2 & -\sin tI_2 \\ \sin tI_2 & \cos tI_2 \end{pmatrix}$

on \mathfrak{m}_2 , we have

[E, X] = JX

for any $X \in \mathfrak{m}_2$, where J is an almost complex structure on \mathfrak{m}_2 .

REMARK 3.2. E belongs to the center of \mathfrak{h} .

LEMMA 3.3. $[\mathfrak{m}_1, \mathfrak{m}_2] \subseteq \mathfrak{m}_2$. More precisely, there exist linear maps L_1, L_2 : $\mathfrak{m}_1 \rightarrow \mathbf{R}$ such that

$$[A, X] = L_1(A)X + L_2(A)JX$$

for any $A \in \mathfrak{m}_1$ and any $X \in \mathfrak{m}_2$.

PROOF. For any fixed $A \in \mathfrak{m}_1$, we define a linear map $f_A : \mathfrak{m}_2 \to \mathfrak{g}$ by $f_A(X) = [A, X](X \in \mathfrak{m}_2)$. Since Ad(H) = id. on \mathfrak{m}_1 , we have

$$(3.3) f_A A d(h) = A d(h) f_A$$

for any $h \in H$. By (3.1) and (3.3), we have

$$(3.4) (p_i f_A) A d(h) = A d(h) (p_i f_A) (i=0, 1, 2)$$

for any $h \in H$.

Step 1. We claim $p_1[\mathfrak{m}_1, \mathfrak{m}_2] = \{0\}$. Since ker (p_1f_A) is Ad(H)-invariant by (3.4) and Ad(H) acts on \mathfrak{m}_2 irreducibly, we have ker $(p_1f_A) = \{0\}$ or \mathfrak{m}_2 . On the other hand, there exist a non-zero $X \in \mathfrak{m}_2$ and $h \in H$ such that $Ad(h)X - X \neq 0$. We have $p_1f_A(Ad(h)X - X) = 0$, which implies that $Ad(h)X - X \in \ker(p_1f_A)$. Therefore we have ker $(p_1f_A) = \mathfrak{m}_2$, that is, $p_1[A, \mathfrak{m}_2] = \{0\}$. Since A is arbitrary, we have $p_1[\mathfrak{m}_1, \mathfrak{m}_2] = \{0\}$.

Step 2. We claim $p_0[\mathfrak{m}_1, \mathfrak{m}_2] = \{0\}$. By the same procedure as step 1, we have ker $(p_0 f_A) = \{0\}$ or \mathfrak{m}_2 . Assume ker $(p_0 f_A) = \{0\}$. Since $p_0 f_A : \mathfrak{m}_2 \to \mathfrak{h}$ is injective, we have dim $(p_0 f_A(\mathfrak{m}_2)) = 4 = \dim \mathfrak{h}$, so we have $[A, \mathfrak{m}_2] = \mathfrak{h}$. On the other hand, $[A, \mathfrak{m}_2]$ is spaned by [A, X]'s $(X \in \mathfrak{m}_2)$ and we have

$$[A, X] = [A, -J^{2}X] = -[A, [E, JX]]$$
$$= -[E, [A, JX]] = 0,$$

because E belongs to the center of \mathfrak{h} . Thus we have $[A, \mathfrak{m}_2] = \{0\}$, which is a contradiction. Therefore, we have $p_0[A, \mathfrak{m}_2] = \{0\}$. Since A is arbitrary, we have $p_0[\mathfrak{m}_1, \mathfrak{m}_2] = \{0\}$.

Step 3. f_A is a linear map from \mathfrak{m}_2 to \mathfrak{m}_2 by step 1 and step 2, and f_A commutes with Ad(h) for any $h \in H$, so by Schur's Lemma, there exist linear maps $L_1, L_2: \mathfrak{m}_1 \rightarrow \mathbf{R}$ such that

$$f_A(X) = L_1(A)X + L_2(A)JX \qquad (X \in \mathfrak{m}_2). \quad \blacksquare$$

For a non-zero $A_1 \in \mathfrak{m}_1$, set $\mathfrak{m}'_1 = \mathbb{R}\{A_1 - L_2(A_1)E\}$. Since E belongs to the center of \mathfrak{h} , we have $[\mathfrak{m}'_1, \mathfrak{m}_2] = \{0\}$. It is trivial that

$$[A, X] = L_1(p_2(A))X \qquad (A \in \mathfrak{m}'_1, X \in \mathfrak{m}_2).$$

Thus we have a new decomposition of g:

$$\mathfrak{g}=\mathfrak{m}'\oplus\mathfrak{h}$$
 ,

(where $\mathfrak{m}' = \mathfrak{m}'_1 \oplus \mathfrak{m}_2$), according which we define a Lorentz inner product on \mathfrak{m}' as in §2. Then \mathfrak{m}_2 is spacelike and perpendicular to \mathfrak{m}'_1 , and we have Lemma 3.3'.

LEMMA 3.3'. $[\mathfrak{m}'_1, \mathfrak{m}_2] \subseteq \mathfrak{m}_2$. More precisely, there exists a linear map L'_1 : $\mathfrak{m}'_1 \rightarrow \mathbf{R}$ such that

$$[A, X] = L'_1(A)X \qquad (A \in \mathfrak{m}'_1, X \in \mathfrak{m}_2).$$

We use notations m, m_1 and L instead of m', m'_1 and L'_1 respectively.

LEMMA 3.4. (1) If $L \neq 0$, then $[\mathfrak{m}_2, \mathfrak{m}_2] = 0$. (2) If L=0, then $[\mathfrak{m}_2, \mathfrak{m}_2] \subseteq \mathfrak{h} \oplus \mathfrak{m}_1$.

PROOF. For any Z, $W \in \mathfrak{m}_2$, we have

$$Jp_{2}[Z, W] = p_{2}[JZ, W] + p_{2}[Z, JW]$$

by the equality

[E, [Z, W]] = [[E, Z], W] + [Z, [E, W]].

Therefore, for a basis X, JX, Y, JY of \mathfrak{m}_2 , we have

$$p_{2}[X, JX] = p_{2}[Y, JY] = 0$$

$$p_{2}[X, Y] + p_{2}[JX, JY] = 0$$

$$p_{2}[X, JY] + p_{2}[Y, JX] = 0,$$

so dim $p_2[\mathfrak{m}_2, \mathfrak{m}_2] \leq 2$. On the other hand, $p_2[\mathfrak{m}_2, \mathfrak{m}_2]$ is Ad(H)-invariant subspace of \mathfrak{m}_2 by (3.1). Thus we have $p_2[\mathfrak{m}_2, \mathfrak{m}_2] = \{0\}$, that is, $[\mathfrak{m}_2, \mathfrak{m}_2] \subseteq \mathfrak{h} \oplus \mathfrak{m}_1$. Thus, for any $X, Y \in \mathfrak{m}_2$, we can set $[X, Y] = U + A(U \in \mathfrak{h}, A \in \mathfrak{m}_1)$. Then, for $B \in \mathfrak{m}_1$, we have 2L(B)[X, Y] = [B, A] = 0. If $L \neq 0$, then [X, Y] = 0.

LEMMA 3.5. If L=0, then $\mathfrak{m}_1=\mathfrak{z}(\mathfrak{g})$ where $\mathfrak{z}(\mathfrak{g})$ is a center of \mathfrak{g} .

PROOF. Since $[\mathfrak{m}_1, \mathfrak{h}] = \{0\} = [\mathfrak{m}_1, \mathfrak{m}_2]$, it is trivial that $\mathfrak{m}_1 \subseteq \mathfrak{g}(\mathfrak{g})$.

Let Z be any vector in $\mathfrak{g}(\mathfrak{g})$. For any $X \in \mathfrak{m}_2$, we have $[p_0(Z), X] + [p_2(Z), X] = 0$. Since $[p_0(Z), X] \in \mathfrak{m}_2$ and $[p_2(Z), X] \in \mathfrak{h} \oplus \mathfrak{m}_1$, we have $[p_0(Z), X] = 0$, which implies $p_0(Z)=0$. We have $p_2(Z)=0$ by equalities $0=[E, Z]=Jp_2(Z)$. Therefore we have $Z \in \mathfrak{g}(\mathfrak{m}_1)$.

By the above argument, we have following possibilities;

- (i) $[m_1, m_2] = m_2$ $[m_2, m_2] = \{0\};$
- (ii) $[\mathfrak{m}_2, \mathfrak{m}_2] = \{0\}, \quad [\mathfrak{m}_2, \mathfrak{m}_2] \subseteq \mathfrak{h};$
- (iii) $[\mathfrak{m}_1, \mathfrak{m}_2] = \{0\}, [\mathfrak{m}_2, \mathfrak{m}_2] \subseteq \mathfrak{z}(\mathfrak{g}) = \mathfrak{m}_1;$
- (iv) $[\mathfrak{m}_1, \mathfrak{m}_2] = \{0\}, \quad p_0[\mathfrak{m}_2, \mathfrak{m}_2] \neq \{0\}, \quad p_1[\mathfrak{m}_2, \mathfrak{m}_2] \neq \{0\}.$

Case (ii). By the same way as in the proof of the Theorem B in [7], we have the space (1).

Case (i) and (iii). $\mathfrak{m}_1 \oplus \mathfrak{m}_2$ is an ideal in g. Let K be a connected Lie subgroup of G whose Lie algebra is \mathfrak{m} . Then K is a closed normal subgroup of G. Since the dimension of the isotropy subgroup of K at $o \in M$ is equal to $\dim (K \cap H) = \dim (\mathfrak{m} \cap \mathfrak{h}) = 0$, we have $\dim K(o) = \dim M$. Therefore K(o) is open in M. Since K is a normal subgroup of G, each K-orbit is open in M. By the connectedness of M, we have K(o) = M. Thus M is isometric to the Lie group K with a left invariant Lorentz metric. Since the sequence

$$1 \longrightarrow H \longrightarrow G \longrightarrow G/H = K(o) \longrightarrow 1$$

is exact and there exists a cross section $s: K(o) \rightarrow G$ such that $\pi s = id$. G is a semi-direct product of H=U(2) and M=K(o). Thus we have space (2).

Case (iv). Let C be a Lie subgroup of G whose Lie algebra is $\mathfrak{d}(\mathfrak{g}) = \mathfrak{m}_1$. Then C is a closed, commutative and normal subgroup of G, and acts on M freely (because $C \cap H = \{1\}$). Therefore, each C-orbit is a 1-dimensional closed submanifold and timelike (because \mathfrak{m}_1 is timelike).

LEMMA 3.6. The orbit space M/C has a differentiable manifold structure.

PROOF. Since *H* is compact and *C* is closed, *C* acts on *M* properly (c.f., [5], [11]). Then M/C is a Hausdorff space and satisfies the second countable axiom (c.f., [3]). Since each *C*-orbit C(x) of $x \in M$ is timelike, there exists an open set *V* in \mathbb{R}^4 such that a normal exponential map $\exp_x^{\perp}: V \to S = \exp_x^{\perp}(V)$ is a diffeomorphism and $\langle T_x S, T_x C(x) \rangle = 0$. Then M/C has a differentiable manifold structure (c.f., [3]).

By the same procedure as in the proof of Theorem 30.2 in [3], we have

LEMMA 3.7. $C \rightarrow M \rightarrow M/C$ is a principal fibre bundle with a structure group C.

We introduce a Riemannian metric h on M/C so that $p: M \to M/C$ is a semi-Riemannian submersion as follows: Let S(y) be a neighborhood of $y=p(\bar{y})$ in M/C and $\chi_{S(y)}$ be a local cross section from S(y) to M. We define a Riemannian metric $h_{S(y)}$ on S(y) by

$$h_{\mathcal{S}(y)}(X, Y) = \langle d\chi_{\mathcal{S}(y)}(X), d\chi_{\mathcal{S}(y)}(Y) \rangle \langle \chi_{\mathcal{S}(y)} \rangle$$

for any vector fields X and Y on M/C. Since $\chi_{S(y)}(x)$ and $\chi_{S(z)}(x)$ belong to the same C-orbit for $x \in S(y) \cap S(z)$, there exists $c \in C$ such that $c\chi_{S(y)}(x) = \chi_{S(z)}(x)$. Therefore we have

$$h_{S(z)}(X, Y)(x) = h_{S(y)}(X, Y)(x).$$

Thus $\{h_{S(y)}\}$ defines a Riemannian metric on M/C.

Hiroo Matsuda

G/C is an isometry group acting on M/C effectively and transitively, and the isotropy subgroup is H/C=H=U(2). So M/C is a simply connected 2-dimensional complex space form (c.f., [4]).

Thus M is a principal fibre bundle with an abelian structure group C of dimension 1, over a simply connected 2-dimensional complex space form. We complete the proof of the Theorem A.

REMARK 3.8. When $L \neq 0$, the space (2) in the Theorem A is isometric to the Lie group G_5 in [10] and G is a semi-direct product $U(2) \rtimes G_5$.

REMARK 3.9. By the similar way as the proof of the Theorem A, we have the following. Let (M, \langle , \rangle) be a simply connected 6-dimensional Lorentz manifold on which a connected isometry group G acts transitively. If the linear isotopy subgroup H at $o \in M$ acts on T_oM as $I_2 \times U(2)$, then (M, \langle , \rangle) is one of the following:

(1) (M, \langle , \rangle) is isometric to $(N_1 \times M_2, dt^2 + ds^2)$ where (M_1, dt^2) is a simply connected 2-dimensional Lie group with a left-invariant Lorentz metric dt^2 and (M_2, ds^2) is a 2-dimensional simply connected complex space form;

(2) (M, \langle, \rangle) is isometric to a simply connected 6-dimensional Lie group with a left-invariant Lorentz metric and G is isomorphic to a semi-direct product $U(2) \rtimes M$;

(3) (M, \langle , \rangle) is a principal fibre bundle, with a 2-dimensional abelian structure group, over a 2-dimensional simply connected complex space form.

4. Proofs of the Theorem B and Theorem C.

Let (M, \langle , \rangle) be a simply connected *n*-dimensional Lorentz manifold admitting a connected isometry group of dimension n(n-1)/2+1 (resp. (n-1)(n-2)/2+2) for n=3 (resp. n=4). By the Proposition 2.2, M is a simply connected homogeneous Lorentz manifold G/H and the linear isotropy subgroup is conjugate to $I_{n-2} \times SO(2)$. Then Ad(H) acts on m as $I_{n-2} \times SO(2)$, so there exist an (n-2)-dimensional subspace \mathfrak{m}_1 and a 2-dimensional subspace \mathfrak{m}_2 of m such that $\mathfrak{m}=\mathfrak{m}_1 \oplus \mathfrak{m}_2$, $Ad(H)=I_{n-2}$ on \mathfrak{m}_1 and Ad(H)=SO(2) on \mathfrak{m}_2 . By the same way as the proof of Lemma 3.1, we have

LEMMA 4.1. m_2 is spacelike and perpendicular to m_1 (therefore, m_1 is timelike).

Let p_0 , p_1 and p_2 be orthogonal projection from g to \mathfrak{h} , \mathfrak{m}_1 and \mathfrak{m}_2 respectively. Then by the same reason as in §3, we have

264

Homogeneous Lorentz manifolds

(4.1)
$$p_i A d(h) = A d(h) p_i$$
 (i=0, 1, 2)

for any $h \in H$. Since there exists $E \in \mathfrak{h}$ such that

$$Ad(\exp tE) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$$

on \mathfrak{m}_2 . We have

 $[E, X] = JX \quad (X \in \mathfrak{m}_2)$

where J is an almost complex structure on \mathfrak{m}_2 .

LEMMA 4.2. There exists linear maps $L_1, L_2: \mathfrak{m}_1 \rightarrow \mathbf{R}$ such that

$$[A, X] = L_1(A)X + L_2(A)JX$$

for any $A \in \mathfrak{m}_1$ and any $X \in \mathfrak{m}_2$.

PROOF. For any fixed $A \in \mathfrak{m}_1$, we define a linear map $f_A: \mathfrak{m}_2 \to \mathfrak{g}$ by $f_A(X) = [A, X](X \in \mathfrak{m}_2)$. By the same procedure as in the proof of Lemma 3.3, we have ker $(p_0 f_A) = \{0\}$ or \mathfrak{m}_2 . Suppose that ker $(p_0 f_A) = \{0\}$. Then $p_0 f_A: \mathfrak{m}_2 \to \mathfrak{h}$ is injective, so dim $\mathfrak{h} \ge 2$ which contradicts the fact that dim $\mathfrak{h} = 1$. Since A is arbitrary, we have $p_0[\mathfrak{m}_1, \mathfrak{m}_2] = \{0\}$. We can show $p_1[\mathfrak{m}_1, \mathfrak{m}_2] = \{0\}$ by the same way as in the proof of Lemma 3.3. Therefore we have Lemma 4.2 by Schur's Lemma.

Let A_1, \dots, A_{n-2} be a basis of \mathfrak{m}_1 such that $L_2(A_j)=0$ $(j \neq 1)$. Set $\mathfrak{m}'_1 = \mathbf{R}\{A_1-L_2(A_1)E, A_2, \dots, A_{n-2}\}$. Then we have a new decomposition $\mathfrak{g}=\mathfrak{h}\oplus\mathfrak{m}'$ (where $\mathfrak{m}'=\mathfrak{m}'_1\oplus\mathfrak{m}_2$) of \mathfrak{g} and we have

 $(4.3) \qquad [A'X] = L_1(p_1(A')X) \qquad (A' \in \mathfrak{m}'_1, X \in \mathfrak{m}_2).$

By the same procedure as in §3, m_2 is spacelike and perpendicular to m'_1 and we have

LEMMA 4.2'. There exists a linear map $L'_1: \mathfrak{m}'_1 \rightarrow \mathbf{R}$ such that

 $[A', X] = L'_1(A')X \qquad (A' \in \mathfrak{m}'_1, X \in \mathfrak{m}_2).$

We use the notation \mathfrak{m}_1 , \mathfrak{m} and L instead of \mathfrak{m}'_1 , \mathfrak{m}' and L'_1 respectively.

LEMMA 4.3. $[\mathfrak{m}_1, \mathfrak{m}_1] \subseteq \ker(L)$ for n=4.

PROOF. For any $A, B \in \mathfrak{m}_1$, we have

265

Hiroo Matsuda

$$Ad(h)p_{2}[A, B] = p_{2}[Ad(h)A, Ad(h)B]$$

= $p_{2}[A, B]$,

for any $h \in H$. Since Ad(H) acts on \mathfrak{m}_2 irreducibly, we have $p_2[A, B]=0$. Thus we can set $[A, B]=\alpha E+C$ (for some $\alpha \in \mathbb{R}$ and for some $C \in \mathfrak{m}_1$). For any $X \in \mathfrak{m}_2$, we have

$$[X, [A, B]] = [[X, A], B] + [A, [X, B]]$$
$$= L(A)L(B)X - L(A)L(B)X = 0$$

Thus we have

$$0 = [X, [A, B]] = [X, \alpha E + C] = -\alpha J X - L(C) X.$$

Since X and JX are linearly independent, we have $\alpha = 0$ and L(C) = 0, so we have [A, B] = C where $C \in \text{ker}(L)$.

LEMMA 4.4. (1) If $L \neq 0$, then $[m_2, m_2] = \{0\}$ (resp. $[m_2, m_2] \subseteq \ker(L)$) for n=3 (resp. n=4).

(2) If L=0, then $[\mathfrak{m}_2, \mathfrak{m}_2] \subseteq \mathfrak{h} \oplus \mathfrak{g}(\mathfrak{m}_1)$, where $\mathfrak{g}(\mathfrak{m}_1)$ is a center of \mathfrak{m}_1 in \mathfrak{m}_1 .

.PROOF. For any $X, Y \in \mathfrak{m}_2$, we can set $[X, Y] = U + A(U \in \mathfrak{h}, A \in \mathfrak{m}_1)$ by the same way as the proof of Lemma 3.4. Then for $B \in \mathfrak{m}_1$, we have 2L(B)[X, Y] = [A, B]. If $L \neq 0$, then [X, Y] = [B, A]/2L(B) for a nonzero B, so we have (1). If L=0, then [B, A]=0 for any $B \in \mathfrak{m}_1$, so $A \in \mathfrak{g}(\mathfrak{m}_1)$.

By the same way as the proof of Lemma 3.5, we have

LEMMA 4.5. If L=0, then $\mathfrak{z}(\mathfrak{m}_1)=\mathfrak{z}(\mathfrak{g})$ where $\mathfrak{z}(\mathfrak{g})$ is a center of \mathfrak{g} .

REMARK 4.6. If n=4, then dim $\mathfrak{m}_1=2$, so $\mathfrak{g}(\mathfrak{m}_1)=\{0\}$ or \mathfrak{m}_1 .

By the same way as in §3, we have Theorem B and Theorem C.

References

- [1] Bérard Bergery, L., Les espaces homogenes riemanniens de dimension 4, in "Séminaire Arthur Besse 1979/1979," Cedic-Fernand Nathan, Paris, 1981.
- [2] Ishihara, S., Homogeneous riemannian spaces of four dimension, J. Math. Soc. Japan 7 (1955), 345-370.
- [3] Kawakubo, K., "Theory of transformation groups," Iwanami Shoten, Tokyo, 1987.
- [4] Kobayashi, S. and Nagano, T., Riemannian manifolds with abundant isometries, in "Differential Geometry, in honor of K. Yano," Kinokuniya, Tokyo, 1972, pp.

266

195-219.

- [5] Koszul, J.L., "Lectures on Groups of Transformations," Tata Institute Fundamental Research, Bombay, 1965.
- [6] Matsuda, H., On *n*-dimensional Lorentz manifolds admitting an isometry group of dimension n(n-1)/2+1, Proc. of Amer. Math. Soc. 100 (1987), 329-334.
- [7] —, On *n*-dimensional Lorentz manifolds admitting an isometry group of dimension n(n-1)/2+1 for $n \ge 4$, Hokkaido Math. J. 15 (1986), 309-315.
- [8] —, On Lorentz manifolds with abundant isometries, Tsukuba J. Math. 13 (1989), 113-129.
- [9] Meyer, D., Representations lineaires en dimension inferieure ou egale a 4, in "Séminaire Arthur Besse 1978/1979," Cedic-Fernand, Paris, 1981.
- [10] Nomizu, K., The Lorentz-Poincaré metric on upper half-space and its extension, Hoddaido Math. J. 11 (1982), 253-261.
- [11] Palais, R.S., On the existence of slices for actions of non-compact Lie groups, Ann. of Math. 73 (1961), 295-323.

Department of Mathematics Kanazawa Medical University Uchinada-machi, Ishikawa, 920-02 Japan