HOMOGENEOUS LORENTZ MANIFOLDS WITH ISOTROPY SUBGROUP $U(2)$ OR $SO(2)$

Dedicated to Professor Tsunero Takahasi on his 60th birthday

By

Hiroo MATSUDA

1. Introduction.

Let (M, \langle, \rangle) be an n-dimensional connected Lorentz manifold with metric \langle , \rangle of signature $(-, +, \cdots, +)$. In this note, we assume that an isometry group has *compact* isotropy subgroup at every point in M .

In [\[8\],](#page-10-0) we showed that, if $n \geq 6$, there is no r-dimensional isometry group for $(n-1)(n-2)/2+3\leq r\leq n(n-1)/2-1$, and we determined simply connected ndimensional Lorentz manifolds admitting an isometry of dimension $(n-1)(n-2)/2$ $+2$ for $n \geq 6$. However, there exists a 5-dimensional Lorentz manifold admitting a 9 $(=(5-1)(5-2)/2+3=5(5-1)/2-1)$ -dimensional isometry group (see Remark 1.3 in $\lceil 8 \rceil$). In § 3, we will determine simply connected 5-dimensional Lorentz manifolds admitting an isometry group of dimension 9. That is, we have the following Theorem A.

THEOREM A. Let (M, \langle, \rangle) be a simply connected 5-dimensional Lorentz manifold admitting a connected 9 -dimensional isometry group G with compact isotropy subgroup at every point in M. Then (M, \langle, \rangle) is one of the following:

(1) (M, \langle, \rangle) is isometric to $(R\times M_{2}, -dt^{2}+ds^{2})$ where (M_{2}, ds^{2}) is a 2dimensional simply connected complex space form;

(2) (M, \langle, \rangle) is isometric to a simply connected 5-dimensional Lie group with a left-invariant Lorentz metric $\langle \cdot, \rangle$ and G is isomorphic to a semi-direct product $U(2)\rtimes M$;

(3) (M, \langle, \rangle) is a principal fibre bunale, with a l-dimensional structure group, over a 2-dimensional simply connected complex space form.

In $[6]$, $[7]$, we determined *n*-dimensional Lorentz manifolds admitting an isometry group of dimension $n(n-1)/2+1$ (for $n\geq 4$). In § 4, we will determine simply connected n -dimensional Lorentz manifolds admitting a connected isometry group of dimension $n(n-1)/2+1$ for $n=3$. This is, we have the follow-

Received June 4, 1991. Revised October 4, 1991.

ing Theorem B.

THEOREM B. Let (M, \langle, \rangle) be a simply connected 3-dimensional Lorentz manifola admitting a connected 4-dimensional isometry group G with compact isotropy subgroup at every point in M. Then (M, \langle , \rangle) is one of the following:

(1) (M, \langle, \rangle) is isometric to $(R\times M_{2}, -dt^{2}+ds^{2})$ where (M_{2}, ds^{2}) is a simply connected 2-dimensional Riemannian space form;

(2) (M, \langle, \rangle) is isometric to a simply connected 3-dimensional Lie group with a left-invariant Lorentz metric and G is isomorphic to a semi-direct product $SO(2)\rtimes M$;

(3) (M, \langle, \rangle) is a principal fibre bundle, with a 1-dimensional structure group, over a simply connected 2-dimensional Riemannian space form.

In [\[8\],](#page-10-0) we determined simply connected *n*-dimensional Lorentz manifolds M admitting an isometry group of dimension $(n-1)(n-2)/2+2$ for $n\geq 6$. In §4, we will determine simply connected *n*-dimensional Lorentz manifolds M admitting an isometry group of dimension $(n-1)(n-2)/2+2$ for $n=4$. That is, we will show the following Theorem C.

THEORFM C. Let (M, \langle, \rangle) be a simply connected 4-dimensional Lorentz manifold admitting a connected 5 -dimensional isometry group G with compact isotropy subgroup at every point in M. Then (M, \langle , \rangle) is one of the following:

(1) (M, \langle , \rangle) is isometric to $(M_{1}\times M_{2}, ds_{1}^{2}+ds_{2}^{2})$ where (M_{1}, ds_{1}^{2}) is a simply connected 2-dimensional Lie group with a left-invariant Lorentz metric ds_{1}^{2} and (M_{2}, ds_{2}^{2}) is a simply connected 2-dimensional Riemannian space form;

(2) (M, \langle, \rangle) is isometric to a simply connected 4-dimensional Lie group with a left-invariant Lorentz metric and G is a semi-direct product $SO(2) \rtimes M$;

(3) (M, \langle, \rangle) is a principal fibre bundle, with a 2-dimensional abelian structure group, over a simply connectea 2-dimensional Riemannian space form.

The author would like to express his thanks to the referee for his kind advice.

2. Preliminaries.

Let (M, \langle, \rangle) be a connected Lorentz manifold with metric \langle, \rangle of signature $(-, +, \cdots, +)$ and let G be a connected isometry group acting on M such that the isotropy subgroup H at $e \in M$ is compact. Then the linear isotropy subgroup $\widetilde{H}=\{dh;h\in H\}$ is a closed subgroup of $O(1, n-1)=\{A\in GL(n, R);$ 'ASA $= S$ where S is the matrix

$$
\begin{pmatrix} -1 & 0 \\ 0 & I_{n-1} \end{pmatrix}
$$

 $\left(I_{n-1} \right)$ is the unit matrix of degree $n-1$). So \tilde{H} is conjugate to a closed subgroup of $O(1)\times O(n-1)$.

PROPOSITION 2.1. Let (M, \langle, \rangle) be a simply connected 5-dimensional Lorentz manifold admitting a 9-dimensional isometry group G with compact isotropy subgroup at every point in M . Then G acts on M transitively and the linear isotropy subgroup is conjugate to $1\times U(2)$.

PROOF. Suppose that G does not act on M transitively. Then $\dim G(o)$ $4(o\in M)$. Hence the dimension of the isotropy subgroup H at o is not less than 5. On the other hand, since H is compact, the linear isotropy subgroup is isomorphic to a subgroup of $O(1)\times O(4)$, so $\dim H\leq 4(4-1)/2=6$. Thus $5\leq$ $\dim H \leq 6$. Then we have $\dim H=6(c,f., [2], [9])$, so that we have $\dim G(0)$ $=$ 3. which contradicts Lemma 1.2 in [\[8\].](#page-10-0) Therefore G is transitive on M.

Since M is simply connected, H is connected and the linear isotropy subgroup \tilde{H} is isomorphic to a subgroup of $1\times SO(4)$. Since $\dim H=\dim G-\dim M$ $=4$, \tilde{H} is conjugate to $1\times U(2)$ (c.f., [9]).

By the same way as the proof of [Proposition](#page-2-0) 2.1, we have

PROPOSITION 2.2. Let (M, \langle, \rangle) be a simply connected 4(resp. 3)-dimensional Lorentz manifold admitting ^a 5(resp. 4)-aimensional isometry group with compact isotropy subgroup at every point in M . Then G acts on M transitively and the linear isotropy subgroup is conjugate to $I_{2}\times SO(2)$ (resp. $1\times SO(2)$).

In view of Propositions [2.1](#page-2-0) and [2.2,](#page-2-1) we consider homogeneous Lorentz manifolds $G/H=M$ (*H* is the isotropy subgroup of G at some point $\rho \in M$). We denote Lie algebras of G and H by \mathfrak{g} and \mathfrak{h} respectively. Since H is compact, there exists a subspace \mathfrak{m} of \mathfrak{g} such that

$$
g = \mathfrak{h} \oplus \mathfrak{m}
$$
, $[\mathfrak{h}, \mathfrak{m}] \subseteq \mathfrak{m}$.

Let $\pi: G\rightarrow G/H=M$ be the natural projection. We identify the tangent space $T_{o}M$ and \mathfrak{m} by $d\pi$. The Lorentz inner product on $T_{o}M$ induces the Lorentz inner product $\langle , \rangle_{\mathfrak{m}}$ on \mathfrak{m} so that $d\pi : \mathfrak{m}\rightarrow T_{o}M$ is a linear isometry.

3. Proof of Theorem A.

Let (M, \langle, \rangle) be a simply connected 5-dimensional Lorentz manifold admitting a connected isometry group G of dimension 9. By the [Proposition](#page-2-0) 2.1, M is a simply connected homogeneous Lorentz manifold G/H and the linear isotropy subgroup is conjugate to $1\times U(2)$. Then $Ad(H)$ acts on \mathfrak{m} as $1\times U(2)$, so there exists a 1-dimensional subspace \mathfrak{m}_{1} and a 4-dimensional subspace \mathfrak{m}_{2} of \mathfrak{m} such that

$$
\mathfrak{m}\!=\!\mathfrak{m}_1\!\!\oplus\!\mathfrak{m}_2
$$

and $Ad(H)=id$. on \mathfrak{m}_{1} (so, [$\mathfrak{h}, \mathfrak{m}_{1}]=\{0\}$), $Ad(H)=U(2)$ on \mathfrak{m}_{2} . Since $U(2)$ acts on \mathfrak{m}_{2} irreducibly and contains $-I_{2}$, we have [Lemma](#page-3-0) 3.1 by using Schur's Lemma.

LEMMA 3.1. \mathfrak{m}_{2} is spacelike and \mathfrak{m}_{1} is perpendicular to \mathfrak{m}_{2} (so, \mathfrak{m}_{1} is timelike).

Let p_{0} , p_{1} and p_{2} be orthogonal projections from \mathfrak{g} to \mathfrak{h} , \mathfrak{m}_{1} and \mathfrak{m}_{2} respectively. Since \mathfrak{h} , \mathfrak{m}_{1} and \mathfrak{m}_{2} are $Ad(H)$ -invariant, we see

(3.1) $b_{i}Ad(h)=Ad(h)b_{i}$ $(i=0,1,2)$

for any $h \in H$. Since there exists $E \in \mathfrak{h}$ such that

$$
Ad \left(\exp tE \right) = \begin{pmatrix} \cos tI_2 & -\sin tI_2 \\ \sin tI_2 & \cos tI_2 \end{pmatrix}
$$

on \mathfrak{m}_{2} , we have

(3.2) $[E, X]=JX$

for any $X \in \mathfrak{m}_{2}$, where *J* is an almost complex structure on \mathfrak{m}_{2} .

REMARK 3.2. E belongs to the center of $\mathfrak{h}.$

LEMMA 3.3. $[\mathfrak{m}_{1}, \mathfrak{m}_{2}] \subseteq \mathfrak{m}_{2}$. More precisely, there exist linear maps L_{1} , L_{2} : $\mathfrak{m}_{1}\rightarrow R$ such that

$$
[A, X] = L_1(A)X + L_2(A)JX
$$

for any $A\in \mathfrak{m}_{1}$ and any $X\in \mathfrak{m}_{2}$.

PROOF. For any fixed $A \in \mathfrak{m}_{1}$, we define a linear map $f_{A} : \mathfrak{m}_{2} \rightarrow g$ by $f_{A}(X)$ $=[A, X](X\in \mathfrak{m}_{2})$. Since $Ad(H)=id$. on \mathfrak{m}_{1} , we have

$$
(3.3) \t\t f_A A d(h) = A d(h) f_A
$$

for any $h \in H$. By [\(3.1\)](#page-3-1) and (3.3), we have

(3.4)
$$
(p_i f_A) A d(h) = A d(h) (p_i f_A) \qquad (i=0, 1, 2)
$$

for any $h \in H$.

Step 1. We claim $p_{1}[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=\{0\}$. Since $\ker(p_{1}f_{A})$ is $Ad(H)$ -invariant by (3.4) and $Ad(H)$ acts on \mathfrak{m}_{2} irreducibly, we have $\ker(p_{1}f_{A})=\{0\}$ or \mathfrak{m}_{2} . On the other hand, there exist a non-zero $X\in \mathfrak{m}_{2}$ and $h\in H$ such that $Ad(h)X-X\neq 0$. We have $p_{1}f_{A}(Ad(h)X-X)=0$, which implies that $Ad(h)X-X\in \ker(p_{1}f_{A})$. Therefore we have $\ker\left(\frac{p_{1}f_{A}}{m_{2}}\right)=\mathfrak{m}_{2}$, that is, $p_{1}[A, \mathfrak{m}_{2}]=\{0\}$. Since A is arbitrary, we have $p_{1}[\mathfrak{m}_{1}, \mathfrak{m}_{2}]= \{ 0 \}.$

Step 2. We claim $p_0[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=\{0\}$. By the same procedure as step 1, we have $\ker(p_{0}f_{A}) = \{0\}$ or \mathfrak{m}_{2} . Assume $\ker(p_{0}f_{A}) = \{0\}$. Since $p_{0}f_{A} : \mathfrak{m}_{2} \rightarrow \mathfrak{h}$ is injective, we have $\dim\left(p_{0}f_{A}(\mathfrak{m}_{2})\right)=4=\dim \mathfrak{h}$, so we have $[A, \mathfrak{m}_{2}]=\mathfrak{h}$. On the other hand, $[A, \mathfrak{m}_{2}]$ is spaned by $[A, X]$'s ($X\in \mathfrak{m}_{2}$) and we have

$$
[A, X] = [A, -J^2X] = -[A, [E, JX]]
$$

= -[E, [A, JX]] = 0,

because E belongs to the center of \mathfrak{h} . Thus we have $[A, \mathfrak{m}_{2}]=\{0\}$, which is a contradiction. Therefore, we have $p_0[A, \mathfrak{m}_{2}] = \{0\}$. Since A is arbitrary, we have $p_{0}[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=\{0\}.$

Step 3. f_{A} is a linear map from \mathfrak{m}_{2} to \mathfrak{m}_{2} by step 1 and step 2, and f_{A} commutes with $Ad(h)$ for any $h \in H$, so by Schur's Lemma, there exist linear maps L_{1} , L_{2} : $\mathfrak{m}_{1}\rightarrow R$ such that

$$
f_A(X) = L_1(A)X + L_2(A)JX \qquad (X \in \mathfrak{m}_2).
$$

For a non-zero $A_{1} \in \mathfrak{m}_{1}$, set $\mathfrak{m}_{1}' = \mathbb{R}\{A_{1}-L_{2}(A_{1})E\}$. Since E belongs to the center of \natural , we have $[m'_1, m_2] = \{0\}$. It is trivial that

$$
[A, X] = L_1(p_2(A))X \qquad (A \in \mathfrak{m}'_1, X \in \mathfrak{m}_2).
$$

Thus we have a new decomposition of \mathfrak{g} :

$$
\mathfrak{g}\!=\!\mathfrak{m}'\!\oplus\!\mathfrak{h}\;,
$$

(where $\mathfrak{m}'=\mathfrak{m}'_{1} \oplus \mathfrak{m}_{2}$), according which we define a Lorentz inner product on \mathfrak{m}' as in § 2. Then \mathfrak{m}_{2} is spacelike and perpendicular to \mathfrak{m}'_{1} , and we have [Lemma](#page-3-2) 3.3'.

LEMMA 3.3'. \mathfrak{m}'_{1} , \mathfrak{m}_{2} \subseteq \mathfrak{m}_{2} . More precisely, there exists a linear map L'_{1} : $\mathfrak{m}_{1}^{\prime}\rightarrow R$ such that

$$
[A, X] = L'_1(A)X \qquad (A \in \mathfrak{m}'_1, X \in \mathfrak{m}_2).
$$

We use notations $\mathfrak{m}, \mathfrak{m}_{1}$ and L instead of \mathfrak{m}' , \mathfrak{m}'_{1} and L'_{1} respectively.

LEMMA 3.4. (1) If $L\neq 0$, then $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]=0$. (2) If $L=0$, then $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]\subseteqq \mathfrak{h}\bigoplus \mathfrak{m}_{1}$.

Proof. For any Z, $W \in \mathfrak{m}_{2}$, we have

$$
J p_{2}[Z, W] = p_{2}[JZ, W] + p_{2}[Z, JW]
$$

by the equality

 $[E, [Z, W]] = [E, Z], W] + [Z, [E, W]]$.

Therefore, for a basis X, JX , Y , JY of \mathfrak{m}_{2} , we have

$$
p_2[X, JX] = p_2[Y, JY] = 0
$$

$$
p_2[X, Y] + p_2[JX, JY] = 0
$$

$$
p_2[X, JY] + p_2[Y, JX] = 0,
$$

so dim $p_{2}[\mathfrak{m}_{2}, \mathfrak{m}_{2}]\leq 2$. On the other hand, $p_{2}[\mathfrak{m}_{2}, \mathfrak{m}_{2}]$ is $Ad(H)$ -invariant subspace of \mathfrak{m}_{2} by [\(3.1\).](#page-3-1) Thus we have $p_{2}[\mathfrak{m}_{2}, \mathfrak{m}_{2}]=\{0\}$, that is, $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]\subseteq \mathfrak{h}\bigoplus \mathfrak{m}_{1}$. Thus, for any X, $Y \in \mathfrak{m}_{2}$, we can set $[X, Y] = U + A(U \in \mathfrak{h}, A \in \mathfrak{m}_{1})$. Then, for $B \in \mathfrak{m}_{1}$, we have $2L(B)[X, Y]=[B, A]=0$. If $L\neq 0$, then $[X, Y]=0$.

LEMMA 3.5. If $L=0$, then $\mathfrak{m}_{1}=\mathfrak{z}(\mathfrak{g})$ where $\mathfrak{z}(\mathfrak{g})$ is a center of \mathfrak{g} .

PROOF. Since $[\mathfrak{m}_{1}, \mathfrak{h}]=\{0\}=[\mathfrak{m}_{1}, \mathfrak{m}_{2}]$, it is trivial that $\mathfrak{m}_{1}\subseteqq_{0}(g)$.

Let Z be any vector in $_{3}(\mathfrak{g})$. For any $X\in \mathfrak{m}_{2}$, we have $[p_{\mathfrak{g}}(Z), X]+[p_{\mathfrak{g}}(Z), X]$ $=0.$ Since $[p_{0}(Z), X] \in \mathfrak{m}_{2}$ and $[p_{2}(Z), X] \in \mathfrak{h}\oplus \mathfrak{m}_{1}$, we have $[p_{0}(Z), X] = 0$, which implies $p_{0}(Z)=0$. We have $p_{2}(Z)=0$ by equalities $0=[E, Z]=Jp_{2}(Z)$. Therefore we have $Z \in \mathfrak{z}(\mathfrak{m}_{1})$.

By the above argument, we have following possibilities;

- (i) $\mathfrak{m}_{1}, \mathfrak{m}_{2}]=\mathfrak{m}_{2} \mathfrak{m}_{2}, \mathfrak{m}_{2}=\{0\}$;
- (ii) $\mathfrak{m}_{2}, \mathfrak{m}_{2}=\{0\}, \qquad \mathfrak{m}_{2}, \mathfrak{m}_{2}\subseteq \mathfrak{h}$;
- (iii) \mathbb{m}_{1} , \mathbb{m}_{2}] = {0}, $\lceil \mathfrak{m}_{2}, \mathfrak{m}_{2}\rceil \subseteq \mathfrak{z}(\mathfrak{g})=\mathfrak{m}_{1}$;
- $(iv) \quad [\mathfrak{m}_{1}, \mathfrak{m}_{2}]=\{0\},$, $p_{0}[\mathfrak{m}_{2}, \mathfrak{m}_{2}]\neq\{0\}, \qquad p_{1}[\mathfrak{m}_{2}, \mathfrak{m}_{2}]\neq\{0\}.$

Case (ii). By the same way as in the proof of the Theorem B in [\[7\],](#page-10-2) we have the space (1).

Case (i) and (iii). $\mathfrak{m}_{1}\oplus \mathfrak{m}_{2}$ is an ideal in \mathfrak{g} . Let K be a connected Lie subgroup of G whose Lie algebra is $\mathfrak{m}.$ Then K is a closed normal subgroup of

G. Since the dimension of the isotropy subgroup of K at $o\!\in\!M$ is equal to $\dim(K\cap H)=\dim(\mathfrak{m}\cap \mathfrak{h})=0$, we have $\dim K(o)=\dim M$. Therefore $K(o)$ is open in M . Since K is a normal subgroup of G , each K -orbit is open in M . By the connectedness of M, we have $K(\rho)=M$. Thus M is isometric to the Lie group K with a left invariant Lorentz metric. Since the sequence

$$
1 \longrightarrow H \longrightarrow G \longrightarrow G/H = K(o) \longrightarrow 1
$$

is exact and there exists a cross section $s: K(\rho) \rightarrow G$ such that $\pi s = id$. G is a semi-direct product of $H=U(2)$ and $M=K(0)$. Thus we have space (2).

Case (iv). Let C be a Lie subgroup of G whose Lie algebra is $\mathfrak{z}(g)=\mathfrak{m}_{1}$. Then C is a closed, commutative and normal subgroup of G , and acts on M freely (because $C \cap H = \{1\}$). Therefore, each C-orbit is a 1-dimensional closed submanifold and timelike (because \mathfrak{m}_{1} is timelike).

LEMMA 3.6. The orbit space M/C has a differentiable manifold structure.

PROOF. Since H is compact and C is closed, C acts on M properly (c, f, g) [\[5\],](#page-10-3) [\[11\]\)](#page-10-4). Then M/C is a Hausdorff space and satisfies the second countable axiom (c. f., [3]). Since each C-orbit $C(x)$ of $x\in M$ is timelike, there exists an open set V in \mathbb{R}^{4} such that a normal exponential map $\exp_{x}^{\perp}: V\rightarrow S=\exp_{x}^{\perp}(V)$ is a diffeomorphism and $\langle T_{x}S, \, T_{x}C(x)\rangle{=}0.$ Then M/C has a differentiable manifold structure $(c, f, [3])$.

By the same procedure as in the proof of Theorem 30.2 in [\[3\],](#page-9-0) we have

LEMMA 3.7. $C\rightarrow M\rightarrow M/C$ is a principal fibre bundle with a structure group C.

We introduce a Riemannian metric h on M/C so that $p: M \rightarrow M/C$ is a semi-Riemannian submersion as follows: Let $S(y)$ be a neighborhood of $y=p(\overline{y})$ in M/C and $\chi_{S(y)}$ be a local cross section from $S(y)$ to M. We define a Riemannian metric $h_{S(y)}$ on $S(y)$ by

$$
h_{S(y)}(X, Y) = \langle d\chi_{S(y)}(X), d\chi_{S(y)}(Y)\rangle(\chi_{S(y)})
$$

for any vector fields X and Y on M/C . Since $\chi_{S(y)}(x)$ and $\chi_{S(z)}(x)$ belong to the same C-orbit for $x\in S(y)\cap S(z)$, there exists $c\in C$ such that $c\chi_{S(y)}(x)=$ $\chi_{S(z)}(x)$. . Therefore we have

$$
h_{S(z)}(X, Y)(x)=h_{S(y)}(X, Y)(x).
$$

Thus $\{h_{S(y)}\}$ defines a Riemannian metric on M/C .

264 Hiroo MATSUDA

 G/C is an isometry group acting on M/C effectively and transitively, and the isotropy subgroup is $H/C=H=U(2)$. So M/C is a simply connected 2dimensional complex space form $(c, f, \lceil 4 \rceil)$.

Thus M is a principal fibre bundle with an abelian structure group C of dimension 1, over a simply connected 2-dimensional complex space form. We complete the proof of the Theorem A.

REMARK 3.8. When $L\neq 0$, the space (2) in the Theorem A is isometric to the Lie group G_{δ} in [\[10\]](#page-10-5) and G is a semi-direct product $U(2)\rtimes G_{\delta}$.

REMARK 3.9. By the similar way as the proof of the Theorem A , we have the following. Let (M, \langle, \rangle) be a simply connected 6-dimensional Lorentz manifold on which a connected isometry group G acts transitively. If the linear isotopy subgroup H at $o\in M$ acts on $T_{o}M$ as $I_{2}\times U(2)$, then (M, \langle, \rangle) is one of the following:

(1) (M, \langle, \rangle) is isometric to $(N_{1}\times M_{2}, dt^{2}+ds^{2})$ where (M_{1}, dt^{2}) is a simply connected 2-dimensional Lie group with a left-invariant Lorentz metric dt^{2} and (M_{2}, ds^{2}) is a 2-dimensional simply connected complex space form;

(2) (M, \langle, \rangle) is isometric to a simply connected 6-dimensional Lie group with a left-invariant Lorentz metric and G is isomorphic to a semi-direct product $U(2)\rtimes M$;

(3) (M, \langle, \rangle) is a principal fibre bundle, with a 2-dimensional abelian structure group, over a 2-dimensional simply connected complex space form.

4. Proofs of theTheorem B and Theorem C.

Let (M, \langle, \rangle) be a simply connected *n*-dimensional Lorentz manifold admitting a connected isometry group of dimension $n(n-1)/2+1$ (resp. $(n-1)(n-2)/3$ 2+2) for $n=3$ (resp. $n=4$). By the [Proposition](#page-2-1) 2.2, M is a simply connected homogeneous Lorentz manifold G/H and the linear isotropy subgroup is conjugate to $I_{n-2}\times SO(2)$. Then $Ad(H)$ acts on \mathfrak{m} as $I_{n-2}\times SO(2)$, so there exist an $(n-2)$ -dimensional subspace \mathfrak{m}_{1} and a 2-dimensional subspace \mathfrak{m}_{2} of \mathfrak{m} such that $\mathfrak{m}=\mathfrak{m}_{1}\oplus \mathfrak{m}_{2}$, $Ad(H)=I_{n-2}$ on \mathfrak{m}_{1} and $Ad(H)=SO(2)$ on \mathfrak{m}_{2} . By the same way as the proof of [Lemma](#page-3-0) 3.1, we have

LEMMA 4.1. \mathfrak{m}_{2} is spacelike and perpendicular to \mathfrak{m}_{1} (therefore, \mathfrak{m}_{1} is timelike).

Let p_{0} , p_{1} and p_{2} be orthogonal projection from \mathfrak{g} to \mathfrak{h} , \mathfrak{m}_{1} and \mathfrak{m}_{2} respectively. Then by the same reason as in $\S 3$, we have

Homogeneous Lorentz manifolds 265

(4.1)
$$
p_i A d(h) = A d(h) p_i \qquad (i = 0, 1, 2)
$$

for any $h \in H$. Since there exists $E \in \mathfrak{h}$ such that

$$
Ad\left(\exp tE\right) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}
$$

on \mathfrak{m}_{2} . . We have

(4.2) $\lceil E, X \rceil = JX \quad (X \in \mathfrak{m}_{2})$

where J is an almost complex structure on \mathfrak{m}_{2} .

LEMMA 4.2. There exists linear maps L_{1} , L_{2} : $\mathfrak{m}_{1}\rightarrow R$ such that

$$
[A, X] = L1(A)X + L2(A)JX
$$

for any $A\in \mathfrak{m}_{1}$ and any $X\in \mathfrak{m}_{2}$.

PROOF. For any fixed $A \in \mathfrak{m}_{1}$, we define a linear map $f_{A}: \mathfrak{m}_{2} \rightarrow g$ by $f_{A}(X)$ $=[A, X](X\in \mathfrak{m}_{2})$. By the same procedure as in the proof of [Lemma](#page-3-2) 3.3, we have $\ker(p_{0}f_{A}) = \{0\}$ or \mathfrak{m}_{2} . Suppose that $\ker(p_{0}f_{A}) = \{0\}$. Then $p_{0}f_{A} : \mathfrak{m}_{2}\rightarrow \mathfrak{h}$ is injective, so $\dim \mathfrak{h}\geq 2$ which contradicts the fact that $\dim \mathfrak{h}=1$. Since A is arbitrary, we have $p_{0}[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=\{0\}$. We can show $p_{1}[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=\{0\}$ by the same way as in the proof of [Lemma](#page-3-2) 3.3. Therefore we have [Lemma](#page-8-0) 4.2 by Schur's Lemma. \blacksquare

Let A_{1}, \dots, A_{n-2} be a basis of \mathfrak{m}_{1} such that $L_{2}(A_{j})=0$ ($j\neq 1$). Set $\mathfrak{m}_{1}^{\prime}=\mathfrak{m}_{2}$ $\mathbf{R}\{A_{1}-L_{2}(A_{1})E, A_{2}, \cdots, A_{n- 2}\}\$. Then we have a new decomposition $\mathfrak{g}=\mathfrak{h}\oplus \mathfrak{m}^{\prime}$ (where $\mathfrak{m}^{\prime}=\mathfrak{m}_{1}^{\prime}\bigoplus \mathfrak{m}_{2}$) of \mathfrak{g} and we have

(4.3) $[A^{\prime}X]=L_{1}(p_{1}(A^{\prime})X \quad (A^{\prime}\in \mathfrak{m}_{1}^{\prime}, X\in \mathfrak{m}_{2}).$

By the same procedure as in § 3, \mathfrak{m}_{2} is spacelike and perpendicular to $\mathfrak{m}_{1}^{\prime}$ and we have

LEMMA 4.2'. There exists a linear map L_{1}^{\prime} : $\mathfrak{m}_{1}^{\prime}\rightarrow \mathbb{R}$ such that

 $[A^{\prime}, X]=L_{1}^{\prime}(A^{\prime})X \qquad (A^{\prime}\in \mathfrak{m}_{1}^{\prime}, X\in \mathfrak{m}_{2}).$

We use the notation \mathfrak{m}_{1} , \mathfrak{m} and L instead of \mathfrak{m}'_{1} , \mathfrak{m}' and L'_{1} respectively.

LEMMA 4.3. $\lceil \mathfrak{m}_{1}, \mathfrak{m}_{1} \rceil \subseteq \text{ker}(L)$ for $n=4$.

PROOF. For any $A, B \in \mathfrak{m}_{1}$, we have

266 Hiroo MATSUDA

$$
Ad(h)p_{2}[A, B] = p_{2}[Ad(h)A, Ad(h)B]
$$

$$
= p_{2}[A, B],
$$

for any $h\in H$. Since $Ad(H)$ acts on \mathfrak{m}_{2} irreducibly, we have $p_{2}[A, B]=0$. Thus we can set $[A, B] = \alpha E + C$ (for some $\alpha \in R$ and for some $C \in \mathfrak{m}_{1}$). For any $X \in \mathfrak{m}_{2}$, we have

$$
[X, [A, B]] = [[X, A], B] + [A, [X, B]]
$$

= $L(A)L(B)X - L(A)L(B)X=0$

Thus we have

$$
0=[X, [A, B]] = [X, \alpha E + C] = -\alpha JX - L(C)X.
$$

Since X and JX are linearly independent, we have $\alpha=0$ and $L(C)=0$, so we have $[A, B]=C$ where $C\in \text{ker}(L)$. \blacksquare

LEMMA 4.4. (1) If $L\neq 0$, then $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]=\{0\}$ (resp. $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]\subseteqq \ker(L)$) for $n=3$ (resp. $n=4$).

(2) If $L=0$, then $[\mathfrak{m}_{2}, \mathfrak{m}_{2}] \subseteq \mathfrak{h} \bigoplus_{\mathfrak{z}} (\mathfrak{m}_{1})$, where $\mathfrak{z}(\mathfrak{m}_{1})$ is a center of \mathfrak{m}_{1} in \mathfrak{m}_{1} .

PROOF. For any X, $Y \in \mathfrak{m}_{2}$, we can set $[X, Y] = U + A(U \in \mathfrak{h}, A \in \mathfrak{m}_{1})$ by the same way as the proof of [Lemma](#page-5-0) 3.4. Then for $B\in \mathfrak{m}_{1}$, we have $2L(B)[X, Y]$ $=[A, B]$. If $L\neq 0$, then $[X, Y] = [B, A]/2L(B)$ for a nonzero B, so we have (1). If $L=0$, then [B, A]=0 for any $B\in \mathfrak{m}_{1}$, so $A\in \mathfrak{z}(\mathfrak{m}_{1})$.

By the same way as the proof of [Lemma](#page-5-1) 3.5, we have

LEMMA 4.5. If $L=0$, then $\mathfrak{z}(\mathfrak{m}_{1})=\mathfrak{z}(\mathfrak{g})$ where $\mathfrak{z}(\mathfrak{g})$ is a center of \mathfrak{g} .

REMARK 4.6. If $n=4$, then $\dim \mathfrak{m}_{1}=2$, so $\mathfrak{z}(\mathfrak{m}_{1})=\{0\}$ or \mathfrak{m}_{1} .

By the same way as in $\S 3$, we have Theorem B and Theorem C.

References

- [1] Bérard Bergery, L., Les espaces homogenes riemanniens de dimension 4, in "Séminaire Arthur Besse 1979/1979," Cedic-Fernand Nathan, Paris, 1981.
- [2] Ishihara, S., Homogeneous riemannian spaces of four dimension, J. Math. Soc. Japan 7 (1955), 345-370.
- [3] Kawakubo, K., "Theory of transformation groups," Iwanami Shoten, Tokyo, 1987.
- [4] Kobayashi, S. and Nagano, T., Riemannian manifolds with abundant isometries, in "Differential Geometry, in honor of K. Yano," Kinokuniya, Tokyo, 1972, pp.

195-219.

- [5] Koszul, J. L., "Lectures on Groups of Transformations," Tata Institute Fundamental Research, Bombay, 1965.
- $\lceil 6 \rceil$ Matsuda, H., On *n*-dimensional Lorentz manifolds admitting an isometry group of dimension $n(n-1)/2+1$, Proc. of Amer. Math. Soc. 100 (1987), 329-334.
- [7] ––, On *n*-dimensional Lorentz manifolds admitting an isometry group of dimension $n(n-1)/2+1$ for $n\geq 4$, Hokkaido Math. J. 15 (1986), 309-315.
- [8] - , On Lorentz manifolds with abundant isometries, Tsukuba J. Math. 13 (1989), 113-129.
- [9] Meyer, D., Representations lineaires en dimension inferieure ou egale ^a 4, in "Séminaire Arthur Besse 1978/1979," Cedic-Fernand, Paris, 1981.
- [10] Nomizu, K., The Lorentz-Poincaré metric on upper half-space and its extension, Hoddaido Math. J. ¹¹ (1982), 253-261.
- [11] Palais, R.S., On the existence of slices for actions of non-compact Lie groups, Ann. of Math. 73 (1961), 295-323.

Department of Mathematics Kanazawa Medical University Uchinada-machi, Ishikawa, 920-02 Japan