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1. Introduction.

Let (M, <{,>) be an n-dimensional connected Lorentz manifold with metric
{,> of signature (—, 4+, ---, +). In this note, we assume that an isometry
group has compact isotropy subgroup at every point in M.
~ In [8], we showed that, if »=6, there is no »-dimensional isometry group
for (n—1)(n—2)/24+3<r<n(n—1)/2—1, and we determined simply connected 7-
dimensional Lorentz manifolds admitting an isometry of dimension (n—1)(n—2)/2
+2 for n=6. However, there exists a 5-dimensional Lorentz manifold admitt-
ing a 9 (=6—1)(5—2)/2+3=5(5—1)/2—1)-dimensional isometry group (see Re-
mark 1.3 in [8]). In §3, we will determine simply connected 5-dimensional
Lorentz manifolds admitting an isometry group of dimension 9. That is, we
have the following Theorem A.

THEOREM A. Let (M, <{,>) be a simply connected 5-dimensional Lorentz
manifold admitiing a connected 9-dimensional isometry group G with compact iso-
lropy subgroup at every point in M. Then (M, {,>) is one of the following :

(1) M, <,>) is isometric to (RXM,, —dt*+ds*) where (M,, ds®) is a 2-
dimensional simply connected complex space form;

@) M, <,>) is isomelric to a simply connected 5-dimensional Lie group with
a lefi-invariant Lorentz melric {,)> and G is isomorphic to a semi-direct product
UR@YxM;

B (M, <,>) is a principal fibre bundle, with a 1-dimensional structure group,

over a 2-dimensional simply connected complex space form.

In [6], [7], we determined n-dimensional Lorentz manifolds admitting an
isometry group of dimension n(n—1)/2+1 (for n=4). In §4, we will determine
simply connected n-dimensional Lorentz manifolds admitting a connected iso-
metry group of dimension n(n—1)/2+1 for n=3. This is, we have the follow-
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ing Theorem B.

THEOREM B. Let (M, {,)>) be a simply connected 3-dimensional Lorentz
manifola admilting a connected 4-dimensional isometry group G with compact
isotropy subgroup at every point in M. Then (M, {,>) is one of the following:

1) (M, <{,>) is isomelric to (RXM,, —dt*+ds?) where (M,, ds?) is a simply
connected 2-dimensional Riemannian space form;

(2) (M, <,>) is isometric to a simply connected 3-dimensional Lie group with
a left-invariant Lorentz metric and G is isomorphic to a semi-direct product
SOQ2)x M ;

(3) (M, <,>) is a principal fibre bundle, with a 1-dimensional structure group,

over a simply connecled 2-dimensional Riemannian space form.

In [8], we determined simply connected n-dimensional Lorentz manifolds M
admitting an isometry group of dimension (n—1)(n—2)/242 for n=6. In §4,
we will determine simply connected n-dimensional Lorentz manifolds M admit-
ting an isometry group of dimension (n—1)(n—2)/24+2 for n=4. That is, we
will show the following Theorem C.

THEORFM C. Let (M, <{,>) be a simply connected 4-dimensional Lorentz mani-
fold admitting a connected 5-dimensional isometry group G with compact isotropy
subgroup at every point in M. Then (M, <,)) is one of the following :

(1) (M, <,>) is isometric to (M, XM,, dsi+ds}) where (M,, ds}) is a simply
connected 2-dimensional Lie group with a lefi-invariant Lorentz metric ds} and
(M,, ds) is a simply connected 2-dimensional Riemannian space form;

(2) (M, <,>) is isomelric to a simply connecled 4-dimensional Lie group with
a left-invariant Loreniz meiric and G is a semi-direct product SO(2)X M,

(3) (M, <{,>) is a principal fibre bundle, with a 2-dimensional abelian struc-

ture group, over a simply connected 2-dimensional Riemannian space form.

The author would like to express his thanks to the referee for his kind

advice.

2. Preliminaries.

Let (M, {,>) be a connected Lorentz manifold with metric <, of signature
(—, 4, -+, +) and let G be a connected isometry group acting on M such that
the isotropy subgroup H at oM is compact. Then the linear isotropy sub-
group H={dh; heH} is a closed subgroup of O(1, n—1)={A=GL(n, R); *‘ASA
=S} where S is the matrix
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.

0 I

(I.-, is the unit matrix of degree n—1). So H is conjugate to a closed sub-
group of O(1)XO(n—1).

PROPOSITION 2.1. Let (M, <,>) be a simply connecled 5-dimensional Lorenlz
manifold admitting a 9-dimensional isometry group G with compact isotropy sub-
group at every point in M. Then G acts on M transitively and the linear iso-
tropy subgroup is conjugate to 1XU(2).

PROOF. Suppose that G does not act on M transitively. Then dim G(0)=
4(o=M). Hence the dimension of the isotropy subgroup H at o is not less
than 5. On the other hand, since H is compact, the linear isotropy subgroup
is isomorphic to a subgroup of O(1)X0O4), so dim H<4(4—1)/2=6. Thus 5<
dim H<6. Then we have dim H=6(c.f., [2], [9]), so that we have dim G(o)
=3, which contradicts Lemma 1.2 in [§]. Therefore G is transitive on M.

Since M is simply connected, H is connected and the linear isotropy sub-

group H is isomorphic to a subgroup of 1 X SO(4). Since dim H=dim G—dim M
=4, H is conjugate to 1xU®?) (c.f., [9]). =

By the same way as the proof of [Proposition 2.1, we have

PROPOSITION 2.2. Lel (M, {,>) be a simply connected 4(resp. 3)-dimensional
Lorentz manifold admitting a 5(resp. 4)-dimensional isometry group with compact
isotropy subgroup at every point in M. Then G acts on M transitively and the
linear isotropy subgroup is conjugate to 1, XSO(2) (resp. 1XSO(2)).

In view of Propositions 2.1 and 2.2, we consider homogeneous Lorentz
manifolds G/H=M (H is the isotropy subgroup of G at some point o= M). We
denote Lie algebras of G and H by g and }) respectively. Since H is compact,
there exists a subspace m of g such that

g=bHPm , [h, m]Sm.

Let #: G->G/H=M be the natural projection. We identify the tangent
space ToM and m by dx. The Lorentz inner product on 7T,M induces the
Lorentz inner product <, >, on m so that dz: m—T,M is a linear isometry.
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3. Proof of Theorem A.

Let (M, <{,>) be a simply connected 5-dimensional Lorentz manifold admit-

ting a connected isometly group G of dimension 9. By the [Proposition 2.1, M

is a simply connected homogeneous Lorentz manifold G/H and the linear iso-
tropy subgroup is conjugate to 1XU(2). Then Ad(H) acts on m as 1xXU(2), so
there exists a 1-dimensional subspace m, and a 4-dimensional subspace m, of m
such that

m=m,Pm,

and Ad(H)=id. on m, (so, [, m;1={0}), Ad(H)=U(2) on m,. Since U(2) acts
on m, irreducibly and contains —I,, we have by using Schur’s
Lemma.

LEMMA 3.1. m, is spacelike and wm, is perpendicular to m, (so, m, is time-
like).

Let po, p, and p, be orthogonal projections from g to ), m,; and m, respec-
tively. Since Y), m, and m, are Ad(H)-invariant, we see
3.1) piAd(h)=Ad(h)p: (=0, 1, 2)
for any hc H. Since there exists E<Y% such that

cos tl, —sin tl,
Ad(exptE)=

sin t1, cos t1,
on m,, we have

3.2) [E, X]1=]X

for any Xem,, where J is an almost complex structure on ms,.
REMARK 3.2. E belongs to the center of .

LEMMA 3.3. [m,, my]Em,. More precisely, there exist linear maps L., L,:
m,—R such that
[A, X]=L,(A)X+L(A)JX

for any A=m, and any X m,.

PROOF. For any fixed A=m,, we define a linear map f,: m,—g by f4(X)
=[A, X](Xem,). Since Ad(H)=id. on m,;, we have

3.3 faAd(h)y=Ad(h)f 4
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for any heH. By and (3.3), we have
(3.4) (psf)Ad(h)=Ad(h)(p:fs) (=0, 1, 2)

for any h<=H.

Step 1. We claim p,[m,, m,]={0}. Since ker (p,f.) is Ad(H)-invariant by
(3.4) and Ad(H) acts on m, irreducibly, we have ker (p,74)={0} or m,. On the
other hand, there exist a non-zero X&m, and h<H such that Ad(h)X—X=+0.
We have p,fi(Ad(h)X—X)=0, which implies that Ad(h)X—X<cker (p.ifa).
Therefore we have ker (p,f4)=m,, that is, p,[A, m,]={0}. Since A is arbitrary,
we have p,[m,, m,]=1}0}.

Step 2. We claim p,[m,;, m,]={0}. By the same procedure as step 1, we
have ker (pofa)={0} or m, Assume ker (pofs)={0}. Since pof.: m,—h is
injective, we have dim (pof4(m.))=4=dimY, so we have [4, m,]=}). On the
other hand, [A, m,] is spaned by [4, X]’s (X&m;) and we have

(4, X1=[A, —J)*X]=—[A4, [E, JX]]
=—[E, [4, JX]]=0,

because E belongs to the center of §). Thus we have [A4, m,]={0}, which is a
contradiction. Therefore, we have po[A, m,]={0}. Since A is arbitrary, we
have po[m,, m,]={0}.

Step 3. [, is a linear map from m, to m, by step 1 and step 2, and f,
commutes with Ad(h) for any heH, so by Schur’s Lemma, there exist linear
maps L,, L,: m;,—R such that

For a non-zero A,=m,, set mi=R{A,— L,(A,)E}. Since E belongs to the
center of §, we have [mj, m,|={0}. It is trivial that
[A, X1=Li(p:(ANX  (Asmi, Xem,).
Thus we have a new decomposition of g:
g=m'Py,
(where m’=m;Pm,), according which we define a Lorentz inner product on m’

as in § 2. Then m, is spacelike and perpendicular to m;, and we have Lemma 3.3

LEMMA 3.3'. [m{, m.]Sm,. More precisely, there exists a linear map Li:
m;—R such that
[A, X]=L{(A)X (A=smi, X=m,).
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We use notations m, m, and L instead of m’, m] and L] respectively.

LEMMA 3.4. (1) If L+0, then [wm,, m,]=0.
(2) If L=0, then [my, m;] SHPmM,.

PrOOF. For any Z, Wem,, we have

JD[Z, Wi=po[JZ, W]+ p.[Z, JW]
by the equality
LE, [Z, W]]l=[[E, Z1, W]+(Z, [E, W]1].

Therefore, for a basis X, JX, Y, JY of m,, we have
po[X, JX]1=p.[Y, JY]1=0
pL X, Y1+p.[JX, JY]=0
po[X, JY I+ p.[Y, JX]=0,

so dim p,[m,, m,]<2. On the other hand, p,[m,, m,] is Ad(H)-invariant sub-
space of m, by [(3.1) Thus we have p,[m,, m,]={0}, that is, [m,, m,] SHPm,.
Thus, for any X, Yem, we can set [X,Y]=U+AU&cH, A=m,). Then, for
Bem,, we have 2L(B)[X, Y]=[B, A]=0. If L+0, then [X,Y]=0. m

LEMMA 3.5. If L=0, then m,=3(g) where 3(g) is a center of g.

PROOF. Since [m,, §1={0}=[m,, m.], it is trivial that m,S3(g).

Let Z be any vector in 3(g). For any Xem,, we have [po(Z), X1+ [p:(Z), X]
=0. Since [psZ), X]Jem, and [p,(Z), X]=hPm,, we have [po(Z), X]=0,
which implies po(Z)=0. We have p,(Z)=0 by equalities 0=[E, Z]=] p,(2).
Therefore we have Z<=3(m,). m

By the above argument, we have following possibilities;
(i) [my, mel=m,  [m,, my]={0};

(ii) [my, mo]={0},  [m,, m:]EY;

(iii) [my, m]={0},  [m,, my] S3(g)=m,;

(iv) [my, me]={0},  polms, me]#{0},  pi[m,s, my]+{0}.

Case (ii). By the same way as in the proof of the Theorem B in [7], we

have the space (1).
Case (i) and (iii). m,Pm, is an ideal in g. Let K be a connected Lie sub-

group of G whose Lie algebra is m. Then K is a closed normal subgroup of
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G. Since the dimension of the isotropy subgroup of K at o=M is equal to
dim (KN H)=dim (mN))=0, we have dim K(o)=dim M. Therefore K (o) is open
in M. Since K is a normal subgroup of G, each K-orbit is open in M. By the
connectedness of M, we have K(0)=M. Thus M is isometric to the Lie group
K with a left invariant Lorentz metric. Since the sequence

l1—>H—-G—> G/H=K(0) —> 1

is exact and there exists a cross section s: K(0o)—G such that ws=id. G is a
semi-direct product of H=U(2) and M=K (o). Thus we have space (2).

Case (iv). Let C be a Lie subgroup of G whose Lie algebra is 3(g)=m,.
Then C is a closed, commutative and normal subgroup of G, and acts on M
freely (because CN\H={1}). Therefore, each C-orbit is a 1-dimensional closed

submanifold and timelike (because m, is timelike).
LEMMA 3.6. The orbit space M/C has a differentiable manifold structure.

PROOF. Since H is compact and C is closed, C acts on M properly (c.f.,
[5], [11I]). Then M/C is a Hausdorff space and satisfies the second countable
axiom (c.f., [3]). Since each C-orbit C(x) of x&M is timelike, there exists an
open set V' in R* such that a normal exponential map expi: V—S= expi(V) is
a diffeomorphism and <7.S, T.C(x)>=0. Then M/C has a differentiable mani-
fold structure (c.f., [3]). m

By the same procedure as in the proof of Theorem 30.2 in [3], we have

LEMMA 3.7. C—>M—-M/C is a principal fibre bundle with a structure
group C.

We introduce a Riemannian metric 2 on M/C so that p: M—M/C is a
semi-Riemannian submersion as follows: Let S(y) be a neighborhood of y=p(%)
in M/C and Xs¢,, be a local cross section from S(y) to M. We define a Rie-

mannian metric As¢,y on S(y) by
hsey (X, Y)=<KdXsy(X), dAscypp Y )N Xscy)

for any vector fields X and ¥ on M/C. Since Xs¢,»(x) and As¢,(x) belong to
the same C-orbit for x&S(y)N\S(z), there exists c¢=C such that cXs¢,(x)=
Xsr(x). Therefore we have

hsey (X, Y )(x)= hS(y)(Xy Y)(x).

Thus {hsc,,} defines a Riemannian metric on M/C.
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G/C is an isometry group acting on M/C effectively and transitively, and
the isotropy subgroup is H/C=H=U(2). So M/C is a simply connected 2-
dimensional complex space form (c.f., [4]).

Thus M is a principal fibre bundle with an abelian structure group C of
dimension 1, over a simply connected 2-dimensional complex space form. We
complete the proof of the Theorem A.

REMARK 3.8. When L +#0, the space (2) in the Theorem A is isometric to
the Lie group G; in and G is a semi-direct product U(2)x G..

REMARK 3.9. By the similar way as the proof of the Theorem A, we have
the following. Let (M, {,>) be a simply connected 6-dimensional Lorentz mani-
fold on which a connected isometry group G acts transitively. If the linear
isotopy subgroup H at oM acts on T,M as I,xXU(2), then (M, {,)) is one of
the following :

(1) (M, {,>) is isometric to (N, X M,, dt*+ds*) where (M,, dt*) is a simply
connected 2-dimensional Lie group with a left-invariant Lorentz metric d¢* and
(M,, ds?) is a 2-dimensional simply connected complex space form;

(2) (M, <,>) is isometric to a simply connected 6-dimensional Lie group
with a left-invariant Lorentz metric and G is isomorphic to a semi-direct pro-
duct U)X M;

(3) (M, <{,>) is a principal fibre bundle, with a 2-dimensional abelian struc-
ture group, over a 2-dimensional simply connected complex space form.

4, Proofs of theTheorem B and Theorem C.

Let (M, <,>) be a simply connected n-dimensional Lorentz manifold admit-
ting a connected isometry group of dimension n(n—1)/2+1 (resp. (n—1)}(n—2)/
24-2) for n=3 (resp. n=4). By the [Proposition 2.2, M is a simply connected
homogeneous Lorentz manifold G/H and the linear isotropy subgroup is con-
jugate to I,_,XSO(2). Then Ad(H) acts on m as I,_,XSO(2), so there exist
an (n—2)-dimensional subspace m; and a 2-dimensional subspace m, of m such
that m=m,Pm,, Ad(H)=I,_, on m;,; and Ad(H)=S0O(2) on m,. By the same
way as the proof of Lemma 3.1, we have

LEMMA 4.1. wm, is spacelike and perpendicular to m, (therefore, m, is time-
like).

Let po, p, and p, be orthogonal projection from g to §, m, and m, respec-
tively. Then by the same reason as in §3, we have
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4.1) piAd()=Ad(h)p; (=0, 1, 2)
for any heH. Since there exists E<} such that
cost  —sin t)

Ad(exp tE):(
sin ¢ cost

on m,. We have
4.2) [E, X1=JX (X=my)

where J is an almost complex structure on m,.

LEMMA 4.2. There exists linear maps L,, L,: m;—R such that
[4, X]1=L,(A)X+ L(A)J X

for any Ac=m, and any X&m,.

PrROOF. For any fixed A=m,, we define a linear map f,: my;—g by f(X)
=[A, X](X=m,;). By the same procedure as in the proof of we
have ker (pof4)={0} or m,. Suppose that ker (pofs)={0}. Then p,fs: m;—h
is injective, so dim =2 which contradicts the fact that dim§)=1. Since A is
arbitrary, we have p,[m,;, my]={0}. We can show p,[m,;, m,]={0} by the same
way as in the proof of Therefore we have by Schur’s
Lemma. m

Let A,, -, A,-, be a basis of m, such that L,(4;)=0 (f#1). Set m;=
R{A,— L,(A)E, A,, ---, A,-,}. Then we have a new decomposition g=HPm’
(where m’=m;@Pm,) of g and we have

(4.3) [A’X]=Li(p(ANX  (A'em;, Xem,).

By the same procedure as in §3, m, is spacelike and perpendicular to m; and
we have

LEMMA 4.2’. There exists a linear map L;: m{—R such that

[A’, X]=L{(ANX (A’emi, Xem,).
We use the notation m,;, m and L instead of m;, m’ and L] respectively.
LEMMA 4.3. [m,, m]Sker (L) for n=4.

Proor. For any A, Bem,, we have
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Ad(h)p[A, B]=p:[Ad(h)A, Ad(h)B]
=p2[A7 B:] »

for any h=H. Since Ad(H) acts on m, irreducibly, we have p,[A, B]=0.
Thus we can set [A, Bl=aE+C (for some a=R and for some C<m,). For
any Xem,, we have

[X, [A, B]1=[[X, A], B1+[A4, [X, B]]
= L(A)L(B)X— L(A)L(B)X=0

Thus we have

0=[X, [A, B]ll=[X, aE+C]l=—aJX—-L(C)X.

Since X and JX are linearly independent, we have a=0 and L(C)=0, so we
have [A4, B]=C where C<ker(L). ®

LEMMA 4.4. (1) If L+0, then [m,, my]={0} (resp. [m,, m,JSker (L)) for
n=3 (resp. n=4).
(2) If L=0, then [m,, m,] SHPs(m,), where 3(m,) is a center of m, in m,.

.PROOF. For any X, Yem, wecanset [X, Y]=U+AU<)h, A=m,) by the
same way as the proof of Lemma 3.4. Then for Bem,, we have 2L(B)[X, Y]
=[A, B]l. If L+0, then [X, Y]=[B, A]/2L(B) for a nonzero B, so we have
(1). If L=0, then [B, A]1=0 for any Bem,;, so A=j(m,). ®

By the same way as the proof of Lemma 3.5, we have
LEMMA 4.5. If L=0, then 3(m,)=3(g) where 3(g) is a center of g.
REMARK 4.6. If n=4, then dim m,=2, so 3(m,)={0} or m,.

By the same way as in §3, we have Theorem B and Theorem C.
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