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1. Introduction.

Let $(M, \langle, \rangle)$ be an n-dimensional connected Lorentz manifold with metric
$\langle, \rangle$ of signature $(--, +, \cdots, +)$ . In this note, we assume that an isometry
group has compact isotropy subgroup at every point in $M$.

In [8], we showed that, if $n\geqq 6$ , there is no r-dimensional isometry group
for $(n-1)(n-2)/2+3\leqq r\leqq n(n-1)/2-1$ , and we determined simply connected n-
dimensional Lorentz manifolds admitting an isometry of dimension $(n-1)(n-2)/2$

$+2$ for $n\geqq 6$ . However, there exists a 5-dimensional Lorentz manifold admitt-
ing a 9 $(=(5-1)(5-2)/2+3=5(5-1)/2-1)$-dimensional isometry group (see Re-
mark 1.3 in [8]). In \S 3, we will determine simply connected 5-dimensional
Lorentz manifolds admitting an isometry group of dimension 9. That is, we
have the following Theorem A.

THEOREM A. Let $(M, \langle, \rangle)$ be a simply connecled 5-dimensional Lorentz

manifold admitting a connected 9-dimensional isometry group $G$ with compact iso-
tropy subgroup at every point in M. Then $(M, \langle, \rangle)$ is one of the following:

(1) $(M, \langle, \rangle)$ is isometric to $(R\times M_{2}, -dt^{2}+ds^{2})$ where $(M_{2}, ds^{2})$ is a 2-
dimensional simply connected complex space form;

(2) $(M, \langle, \rangle)$ is isometric to a simply connected 5-dimensional Lie group with
a left-invariant Lorentz metric $\langle, \rangle$ and $G$ is isomorphic to a semi-direct product
$U(2)\rangle\triangleleft M$ ;

(3) $(M, \langle, \rangle)$ is a principal fibre bunale, with a l-dimensional structure group,
over a 2-dimensional simply connected complex space form.

In [6], [7], we determined n-dimensional Lorentz manifolds admitting an
isometry group of dimension $n(n-1)/2+1$ (for $n\geqq 4$). In \S 4, we will determine
simply connected n-dimensional Lorentz manifolds admitting a connected iso-
metry group of dimension $n(n-1)/2+1$ for $n=3$ . This is, we have the follow-
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ing Theorem B.

THEOREM B. Let $(M, \langle, \rangle)$ be a simply connected 3-dimensional Lorentz

manifola admilting a connected 4-dimensional isometry group $G$ with compact

isotropy subgroup at every point in M. Then $(M, \langle, \rangle)$ is one of the following:
(1) $(M, \langle, \rangle)$ is isometric to $(R\times M_{2}, -dt^{2}+ds^{2})$ where $(M_{2}, ds^{2})$ is a simply

connected 2-dimensional Riemannian space form;
(2) $(M, \langle, \rangle)$ is isometric to a simply connected 3-dimensional Lie group with

a left-invariant Lorentz metric and $G$ is isomorphic to a semi-direct product
$SO(2)\rangle\triangleleft M$ ;

(3) $(M, \langle, \rangle)$ is a principal fibre bundle, with a l-dimensional structure group,
over a simply connected 2-dimensional Riemannian space form.

In [8], we determined simply connected n-dimensional Lorentz manifolds $M$

admitting an isometry group of dimension $(n-1)(n-2)/2+2$ for $n\geqq 6$ . In \S 4,

we will determine simply connected n-dimensional Lorentz manifolds $M$ admit-
ting an isometry group of dimension $(n-1)(n-2)/2+2$ for $n=4$ . That is, we
will show the following Theorem C.

THEORFM C. Let $(M, \langle, \rangle)$ be a simply connected 4-dimensional Lorentz mani-

fold admitting a connected 5-dimensional isometry group $G$ with compact isotropy

subgroup at every point in M. Then $(M, \langle, \rangle)$ is one of the following;
(1) $(M, \langle, \rangle)$ is isometric to $(M_{1}\times M_{2}, ds_{1}^{2}+ds_{2}^{2})$ where $(M_{1}, ds_{1}^{2})$ is a simply

connected 2-dimensional Lie group with a left-invariant Lorentz metric $ds_{1}^{2}$ and
$(M_{2}, ds_{2}^{2})$ is a simply connected 2-dimensional Riemannian space form;

(2) $(M, \langle, \rangle)$ is isometric to a simply connected 4-dimensional Lie group with
a left-invariant Lorentz metric and $G$ is a semi-direct product $SO(2)xM$ ;

(3) $(M, \langle, \rangle)$ is a principal fibre bundle, with a 2-dimensional abelian struc-
ture group, over a simply connectea 2-dimensional Riemannian space form.

The author would like to express his thanks to the referee for his kind
advice.

2. Preliminaries.

Let $(M, \langle, \rangle)$ be a connected Lorentz manifold with metric $\langle, \rangle$ of signature
$(--, +, \cdots+)$ and let $G$ be a connected isometry group acting on $M$ such that
the isotropy subgroup $H$ at $0\in M$ is compact. Then the linear isotropy sub-
group $\tilde{H}=\{dh;h\in H\}$ is a closed subgroup of $0(1, n-1)=\{A\in GL(n, R);{}^{t}ASA$

$=S\}$ where $S$ is the matrix
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$\left(\begin{array}{ll}-1 & 0\\0 & l_{n-1}\end{array}\right)$

( $l_{n-1}$ is the unit matrix of degree $n-1$ ). So $\tilde{H}$ is conjugate to a closed sub-
group of $O(1)\times O(n-1)$ .

PROPOSITION 2.1. Let $(M, \langle, \rangle)$ be a simply connected 5-dimensional Lorentz

manifold admitting a 9-dimensional isometry group $G$ with compact isotropy sub-
group at every point in M. Then $G$ acts on $M$ transitively and the linear iso-
tropy subgroup is conjugate to $1\times U(2)$ .

PROOF. Suppose that $G$ does not act on $M$ transitively. Then $\dim G(0)\leqq$

$4(0\in M)$ . Hence the dimension of the isotropy subgroup $H$ at $0$ is not less
than 5. On the other hand, since $H$ is compact, the linear isotropy subgroup

is isomorphic to a subgroup of $0(1)\times 0(4)$ , so $\dim H\leqq 4(4-1)/2=6$ . Thus $ 5\leqq$

$\dim H\leqq 6$ . Then we have $\dim H=6(c.f., [2], [9])$ , so that we have $\dim G(0)$

$=3$ , which contradicts Lemma 1.2 in [8]. Therefore $G$ is transitive on $M$ .
Since $M$ is simply connected, $H$ is connected and the linear isotropy sub-

group $\tilde{H}$ is isomorphic to a subgroup of $1\times SO(4)$ . Since $\dim H=\dim G-\dim M$

$=4,\tilde{H}$ is conjugate to $1\times U(2)(c.f., [9])$ . $\blacksquare$

By the same way as the proof of Proposition 2.1, we have

PROPOSITION 2.2. Let $(M, \langle, \rangle)$ be a simply connected 4(resp. 3)-dimensional

Lorentz manifold admitting a 5(resp. 4)-aimensional isometry group with compact

isotropy subgroup at every point in M. Then $G$ acts on $M$ transitively and the
linear isotropy subgroup is conjugate to $l_{2}\times SO(2)$ (resp. $1\times SO(2)$).

In view of Propositions 2.1 and 2.2, we consider homogeneous Lorentz
manifolds $G/H=M$ ($H$ is the isotropy subgroup of $G$ at some point $0\in M$ ). We
denote Lie algebras of $G$ and $H$ by $\mathfrak{g}$ and $\mathfrak{h}$ respectively. Since $H$ is compact,

there exists a subspace $\mathfrak{m}$ of $\mathfrak{g}$ such that

$\mathfrak{g}=\mathfrak{h}\oplus \mathfrak{m}$ $[\mathfrak{h}, \mathfrak{m}]\subseteqq \mathfrak{m}$ .

Let $\pi:G\rightarrow G/H=M$ be the natural projection. We identify the tangent
space $T_{o}M$ and $\mathfrak{m}$ by $ d\pi$ . The Lorentz inner product on $T_{0}M$ induces the
Lorentz inner product $\langle, \rangle_{\mathfrak{m}}$ on $\mathfrak{m}$ so that $ d\pi$ : $\mathfrak{m}\rightarrow T_{o}M$ is a linear isometry.
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3. Proof of Theorem A.

Let $(M, \langle, \rangle)$ be a simply connected 5-dimensional Lorentz manifold admit-
ting a connected isometJy group $G$ of dimension 9. By the Proposition 2.1, $M$

is a simply connected homogeneous Lorentz manifold $G/H$ and the linear iso-
tropy subgroup is conjugate to $1\times U(2)$ . Then $Ad(H)$ acts on $\mathfrak{m}$ as $1\times U(2)$ , so
there exists a l-dimensional subspace $\mathfrak{m}_{1}$ and a 4-dimensional subspace $\mathfrak{m}_{2}$ of $\mathfrak{m}$

such that
$\mathfrak{m}=\mathfrak{m}_{1}\oplus \mathfrak{m}_{2}$

and $Ad(H)=id$ . on $\mathfrak{m}_{1}$ (so, $[\mathfrak{h},$ $\mathfrak{m}_{1}]=\{0\}$ ), $Ad(H)=U(2)$ on $\iota \mathfrak{n}_{2}$ . Since $U(2)$ acts
on $\mathfrak{m}_{2}$ irreducibly and contains $-I_{2}$ , we have Lemma 3.1 by using Schur’s
Lemma.

LEMMA 3.1. $\mathfrak{m}_{2}$ is spacelike and $\mathfrak{m}_{1}$ is perpendicular to $\mathfrak{m}_{2}$ (so, $\mathfrak{m}_{1}$ is time-
like).

Let $p_{0},$ $p_{1}$ and $p_{2}$ be orthogonal projections from $\mathfrak{g}$ to $\mathfrak{h},$
$\mathfrak{m}_{1}$ and $\mathfrak{m}_{2}$ respec-

tively. Since $\mathfrak{h},$
$\mathfrak{m}_{1}$ and $\mathfrak{m}_{2}$ are $Ad(H)$-invariant, we see

(3.1) $p_{i}Ad(h)=Ad(h)p_{i}$ $(l=0,1,2)$

for any $h\in H$. Since there exists $E\in \mathfrak{h}$ such that

$\Lambda d(\exp tE)=\left(\begin{array}{ll}costl_{2} & -sintI_{2}\\sintl_{2} & costl_{2}\end{array}\right)$

on $\mathfrak{m}_{2}$ , we have

(3.2) $[E, X]=JX$

for any $X\in \mathfrak{m}_{2}$ , where $J$ is an almost complex structure on $\mathfrak{m}_{2}$ .

REMARK 3.2. $E$ belongs to the center of $\mathfrak{h}$ .

LEMMA 3.3. $[\mathfrak{m}_{1}, \mathfrak{m}_{2}]\subseteqq \mathfrak{m}_{2}$ . More precisely, there exist linear maps $L_{1},$ $L_{2}$ :
$\mathfrak{m}_{1}\rightarrow R$ such that

$[A, X]=L_{1}(A)X+L_{2}(A)JX$

for any $A\in \mathfrak{m}_{1}$ and any $X\in \mathfrak{m}_{2}$ .

PROOF. For any fixed $A\in \mathfrak{m}_{1}$ , we define a linear map $f_{A}$ : $\mathfrak{m}_{2}\rightarrow \mathfrak{g}$ by $f_{A}(X)$

$=[A, X](X\in \mathfrak{m}_{2})$ . Since $Ad(H)=id$ . on $\mathfrak{m}_{1}$ , we have

(3.3) $f_{A}Ad(h)=Ad(h)f_{A}$
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for any $h\in H$. By (3.1) and (3.3), we have

(3.4) $(p_{i}f_{A})Ad(h)=Ad(h)(p_{i}f_{A})$ $(i=0,1,2)$

for any $h\in H$.
Step 1. We claim $p_{1}[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=\{0\}$ . Since $ker(p_{1}f_{A})$ is $Ad(H)$-invariant by

(3.4) and $Ad(H)$ acts on $\mathfrak{m}_{2}$ irreducibly, we have $ker(p_{1}f_{A})=\{0\}$ or $\mathfrak{m}_{2}$ . On the
other hand, there exist a non-zero $X\in \mathfrak{m}_{2}$ and $h\in H$ such that $Ad(h)X-X\neq 0$ .
We have $p_{1}f_{A}(Ad(h)X-X)=0$ , which implies that $Ad(h)X-X\in ker(p_{1}f_{A})$ .
Therefore we have $ker(p_{1}f_{A})=\mathfrak{m}_{2}$ , that is, $p_{1}[A, \mathfrak{m}_{2}]=\{0\}$ . Since $A$ is arbitrary,

we have $p_{1}[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=$ } $0$ }.
Step 2. We claim $p_{0}[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=\{0\}$ . By the same procedure as step 1, we

have $ker(p_{0}f_{A})=\{0\}$ or $\mathfrak{m}_{2}$ . Assume $ker(p_{0}f_{A})=\{0\}$ . Since $p_{0}f_{A}$ : $\mathfrak{m}_{2}\rightarrow \mathfrak{h}$ is
injective, we have $\dim(p_{0}f_{A}(\mathfrak{m}_{2}))=4=\dim \mathfrak{h}$ , so we have $[A, \mathfrak{m}_{2}]=\mathfrak{h}$ . On the
other hand, $[A, \mathfrak{m}_{2}]$ is spaned by $[A, X]s(X\in \mathfrak{m}_{2})$ and we have

$[A, X]=[A, -J^{2}X]=-[A, [E, JX]]$

$=-[E, [A, JX]]=0$ ,

because $E$ belongs to the center of $\mathfrak{h}$ . Thus we have $[A, \mathfrak{m}_{2}]=(0$ }, which is a
contradiction. Therefore, we have $p_{0}[A, \mathfrak{m}_{2}]=\{0\}$ . Since $A$ is arbitrary, we
have $p_{0}[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=\{0\}$ .

Step 3. $f_{A}$ is a linear map from $\mathfrak{m}_{2}$ to $\mathfrak{m}_{2}$ by step 1 and step 2, and $f_{A}$

commutes with $Ad(h)$ for any $h\in H$, so by Schur’s Lemma, there exist linear
maps $L_{1},$ $L_{2}$ : $\mathfrak{m}_{1}\rightarrow R$ such that

$f_{A}(X)=L_{1}(A)X+L_{2}(A)JX$ $(X\in \mathfrak{m}_{2})$ . $\blacksquare$

For a non-zero $A_{1}\in \mathfrak{m}_{1}$ , set $\mathfrak{m}_{1}^{\prime}=R\{A_{1}-L_{2}(A_{1})E\}$ . Since $E$ belongs to the
center of $\mathfrak{h}$ , we have $[\mathfrak{m}_{1}^{\prime}, \mathfrak{m}_{2}]=\{0\}$ . It is trivial that

$[A, X]=L_{1}(p_{2}(A))X$ $(A\in \mathfrak{m}_{1}^{\prime}, X\in \mathfrak{m}_{2})$ .

Thus we have a new decomposition of $\mathfrak{g}$ :
$\mathfrak{g}=\mathfrak{m}^{\prime}\oplus \mathfrak{h}$ ,

(where $\mathfrak{m}^{\prime}=\mathfrak{m}_{1}^{\prime}\oplus \mathfrak{m}_{2}$ ), according which we define a Lorentz inner product on $\mathfrak{m}^{\prime}$

as in \S 2. Then $\mathfrak{m}_{2}$ is spacelike and perpendicular to m\’i, and we have Lemma 3.3’.

LEMMA 3.3’. [m\’i, $\mathfrak{m}_{2}$] $\subseteqq \mathfrak{m}_{2}$ . More precisely, there exists a linear map $L_{1}^{\prime}$ :
$\mathfrak{m}_{1}^{\prime}\rightarrow R$ such that

$[A, X]=L_{1}^{\prime}(A)X$ $(A\in \mathfrak{m}_{1}^{\prime}, X\in \mathfrak{m}_{2})$ .
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We use notations $\mathfrak{m},$ $\mathfrak{m}_{1}$ and $L$ instead of $\mathfrak{m}^{\prime},$ $\mathfrak{m}_{1}^{\prime}$ and $L_{1}^{\prime}$ respectively.

LEMMA 3.4. (1) If $L\neq 0$ , then $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]=0$ .
(2) If $L=0$ , then $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]\subseteqq \mathfrak{h}\oplus \mathfrak{m}_{1}$ .

PROOF. For any $Z,$ $W\in \mathfrak{m}_{2}$ , we have

$Jp_{2}[Z, W]=p_{2}[JZ, W]+p_{2}[Z, JW]$

by the equality
$[E, [Z, W]]=[[E, Z],$ $W$] $+[Z, [E, W]]$ .

Therefore, for a basis $X,$ $JX,$ $Y,$ $JY$ of $\mathfrak{m}_{2}$ , we have

$p_{2}[X, JX]=p_{2}[Y, JY]=0$

$p_{2}[X, Y]+p_{2}[JX, JY]=0$

$p_{2}[X, JY]+p_{2}[Y, JX]=0$ ,

so $\dim p_{2}[\mathfrak{m}_{2}, \mathfrak{m}_{2}]\leqq 2$ . On the other hand, $p_{2}[\mathfrak{m}_{2}, \mathfrak{m}_{2}]$ is $Ad(H)$-invariant sub-
space of $\mathfrak{m}_{2}$ by (3.1). Thus we have $p_{2}[\mathfrak{m}_{2}, \mathfrak{m}_{2}]=\{0\}$ , that is, $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]\subseteqq \mathfrak{h}\oplus \mathfrak{m}_{1}$ .
Thus, for any $X,$ $Y\in \mathfrak{m}_{2}$ , we can set [X, $Y$ ] $=U+A(U\in \mathfrak{h}, A\in \mathfrak{m}_{1})$ . Then, for
$B\in \mathfrak{m}_{1}$ , we have $2L(B)[X, Y]=[B, A]=0$ . If $L\neq 0$ , then [X, $Y$ ] $=0$ . $\blacksquare$

LEMMA 3.5. If $L=0$ , then $\mathfrak{m}_{1}=\mathfrak{z}(\mathfrak{g})$ where $\partial(\mathfrak{g})$ is a center of $\mathfrak{g}$ .

PROOF. Since $[\mathfrak{m}_{1}, \mathfrak{h}]=\{0\}=[\mathfrak{m}_{1}, \mathfrak{m}_{2}]$ , it is trivial that $\mathfrak{m}_{1}\subseteqq \mathfrak{z}(\mathfrak{g})$ .
Let $Z$ be any vector in $\mathfrak{z}(\mathfrak{g})$ . For any $X\in \mathfrak{m}_{2}$ , we have $[p_{0}(Z), X]+[p_{2}(Z), X]$

$=0$ . Since $[p_{0}(Z), X]\in \mathfrak{m}_{2}$ and $[p_{2}(Z), X]\in \mathfrak{h}\oplus \mathfrak{m}_{1}$ , we have $[p_{0}(Z), X]=0$ ,
which implies $p_{0}(Z)=0$ . We have $p_{2}(Z)=0$ by equalities $0=[E, Z]=Jp_{2}(Z)$ .
Therefore we have $Z\in \mathfrak{z}(\mathfrak{m}_{1})$ . $\blacksquare$

By the above argument, we have following possibilities;

(i) $[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=\mathfrak{m}_{2}$ $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]=\{0\}$ ;

(ii) $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]=\{0\}$ , $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]\subseteqq \mathfrak{h}$ ;

(iii) $[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=\{0\}$ , $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]\subseteqq \mathfrak{z}(\mathfrak{g})=\mathfrak{m}_{1}$ ;

(iv) $[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=\{0\}$ , $p_{0}[\mathfrak{m}_{2}, \mathfrak{m}_{2}]\neq\{0\}$ , $p_{1}[\mathfrak{m}_{2}, \mathfrak{m}_{2}]\neq\{0\}$ .

Case (ii). By the same way as in the proof of the Theorem $B$ in [7], we
have the space (1).

Case (i) and (iii). $\mathfrak{m}_{1}\oplus \mathfrak{m}_{2}$ is an ideal in $\mathfrak{g}$ . Let $K$ be a connected Lie sub-
group of $G$ whose Lie algebra is $\mathfrak{m}$ . Then $K$ is a closed normal subgroup of
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$G$ . Since the dimension of the isotropy subgroup of $K$ at $0\in M$ is equal to
$\dim(K\cap H)=\dim(\mathfrak{m}\cap \mathfrak{h})=0$ , we have $\dim K(0)=\dim M$. Therefore $K(0)$ is open
in $M$. Since $K$ is a normal subgroup of $G$ , each K-orbit is open in $M$. By the
connectedness of $M$, we have $K(0)=M$. Thus $M$ is isometric to the Lie group
$K$ with a left invariant Lorentz metric. Since the sequence

$1\rightarrow H\rightarrow G\rightarrow G/H=K(0)\rightarrow 1$

is exact and there exists a cross section $s:K(0)\rightarrow G$ such that $\pi s=id$ . $G$ is a
semi-direct product of $H=U(2)$ and $M=K(0)$ . Thus we have space (2).

Case (iv). Let $C$ be a Lie subgroup of $G$ whose Lie algebra is $8(\mathfrak{g})=\mathfrak{m}_{1}$ .
Then $C$ is a closed, commutative and normal subgroup of $G$ , and acts on $M$

freely (because $C\cap H=\{1\}$ ). Therefore, each C-orbit is a l-dimensional closed
submanifold and timelike (because $\mathfrak{m}_{1}$ is timelike).

LEMMA 3.6. The orbit space $M/C$ has a differentiable manifold structure.

PROOF. Since $H$ is compact and $C$ is closed, $C$ acts on $M$ properly $(c.f.$ ,
[5], [11]). Then $M/C$ is a Hausdorff space and satisfies the second countable
axiom $(c. f., [3])$ . Since each C-orbit $C(x)$ of $x\in M$ is timelike, there exists an
open set $V$ in $R^{4}$ such that a normal exponential map $\exp_{x}^{\perp}:$ $V\rightarrow S=\exp_{x}^{\perp}(V)$ is
a diffeomorphism and $\langle T_{x}S, T_{x}C(x)\rangle=0$ . Then $M/C$ has a differentiable mani-
fold structure $(c.f., [3])$ . $\blacksquare$

By the same procedure as in the proof of Theorem 30.2 in [3], we have

LEMMA 3.7. $C\rightarrow M\rightarrow M/C$ is a principal fibre bundle with a structure
group $C$ .

We introduce a Riemannian metric $h$ on $M/C$ so that $p:M\rightarrow M/C$ is a
semi-Riemannian submersion as follows: Let $S(y)$ be a neighborhood of $y=p(\overline{y})$

in $M/C$ and $\chi_{S(y)}$ be a local cross section from $S(y)$ to $M$. We define a Rie-
mannian metric $h_{S(y)}$ on $S(y)$ by

$h_{S(y)}(X, Y)=\langle d\chi_{S(y)}(X), d\chi_{S(y)}(Y)\rangle(\chi_{S(y)})$

for any vector fields $X$ and $Y$ on $M/C$ . Since $\chi_{S(y)}(x)$ and $\chi_{S(z)}(x)$ belong to
the same C-orbit for $x\in S(y)\cap S(z)$ , there exists $c\in C$ such that $cx_{S(y)}(x)=$

$\chi_{S(z)}(x)$ . Therefore we have

$h_{S(z)}(X, Y)(x)=h_{S(y)}(X, Y)(x)$ .

Thus $\{h_{S(y)}\}$ defines a Riemannian metric on $M/C$ .



264 Hiroo MATSUDA

$G/C$ is an isometry group acting on $M/C$ effectively and transitively, and
the isotropy subgroup is $H/C=H=U(2)$ . So $M/C$ is a simply connected 2-
dimensional complex space form $(c.f., [4])$ .

Thus $M$ is a principal fibre bundle with an abelian structure group $C$ of
dimension 1, over a simply connected 2-dimensional complex space form. We
complete the proof of the Theorem A.

REMARK 3.8. When $L\neq 0$ , the space (2) in the Theorem $A$ is isometric to
the Lie group $G_{6}$ in [10] and $G$ is a semi-direct product $U(2)xG_{5}$ .

REMARK 3.9. By the similar way as the proof of the Theorem $A$ , we have
the following. Let $(M, \langle, \rangle)$ be a simply connected 6-dimensional Lorentz mani-
fold on which a connected isometry group $G$ acts transitively. If the linear
isotopy subgroup $H$ at $0\in M$ acts on $T_{o}M$ as $I_{2}\times U(2)$ , then $(M, \langle, \rangle)$ is one of
the following:

(1) $(M, \langle, \rangle)$ is isometric to $(N_{1}\times M_{2}, dt^{2}+ds^{2})$ where $(M_{1}, dt^{2})$ is a simply

connected 2-dimensional Lie group with a left-invariant Lorentz metric $dt^{2}$ and
$(M_{2}, ds^{2})$ is a 2-dimensional simply connected complex space form;

(2) $(M, \langle, \rangle)$ is isometric to a simply connected 6-dimensional Lie group
with a left-invariant Lorentz metric and $G$ is isomorphic to a semi-direct pro-
duct $U(2)\aleph M$ ;

(3) $(M, \langle, \rangle)$ is a principal fibre bundle, with a 2-dimensional abelian struc-
ture group, over a 2-dimensional simply connected complex space form.

4. Proofs of theTheorem $B$ and Theorem C.

Let $(M, \langle, \rangle)$ be a simply connected n-dimensional Lorentz manifold admit-
ting a connected isometry group of dimension $n(n-1)/2+1$ (resp. $(n-1)(n-2)/$

$2+2)$ for $n=3$ (resp. $n=4$). By the Proposition 2.2, $M$ is a simply connected
homogeneous Lorentz manifold $G/H$ and the linear isotropy subgroup is con-
jugate to $I_{n-2}\times SO(2)$ . Then $Ad(H)$ acts on $\mathfrak{m}$ as $I_{n-2}\times SO(2)$ , so there exist
an $(n-2)$-dimensional subspace $\mathfrak{m}_{1}$ and a 2-dimensional subspace $\mathfrak{m}_{2}$ of $\mathfrak{m}$ such
that $\mathfrak{m}=\mathfrak{m}_{1}\oplus \mathfrak{m}_{2}$ , $Ad(H)=I_{n-2}$ on $\mathfrak{m}_{1}$ and $Ad(H)=SO(2)$ on $\mathfrak{m}_{2}$ . By the same
way as the proof of Lemma 3.1, we have

LEMMA 4.1. $\mathfrak{m}_{2}$ is spacelike and perpendicular to $\mathfrak{m}_{1}$ (therefore, $\mathfrak{m}_{1}$ is time-
like).

Let $p_{0},$ $p_{1}$ and $p_{2}$ be orthogonal projection from $\mathfrak{g}$ to $\mathfrak{h},$
$\mathfrak{m}_{1}$ and $\mathfrak{m}_{2}$ respec-

tively. Then by the same reason as in \S 3, we have
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(4.1) $p_{i}Ad(h)=Ad(h)p_{i}$ $(i=0,1,2)$

for any $h\in H$. Since there exists $E\in \mathfrak{h}$ such that

$Ad(\exp tE)=(\cos t\sin t$ $-\sin t\cos t$

on $\mathfrak{m}_{2}$ . We have

(4.2) $[E, X]=JX$ $(X\in \mathfrak{m}_{2})$

where $J$ is an almost complex structure on $\mathfrak{m}_{2}$ .

LEMMA 4.2. There exists linear maps $L_{1},$ $L_{2}$ : $\mathfrak{m}_{1}\rightarrow R$ such that

$[A, X]=L_{1}(A)X+L_{2}(A)JX$

for any $A\in \mathfrak{m}_{1}$ and any $X\in \mathfrak{m}_{2}$ .

PROOF. For any fixed $A\in \mathfrak{m}_{1}$ , we define a linear map $f_{A}$ : $\mathfrak{m}_{2}\rightarrow \mathfrak{g}$ by $f_{A}(X)$

$=[A, X](X\in \mathfrak{m}_{2})$ . By the same procedure as in the proof of Lemma 3.3, we
have $ker(p_{0}f_{A})=\{0\}$ or $\mathfrak{m}_{2}$ . Suppose that $ker(p_{0}f_{A})=\{0\}$ . Then $p_{0}f_{A}$ : $\mathfrak{m}_{2}\rightarrow \mathfrak{h}$

is injective, so $\dim \mathfrak{h}\geqq 2$ which contradicts the fact that $\dim \mathfrak{h}=1$ . Since $A$ is
arbitrary, we have $p_{0}[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=\{0\}$ . We can show $p_{1}[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=\{0\}$ by the same
way as in the proof of Lemma 3.3. Therefore we have Lemma 4.2 by Schur’s
Lemma. $\blacksquare$

Let $A_{1},$
$\cdots,$ $A_{n-2}$ be a basis of $\mathfrak{m}_{1}$ such that $L_{2}(A_{j})=0(j\neq 1)$ . Set $\mathfrak{m}_{1}^{\prime}=$

$R\{A_{1}-L_{2}(A_{1})E, A_{2}, \cdots, A_{n- 2}\}$ . Then we have a new decomposition $\mathfrak{g}=\mathfrak{h}\oplus \mathfrak{m}^{\prime}$

(where $\mathfrak{m}^{\prime}=\mathfrak{m}_{1}^{\prime}\oplus \mathfrak{m}_{2}$ ) of $\mathfrak{g}$ and we have

(4.3) $[A^{\prime}X]=L_{1}(p_{1}(A^{\prime})X (A^{\prime}\in \mathfrak{m}_{1}^{\prime}, X\in \mathfrak{m}_{g})$ .
By the same procedure as in \S 3, $\mathfrak{m}_{2}$ is spacelike and perpendicular to $\mathfrak{m}_{1}^{\prime}$ and
we have

LEMMA 4.2’. There exists a linear map $L_{1}^{\prime}$ : $\mathfrak{m}_{1}^{\prime}\rightarrow R$ such that

$[A^{\prime}, X]=L_{1}^{\prime}(A^{\prime})X$ $(A^{\prime}\in \mathfrak{m}_{1}^{\prime}, X\in \mathfrak{m}_{2})$ .

We use the notation $\mathfrak{m}_{1},$ $\mathfrak{m}$ and $L$ instead of m\’i, $\mathfrak{m}^{\prime}$ and $L_{1}^{\prime}$ respectively.

LEMMA 4.3. $[\mathfrak{m}_{1}, \mathfrak{m}_{1}]\subseteqq ker(L)$ for $n=4$ .

PROOF. For any $A,$ $B\in \mathfrak{m}_{1}$ , we have
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$Ad(h)p_{2}[A, B]=p_{2}[Ad(h)A, Ad(h)B]$

$=p_{2}[A, B]$ ,

for any $h\in H$. Since $Ad(H)$ acts on $\mathfrak{m}_{2}$ irreducibly, we have $p_{2}[A, B]=0$ .
Thus we can set $[A, B]=\alpha E+C$ (for some $\alpha\in R$ and for some $C\in \mathfrak{m}_{1}$). For
any $X\in \mathfrak{m}_{2}$ , we have

[X, $[A,$ $B]$ ] $=[[X, A],$ $B$] $+[A, [X, B]]$

$=L(A)L(B)X-L(A)L(B)X=0$

Thus we have

$0=[X, [A, B]]=[X, \alpha E+C]=-\alpha JX-L(C)X$ .
Since $X$ and $JX$ are linearly independent, we have $\alpha=0$ and $L(C)=0$ , so we
have $[A, B]=C$ where $C\in ker(L)$ . $\blacksquare$

LEMMA 4.4. (1) If $L\neq 0$ , then $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]=\{0\}$ (resp. $[\mathfrak{m}_{2},$ $\mathfrak{m}_{2}]\subseteqq ker(L)$) for
$n=3$ (resp. $n=4$).

(2) If $L=0$ , then $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]\subseteqq \mathfrak{h}\oplus \mathfrak{z}(\mathfrak{m}_{1})$ , where $\mathfrak{z}(\mathfrak{m}_{1})$ is a center of $\mathfrak{m}_{1}$ in $\mathfrak{m}_{1}$ .

.PROOF. For any $X,$ $Y\in \mathfrak{m}_{g}$ , we can set [X, $Y$] $=U+A(U\in \mathfrak{h}, A\in \mathfrak{m}_{1})$ by the
same way as the proof of Lemma 3.4. Then for $B\in \mathfrak{m}_{1}$ , we have $2L(B)[X, Y]$

$=[A, B]$ . If $L\neq 0$ , then [X, $Y$] $=[B, A]/2L(B)$ for a nonzero $B$ , so we have
(1). If $L=0$ , then $[B, A]=0$ for any $B\in \mathfrak{m}_{1}$ , so $A\in 8(\mathfrak{m}_{1})$ . $\blacksquare$

By the same way as the proof of Lemma 3.5, we have

LEMMA 4.5. If $L=0$ , then $\partial(\mathfrak{m}_{1})=\mathfrak{z}(\mathfrak{g})$ where $\mathfrak{z}(\mathfrak{g})$ is a center of $\mathfrak{g}$ .

REMARK 4.6. If $n=4$ , then $\dim \mathfrak{m}_{1}=2$ , so $t(\mathfrak{m}_{1})=\{0\}$ or $\mathfrak{m}_{1}$ .

By the same way as in \S 3, we have Theorem $B$ and Theorem C.
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