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§ 1. Introduction and results.

Fedii studied hypoellipticity for operators of the form L=D3%+¢(x,)?D}
in R? and proved that L is hypoelliptic in R? if ¢(x,)=C>(R) and ¢(x,)>0
for x,#0. Hormander’s results in can not be applicable to L when ¢(x,)
has a zero of infinite order. Compared with higher dimensional cases, the
problem in R? becomes much simpler. So one can expect that one investigates
hypoellipticity for more general operators in R? In this paper we shall give
sufficient conditions of hypoellipticity for operators of the form P(x, D)=D?+
a(x)Di+B(x, D) in R? where x=(x,, x;)€R? a(x)eC>(R?) is non-negative
and B(x, D) is a properly supported classical pseudodifferential operator of
order 1. In doing so, we need general criteria for hypoellipticity, which are
improvements of ones obtained by Morimoto (see below).

Let us define the usual symbol classes S™;'°¢ and S7%. We say that a
symbol p(x, &) belongs to ST';'°¢ (resp. SP%) if p(x, &) =C=(T*R") and if for
any compact subset K of R"™ and for any multi-indices « and 8 (resp. for any
multi-indices @« and f there is Cg 3=Crk, q4,5>0 (resp. Cq 5>0) such that
[pB(x, £)| SCq p<E>™ ¢! for x€K and £ R™ (resp. for (x, §)&T*R"), where
me R, pE(x, £)=0¢DEp(x, &), Dy=—1i0,, <€>=(1+&|*"? and T*R™ is identified
with R*"X R™. We denote by L™, the set of the pseudodifferential operators
whose symbols belong to SP;'°c. Let P(x, D) L7* be a properly supported
pseudodifferential operator, and let z°=(x°, £)=T*R"\0 (= R"X(R"~\{0})). It
is said that P(x, D) is microhypoelliptic at z° if there is a conic neighbourhood
cy of z2° in T*R™0 such that WF(u"V=WF(Pu) v if ue9’, (R"). We
also say that P(x, D) is microhypoelliptic in a conic in a conic set Y(CT*R"\0)
(resp. in Q(CR™) if P(x, D) is microhypoelliptic at each (x, §)&9 (resp. at
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each (x, §) e @ X(R™*\{0})). We may assume that the symbol p(x, &) of P(x, D)
belongs to ST%. Assume that

(H) £°=(, -+, 0, 1)& R™ ana there are a conic neighborhood C of z in
T*R™\0, a conic smooth manifold ¥ in T*R"\0, n" N and a
vector subspace V of R™ ' such that z’< 2%, n’<n, P(x, D) is
microhypoelliptic in C\23 and T ,XN\W={0}, where W={(dx,d&’,0)
ET(T*R™)|0x;=0(n'<j=n) ana 6§'=(06&,, -+, 0§,-1)EV}
and 0x=(0x,, -+, 0Xy).

Denote by 7(0¢’) the orthogonal projection of 66’ R""' to the orthogonal
complement V* of V, and choose a real-valued symbol ¢(x”, §)&S7, such that
o(x”, &) is positively homogenous of degree 0 for [§|=1 and ¢(x”, §)=|x"—x""|®
+1n&)1%/6% near CN{|&]=1}, where x"=(Xxn' 41, =+, X0), X”=(x3r 41, ==+, X2),
and x7=0 if n’=n. Let A(£) be a real-valued symbol in S}, such that A(§)=
&> if £,=1£1/2=1 and <&§)/4=54(6)<2<§>. We put

Alx, &§)=As(x”, §)=As(x", &; a, N, s)
={—s+ap(x”, §)} log A§)+ N log (1+54(§))
for 0<0<1, a=0, N=0 and s=R. Note that |A{$(x”, &)|<C, <& 1'%
log (1+<&>) and e*4="O)=\,er St o
Define P4(x, D) by
P«x, D)y=e*4x”, D)P(x, D)e'(x”, D).

where e*4(x”, D) are pseudodifferential operators with symbols e*4¢z" &,

THEOREM 1.1. Assume that the condition (H) is satisfied, ana assume that
there are X,(x, £)e8S?, (k=1,2), ,eR (1£k<3), ae=0, No=0, and so= R such
that Xv(x, &) (k=1, 2) are positively homogeneous of degree 0 for |&|=1, X (2)=1
near z° and for any a=a. any N=ZN, and any s=s, there are ¥(x, £) S} ,,
80>0 (8,<1) and C>O0 such that ¥(x, &) is positively homogeneous of degree 0
for |&1=1, supp¥NE=@ ana

(1.1) 1X:(x, Dyl SC{IIPs(x, D)vlli,+ vl -2
+IIA=Xx, D))l +1¥(x, Dyv|.,}
if veCs and 0<0<00, where ||u|,=||<D>'ul| ana ||u| denoles the L?* norm of u.

Then 2°&WF(u) if uc9d’ and z2°WF(P(x, D)u).

REMARK. When one applies [Theorem 1.1, one must choose W in the con-
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dition (H) suitably. Whether can be shown or not may depend on the
choice of W,

Next let us restrict our consideration to operators of second order in R®.
We assume that P(x, D)=D3+a(x)D3+B(x, D) is a properly supported classical
pseudodifferential operator in R? such that a(x)eC*=(R? is non-negative and
B(x, D)e Li,. Let x°=R?, and let X, be a subset of R* such that x’=2, and
P(x, D) is microhypoelliptic in U,\2, for some neighborhood U, of x°.

THEOREM 1.2. (i) Assume that 3,N\U,={x"}. If there are a neighborhood
U of x* ana C>0 such that

(1.2) (Re Bi(x, 0, £1))*=Ca(x) for x€U ,

then P(x, D) is microhypoelliptic at x°, where B,(x, &) denotes the principal
symbol of B(x, D) which is positively homogeneous of degree 1. (ii) Assume that
SNU.C{xeR?| f(x)=0}, where f(x)eC'R? is real-valued, f(x°)=0 and
0f/0x'(x°)#0. If there are a neighborhooda U of x°, I=N and C>0 such that

(1.3) (Re Bi(x, 0, =1)2+(Im B:(x, 0, £1))*=Ca(x) for x<=U,
then P(x, D) is microhypoelliptic at x°.

Denote by @(R?) the power set of R?. We define the mapping 7: P(R*)—
P(R?) as follows: For A=®(R?), r(A) is a subset of A and x°cANt(A4) if
and only if a(x°)>0 or there are a neighborhood U of x° and f(x)eC'(R?)
such that (i) f(x%)=0, af/0x'(x°)#0 and ANUC{x<=R?| f(x)=0} and (ii)
holds if ANU={x"} and holds if ANU+#{x°}. The following Corollary
is an immediate consequence of [Theorem 1.2l

COROLLARY 1. P(x, D) is microhypoelliptic in R*N7,7/(S), where S=
{xe R?|a(x)=0}.

REMARK. We note that 7(R*CS. So we have N3 r/(R)=N3177(S).

Define §=U4cs,,<A)=AA, where S={xe R?|a(x)=0}. Then it is easy to see
that 7(§)=S§ and that AcS if ACS and 7(4)=A. Using transfinite induction,
we can prove the following

COROLLARY 2. P(x, D) is microhypoelliptic in R™\S. In particular, if there
is not a non-empty subset A of S satisfying t(A)=A, then P(x, D) is microhy-
poliiptic in RE.
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Next assume that a(0)=0 and that SNUC{x<= R?|x,=0} for some neigh-
borhood U of the origin in R? where S={x< R?|a(x)=0}. Put
AM)=inf{a(s, x,) | (s, x2)E[—c¢o, co] X [—Co, €o]
and +(s—1)=0} for co==+t=0,
B(t)=sup{|Re Bi(s, x5, 0, 1)| | (s, x2)& [—co, €o)] X [—Co, Co]
and +t=(t—s)=0} for co==+t=20,
I'(t)=sup{|Im B(s, x5, 0, 1)| | (s, x2)E [—co, co] X [—Co, Co]
and +t=(t—s)=0} for ¢co=+t=0,

where ¢, is a positive constant satisfying [—co, ¢o] X [—co, co]&U. Here A=B
means that the closure A of A is included in the interior B of B. It is easy
to see that A(t), B(t) and ['(t) are Lipschitz continuous functions defined on

[—c¢o, co]. Under the above assumptions [Theorem 1.2 can be improved as
follows :

THEOREM 1.3. (i) Assume that SNU={0}. If (1.2) holds or if there is I[N
such that

(1.4) Ao=lim sup;_o |2/ A()< oo,
(1.5) Bo=lim sup,_o|t|*'B@#)< oo,
(1.6) 214212 /1(1+ 1)} Ao B3/ I(I+ 1)<,

then P(x, D) is microhypoelliptic at the origin. (ii) Assume that (1.2) is valid or
(1.4)-(1.6) are valid. If (1.3) holds or if lim,.it*1'(t) log A(t)=0, then P(x, D) is
microhypoelliptic at the orgin.

The remainder of this paper is organized as follows. In §2 we shall give
the proof of [Theorem 1.1l. [Theorem 1.2 and [Corollary 2 will be proved in § 3.
In §4 we shall prove [['heorem 1.3, Further remark will be given in §5.

The author would like to express his gratitude to Professors M. Matsumura,
S. Wakabayashi and T. Hoshiro for helpful discussions.

§2. Proof of Theorem 1.1.

is a variant of in [4]. For completeness we
give the proof of in this section. Let u€9'(R") and put f=
P(x, D)u. We may assume that u&’"\H* for some s’ R, where H*(=H?*(R"))
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denotes the Sobolev space of order s. Let ¢, be a conic neighborhood of 2°
such that ¢, {|&l=1}&{(x, &) =C|Xx, E)=X.(X, £)=1}. Assume that there is
a conic neighborhood C, of 2z° such that C,&C, and WF(f)N\C,=@, where
C,&C, means C,N\{|&|=1}&C,. Then it follows from the assumytion (H) that
WE(u)NAC,\W=@, where W={(xo, A&)|A>0}+W={(x"+x, A&°+8&)|(x, )W,
A>0} and aC, denotes the boundary of C,, modifying ¢ if necessary. Choose
Xx, §)=S2 . so that X(x, & is positively homogenenous of degree 0 for |[&|=1.
X(z2)=1 near z°, suppXN{|é|=1}&C;, and WF(f)NnsuppAN{|&|=1}=@. Then
we have WF(u)N\WNsupp dXN{|&]=1}=@. Therefore there is ¢>0 such that
(x, )& WF(u) if (x, §)csuppdX, |§1=1 and ¢(x”, §)<2¢. For a fixed o>s'
we can choose a=a, and s=s, so that ae—s>/[,+m—1—s’ and ae/2—s<l,—o.
Moreover choose N=N, so that N>s—s'+max{l,+m, {,—1, {;}. It follows from
calculus of pseudodifferential operators that there is Qs(x”,&) (=Qsx”,&; a, N, s))
such that

le’(x”, D)Qs(x", Dye~*(x", D)g—glly=Ca,n.s,,(8)

for pe R and geH=(=\U,cgH"). Here and after the constants do not depend
on 0 (0<1) if not stated. Put

va(x)=Qs(x", D)e~4(x”, D)X(x, D)u .
Then we have

le(x”, Dws—X(x, D)ull,<Ca n.s (1),

| Ps(x, Dyvs—e 4x", DyX(x, D)f—e~4(x”, D)LP, X]ull )< Ca, n.s o(u)
for any pe R, where [P, XJu=(P((x, D)X(x, D)—X(x, D)P(x, D))u. Since u is
in C~ near {(x, §) | p(x”, §)<3e¢, (x, §)&supp dX and |§|=1} and —s+ap(x”,§)
>l+m—1—s" if ¢o(x”, §)=e, we have
I PaCx, D)vslli,<Ca, w,s(u) .

Noting that vpss Hmaxtlztm.le-1.ls) for §>0 and that is also valld for vs=
Hmax(lz+m.lz-1.13}’ we have

1X:(x, Dyvsll,=Ca,n.s(u)  for 0<6=0,

where 0,>0 is as in [Theorem 1.1. In fact, we have [[((1—X.(x, D)vs|;,<
Cho v.s(u), since supp (1—%y(x, &) Nsupp XN {|é]=1}=@. We have also

1&(x, D)Ua”tsé Ca, wv.s(u),

since u is in C* near supp ¥ Nsupp XN {|&] =1} by the assumption (H). There-
fore, we have ||v5lill<éa,1v,s(u) for 0<0=<d,. This implies that v;—v, weakly

in H' as 0—0 and that v, H'. Let ¥(x, &) is positively homogeneous of de-
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gree 0 for |&/=1 and suppX(x, H)N{|&|1=1}&{(x, &) | X(x, §)=1 and ¢(x”, &)
<e/2}. Then, noting that —s+a@)x”, §)<l,—0o if o(x”, §)<e/2, we have
X(x, D)uc H°. This proves [Theorem 1.1

§3. Proofs of Theorem 1.2. and Corollary 2.

In this section we shall prove applying [Theorem 1.1, and
by transfinite induction. Recall that P(n, D)=D?+a(x)D}+B(x, D)
is an operator in R? a(x)=0 and B(x, D) L},. We may assume that a(x)s
B>(R? and B(x, §)=S!, Let x°=R? andlet ¥yand U, be as in §1. Assume
that Yo N\U.,C{x< R?| f(x)=0}, where f(x)e C!(R?) is real-valued, f(x%)=0 and
0f/0x.(x%)+0. It is sufficient to prove that P(x, D) is microhypoelliptic at z'=
(x%; 0, =1). We shall show that P(x, D) is microhypoelliptic at (x°; 0, 1). Note
that microhypoelliptic at (x°; 0, —1) can be similarly proved. Choose a real-
valued ¢(t)e B8=(R) so that ¢(t)=0 when Y N\U,={x°}, and ¢(t)=(t—x3)* near
t=x3 when Y \U.#{x°}. We put

A(x, §)=As(x, E)=As(x, &; a, N, s)={—s+ap(x.)}log A(§)+ N log (1+04(&))

for 0<0<1, a=0, N=0 and s= R, where A(§) is defined in §1. Then there
is a conic neighborhood C of (x° 0, 1) in T*R>\0 such that

Ax & { —slog <&:>+Nlog (140¢6.>)  if YonUo={x"},
x, &)=

{—s+a(x,—x3)*}log <&:>+ Nlog (1+40<¢&2>) if YoNUo+#{x°}
near CN{|&|=2}. Write pg,=pe,(x, §)=0p/08:(x, §), ---. A simple calculation
yields

PA(x’ $)=(1+Q(x: &))p(x; E)+z.(/1€2p$2—Arzp€2)+AzzA€262ng
+A52Al'z-'zp€z+Aezszplez_(A§2+A1212)p€z€2]
+Rl(x’ $)+R2(x; 5);

where q(x, §)=iA,Ae,—(Aek—Agye N A2i4 Az ,2)/2€ ST/ (p>0), Ri(x, §)ESt.o,
and Ry(x, ES%e, supp RNCN{IE122}=0, |RB(x, &) <Ca,p<E*1*' and
| R:(8(x, &)| <C, 5<6>7'«'. Hereafter the constants do not depend on § if not
stated. Since [14+¢(x, &)|=1/2 for |§|=Ca, v, >1, there is Q(x, §)€ S}, such
that Q(x, &)(1+q(x, &))=1 for |&|=Cq, n.s. Define Pi(x, D)=Q(x, D)P4(x, D).
Then we have
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By(x, &)=&=a(x)&i+Re Bi(x, &)+ A, Im By(x, E)4+-24:, A, a(x(&,
F2 45,4200, (%)E— (A o5+ Az ye,)a(x)—2i A ,a(x)E,
+ir(x, O+ Ri(x, +Rix, &  for |£1=1,

where B,(x, &) denotes the principal symbol of B(x, &), r(x, &) S}, is real-
valued, [7{8(x, §)| <Cq 5<&>* ', and Ri(x, &) and Ry(x, &) have the same pro-
perties as Ri(x, §) and R,(x, §), respectively. Write B,(x, §)=8.(x, 0, 1)§;+
Bo(x, £)&,, where fo(x, £ is positively homogeneous of degree 0. Then we
have

B.1)  Pyx, O=3F+a(x)E+Re fi(x, 0, Dértex, O)i+ei(x, Ealx)log A©)
+ex(x, §a(x)(log A())*+es(x, £) Im Bi(x, 0, 1) log A(§)
+ei(x, Haz,(x) log AE)+iex, §a(x)é. log A(§)
+ir(x, )+ Ri(x, §)+Ra(x, §)  for [§1=1,

where ¢;(x, £) S}, (0<7<5) are real-valued, e.(x, §)=0 if 1<k <5 and XNU,
={x°}, and e;(x, &)=es(x) does not depend on &.

LEMMA 3.1. Assume thai there are X(x, £) S}, T(x)E B°(R?), ao=0, No=0
and s,=R such that X(x, &) is positively homogeneous of degree 0 for |£|=1,
Xx, &)=1 near (x,, 0, 1), supp¥N\Yi=@ and the bollowing property holds; for
any a=a,, any N=N, and any s=s, there are 0,>0 (0,<1), Co> and C>0
such that (3.2) Re (Py(x, D), v)=ColDwl|2—C {|lv]2+|A—X(x, D)v|3+ ¥ (x)v|3}
if velCs and 0<0<8y. Then (x° 0, V)&EeWF(u) if us®’ ana (x° 0, )&
WF(P(x, Dyu).

PROOF. Note that the condition (H) in §1 is satisfied with X={(x, §)=
T*R*>0 | x=2%, and &,=0} and W={(0x, 8¢, 0)=T ,(T*R?) | 6x,=0}, where
2"=(x° 0, 1). Applying the implicit function theorem, we can write {x&U |
F(x)=0}={(g(xs), x2)—|x.—x3| <c}, where U is a neighborhood of x°, g(t)e
CY(x3—c, x34+c) and ¢>0. Choose T(#)=C%(R) so that 0¥ ()1, T()=1 if
[t| <1/2 and supp T@)C{|t|<1}. For d>0, write v=v,+v,+v,;, where veCs,
D= ((x1—g(x:))/ DT (22— x3)/ ), v2=(1—T((x1—g(x:))/ AN (x:—x8)/CIv, V3=
A—=T(x;—x%/c))v. Applying Poincare’s inequality to v,, we have ||
vV 2d|Dwl. Since supp 1—T((x,—g(x:))/dNT(x:—x3)/c)NZ o=, there are
Ty x)e 3°(R? and Cy;>0 such that supp¥.sn2e=0 and |v,|| < Co||¥ a(x)v|;.
Therefore, for any ¢>0 there are d>0 and C>0 such that

(3.3) lol*<ell Dwli*+ CHIIA—T ((xe—x8)/Nvl*+ ¥ o(xll}}  for veCT.
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Since Re (ﬁA(x, Dy, v)ZXC||Ps(x, D|2+|lv]|?, it follows from (3.2) and (3.3) that

Il < CalllPa(x, Dyl +I|(1=X(x, D)vllz+ 1A= (x:—x2)/)vls
HI¥ (vl + 1 o(x)]l:}

if veCg and 0<d<d,, where 0<d«1l. So we can apply [Theorem 1.1 and
prove the lemma.

Next we shall prove that (3.2) holds in the cases (i) and (ii) in
1.2, respectively. We need the following

LEMMA 3.2. For any £>0 there exists C.>0 such that

|Re (ei(x, D)a(x)(log A(D))v, v)|
ZLe(a(x)Dev, Do)+ CAllvlI*4- 1(1—=X(x, D)vli}} for v=C5.

PROOF. Choose X(x, §)S}, so that suppX&CN{|§|=2}. Then we can
write

e(x, D)a(x) log AD)=T{**®a(x)D,+T5°(1—X(x, D)) mod L-1}f

if 0<p<1, where T§* (j=1, 2) means the pseudodifferential operators with the
symbols in S¥,. Hence, for any ¢>0 we have

|Re (ex(x, D)a(x)(log A(D))v, v)
< |Re (T{'*Pa(x)Dw, v)| +|Re (T5(1—=X(x, D)v, v)| + Clvl-1+,lv]
<ella(x)Duv|*+C.llv|*+ ClIl(1—X(x, D)vli3
eC'(a(x) D, D)+ CAIVIP+I(A—X(x, D)wli}  for ve (7.

The proof is complete.

REMARK. By the same method, we can show that
Re (ex(x, D)a(x)(log A(D))*v, v) and Re (ei(x, D)a.,(x)log A(D))v, v)

have the estimates of the same form as the above. To estimate
Re (es(x, D)a(x)(log A(D))v, v), we must use the well-known fact for non-nega-
tive functions that |a,,(x)| <C+~a(x) near the origin. Moreover we can prove
that Re (fes(x, D)a(x)(log A(D))v, v) has the estimate of the same form as the
above, since ies(x, &)a(x) log A(§) is purely imaginary.

From (3.1) and we obtain
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(3.4) Re (Py(x, Dy, v)=1—e){|Div)*+(a(x) Do, Do)} +Re (Re Bi(x,0, 1) Dyv, v)
~+Re (es(x, D) Im B,(x, 0, 1)(log A(D))v, v)

—C AP+ IIA—A(x, D)3} for ve (¥,
where ¢>0.

From now on, we shall prove (3.2) in the cases (i) and (ii) of
respectively, by using (3.4).

Assume that Y,\U,={x"}. Then we have e,(x, £)=0 (1<k£<5). Hence
the third term in the right hand side of (3.5) vanishes. It follows from [1.2)
that for ¢>0 there exists C.>0 such that

(3.5) Re (Re 8,(x, 0, 1)D,v, v)+ Ce(a(x)D;v, Dyw)=—C.|jv|* for v=C5.

Therefore (3'2) holds.
Next assume that X, \U,#{x°}. First we note that

(3.6) IRe (es(x, D) Im By(x, 0, 1)(log A(D))v, v)|
<{lIm B.(x, 0, D(log AD))v|*+lles(x, D)*v|*}/2  for veCT.

Then we have the following

LeEmMA 3.3. If (1.3) is valid, then for any e>0 there exists C.>0 such that
IIm B.(x, 0, L)(log A(D)vi*<e(a(x)Dsv, Dsv)
+CAllvIP+IA=X(x, D)wlit  for veCT.

PROOF. Let us first prove that for any ¢>0 there exists C.>0 such that
(3.7 I h(x)(log A(D))v|*
Ze{(h(x)** 7 AD, ADW)+Craillvl?}+Cellvf2ie  for vEC3,
where h(x)=Im B.(x, 0, 1). Let p be a positive number. Nyting that
h(x) log A(D)=(log A(DNA(D)~*h(x)A(D)*+ [h(x), (log AD)AD)~*1AD)*,

we have
[ A(x)(dog ADNV|2=Zell A(x)AD)Pv|>+ Cellv]|21/2 for veC5%.

If p satisfies 2p<1, we have
IR()AD)*v|* S Th(R)ADY v lI*+ Cllvl|* .

Moreover if p satisfies 2*p<1, where k is any positive integer, then there
exists C,>0 such that

| R()AD)PV|E L | R(x)2FAD) o2 4 C 0] for veC5%.
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Taking 2*p=1, we have (3.7). Next we shall prove that
(3.8) (h(x)***'A(D)v, ADW)<(h(x)***' Dyv, Dyv)+C vl
+ CrpllI—=2%(x, D))vii} for v=C5%.

Choose u(x, §)€S?, so that p(x, &) is positively homogeneous of degree O for
6121 and p(x, §)=1 near suppX(x, §). We may assume that suppiC
Ux{é=R | &=2|&]/3=2}, where U is some neighborhood of x°. Write
(R(x)****2(D)v, ADW)=(h(x)***' Dy, D)+ A(D)pe(x, DY*[p(x, D), h(x)****JA(D)v, v)
+(h(x)2k+’(p(x, D)YA(D)— Dy)v, p(x, DYAD))+ (h(x)***' Dy, (u(x, DYA(D)—D,)v)+
(ADY1 — p(x, DY*pu(x, D)Yh(x)***'ADyw, v) = (A(x)***'Dyw, Dw)+I1,+1+1s+1..
Hence it is sufficient to prove that |/;| < Crp{llvIP+[(1—=X(x, D))a[3} (1=7<4).
Since supp o([p(x, D), h(x)***")\supp X= @, where ¢(R) denotes the symbol of
R(x, D), we have

L | S CrnlivP+I(L=X(x, D)vili}.
Noting that (u(x, §)A(§)—§&:)X(x, §)=0, we have

] S Crpr{ 0P+ 11A—=2(x, D)3}

Concerning [,, the proof is similar to the above one. Since supp (1—pu(x, £)*N
supp X(x, £)=@, we have

L HlvIP+H 1A x, D)3}

This proves [3.8), which completes the proof.

From (3.4), (3.6) and it follows that (3.2) holds.
gives (x° 0, DeWF(u) if u=9’ and (x° 0, )&eWF(P(x, D)u). When YN\U,
+#{x°}, applying the same argument with x° replaced by x,=X,U, we can
prove [Theorem 1.2, where U, is a small neighborhood of x°.

Next let us prove [Corollary 2| of [lheorem 1.2l Put &=card (®P(R?)), i.e.,
& is the cardinal number of @(R?). For any ordinal number {<& we define
the mapping ¢;: P(R*)—>P(R?) by 7,(A)=A and

N <cte (A) if ¢ is a limit ordinal number.

T:(A)={ :
t(zy:(A)) if {=¢'+1,

where ACR?®.

LEMMA 3.4. Let A be a subset of R? and A=\Upca vay-sB. Then (i) t(A)
=A. (ii) There exists {(<&) such that t;(A)=14,(A). (iii) There exists Lo(<B)
such that Nc<are(A)=17(A). Moreover, we have ﬁ:(\«;tc(/l):rco(A).

PROOF. (i) Let B be a subset of A satisfying ¢(B)=B. Then we have
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BCA. Therefore, it follows from r(A)Dr(B)=B that ADr(A)DUsca. ccm-5B
—A. (ii) We assume tha) r(A)2tc.1(A) for any {<&. Then for any {<&
there exists x;=t((A)\tr(A). It is obvious that x;#x; if {#{’. Hence
card ({x;|{<&})=@&. On the other hand, {x:|{<&}C A, which leads the con-
tradiction. (iii) From the assertion (ii) there exists {o<& such that z; (A)=
7¢,+1(4) Then we can show that

(3.9) ti(A=rg(A)  if L=U(<)

In fact, if {=C, (3.9) is trivial. Now if we assume that 7;(A)=7¢(A) if L=
<&, it follows from the definition of r¢(A) that 7¢,(A)=7;,(4). Transfinite
induction gives [3.9). Hence 7 (A)=N\¢<at:(4). We can also prove that z.(A)
DA for any { <& by transfinite induction. Then we have ﬁcﬂ;@t;(A):rco(A).
On the other hand, we have also TCO(A)C;l in view of the definition of A.
Hence A= \icarc(A)=1¢,(A).

Now we can prove [Corollary 2. We note that if P(x, D) is microhypo-
llipyic in R2\S, so is P(x, D) in R>z(S) in view of [Theorem 1.2. Hence if
suffices to prove that P(x, D) is microhypoelliptic in R*\7((S) for {<&. We
can prove the above assertion by transfinite induction. In fact, the assertion
is trivial if {=0. Now we assume that P(x, D) is microhypoelliptic in R2\z;.(S)
for {’<{. When there exists {’ such that {={'+1, it follows from z.(S)=
7(rz(S)) and the above argument that P(x, D) is microhypoelliptic in R*\z¢(S).
Assume that { is a limit ordinal number. If x<z/(S), then it follows from
7(S)=N¢ <t (S) that there exists {'<{ such that xer.(S). Hence P(x, D) is
microhypoelliptic at x. Therefore P(x, D) is microhypoelliptic in R2\z((S).
The proof is complete.

§4. Proof of Theorem 1.3.
First we shall prove the following
LEMMA 4.1. If (1.2) holds or if there exists I[N such that (1.4)-(1.6) are
valid, then there exist constants h>0, C,>0 (Co,<1) and C>0 such that
4.1 Co{ | Dvl*+(a(x(Dyv, Dsv)}+Re (Re B8,(x, 0, 1)Dyv, v)
=—C{lvl*+I(1+2(x, D)vli3}
if veC% and suppvC{x | | x,|<h}, where X(x, &) is positively homogeneous of

degree 0 for |§1=1 and suppX(x, §)CU X {§1£,=221£|/3=2}.

We have already proved in § 3 that is valid if holds. Therefore,
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we now assume that there exists /=N such that (1.4)-(1.6) are valid. Let
¥.(6)= S, be a real-valued symbol such that ¥,(&§) is positively homogeneous
of degree 0 for |&{=1, 0¥ (&)1, T(&)=1 if &=1|€|/3 and |&|=1, and
supp ¥, C{&1&.=1£|/6 and |&|=1/2}. Set ¥y (&)=1-U,(§). We need several
lemmas to prove Lemma 4.1.

LEMMA 4.2. Write B(x)=Re B1)x, 0, 1). Then we have
[(B(x)D2v, v)| £ 1(B(x)D.¥ (D), ¥ (D)v)|
+C{lvlI*+1I(1—X(x, D)vlii} for veC3.
PROOF. Since R?Xsupp ¥,(§)N\supp X(x, &)=, the lemma easily follows.
Let ¥(£)=S?, be a real-valued symbol such that ¥'(¢) is positively homo-

geneous of degree 0 for [£|=1/2, ¥(§)=1 on supp ¥, and supp T C{&|&.= |&|/7
and |£]=1/3}. Note that ¥ (D)=¥(D)¥ (D). Put D(&)=&*¥ (&) SV

LEMMA 4.3. We have

|(B(x)D.¥ (DY, ¥ (D))
< (B)DDY (D), DD (D) +Clvli>  for veCs.

ProoF. Since D.¥.(D)=9(DY¥ (D), we have
(B(x)D.¥ (D)v, ¥ (DWw)=(B(x)D(D)¥ (D), 9(DY¥ (D))
+([B(x), D(DY]D(DY¥ (D), ¥ (D)v).

It is obvious that [B(x), &(D)]< L-{’;, which proves the lemma.

We may assume that B(¢) is defined on R. For example, we define B(#)=0
if [” >Co.

LEMMA 4.4. Set ﬁ:S exXp (—ixo&)0(X)d x5, where vECS.  Then we have
(4.2) (B0 Dw, vl <2 (| Blxogalo(xs, €))% x, )

+C{lIvIP+1A=X(x, D)wl}}  for v&e (s,
where d&,=(2r) *dé,.

PROOF. By and 4.3 we have
(4.3) | (B(x)Dev, v)| < [(B(x)D(DY¥ (D)v, D(D)¥(D)v)]
+C{viP+ (1 —X(x, D))vl|t}.
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Modifying U if necessary, we may assume that |8(x)| =<B(x,) for x&U. Since
suppXCU X R?, it is easy to see that

[(B(x)D(DY¥ (D), D(DY¥ (D)) <(B(x)D(DY¥ (D), D(DY¥ (D)v)
+C{lvIIP+IIA—X(x, D)vlii}.
From Parseval’s formula it follows that
44)  (Bx)a(D¥ (D), AW (D) =" (| Beies @13, £91%dx)d6,
where w,(x)=",(D)v(x) and ¥,(x,, sz)zg exp (—ix.&)w.(x)dx,. In fact, we have

DE)=(&)VW(€), where (£,),=max{&,, 0}. Therefore we have

[ exp (—ixign DT (DRI =GO W31, 8.

Put w,(x)=T,(D)v(x) and W,(x,, Sz)zgexp(—z’xzég)wz(x)dxz. Then we have
("Bl wuns, g010dx)ag=C 18 lutas, 8)17dx s
<C'lwalte
SC7{IvllP+IlA—X(x, D)3},
since R2Xsupp (&) N\suppX=@. This, together with and )4.4), gives
4.2}
From now on, we shall estimate E:S:’(SB(xoezw(xl, &)1%dx, )6, Put
E(Eg):SB(xl)ézlﬁ(xl, £)|%dx,. We fix &>1 and take XL(f)eC3(R) so that 0<

LHOZL, X, (=1 if |t]£1, and X,(t)=0 if |¢|=2. By the assumption, there exists
h>0, A,>0, B,>0 such that [t|2!/A()< A, for |t|<h, |t]*"'B()<B, for [t|<h
and 20+5{14-2142/1([4+ 1)} A, B2/I(I+1)<1. Put o)=2,(K~(£&2/(A:B,))" 1), where
K={(2%42"*4/I(I+ 1))/ ¢+ (22 A, B2 /I(I+1))-/<+v/2} /2. Hereafter we assume
that supp vC{x||x,|<h}. Write

BE=2{| Bl 1—p(x )0z, &) 1%d %,

+| Bledg | pCei(xs, €0 1Pd x| =2E @D+ EXEn).

Since supp (1—@(x))C{x, | K&:/(A:B))"/ ¢+ | x| =1} and | x,|'"'B(x,)< B, for
|x.|<h, we have

B(x) S By x,|'" S KU ATE x| 7 2, [P S KD A(x)Es
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in supp (1—¢(x,)) if |x,|<h. In the last inequelity we have used |x;| X A(x,)!
<A, for |x,|<h. Hence we have

E'(§.) éK‘”“’SA(xx)IEzI2|17(x1, &) |%d x,.

To estimate FE%*&,), we take a>0, which depends on &, such that
aK~'(&:/(A,B))"¢*Y =2, Then we obtain

[ Boglpxpca, 1%,

<@K)"*'A,BHI(I+ 1)}“S:°I Di(p(x1)0(x,, &2))1%d x, .

We have also

[T 1DiptxaCs, &) 17,

<2{C1K-2 (A BY T A &1 91 dx+ T Do 2 x)

where put C,=supp|Xi(?)|. In fact, we have
(K~'(&2/(A B HDRLA A= 1 if ¢'(1)+0.

Here we note that we can take C,(>1) so that C, is close enough to 1. In the
some manner we have the similar estimates for

S° B(x1)8:| p(x1)5|*d x, and S" | Di((x,)9)|2d x,. We may assume that h<c,.

Summing up the above estimates, we have the following
LEMMA 4.5. Assume that v=C% and suppvC{ | | x,|<h}. Then we have
“.5) [((Beogalice, eo1%dx, e,
éK'“+”(1+2’”/1(1+1))SA(J€1)lEz|z|17(xu §2)|*d x,d§,
+2(2K)'* A, B3 {l(l +1)}“S|Da7(x,, &) |*dx,dé;.

Now we can prove Lemma 4.1. Note that

facey g1, 812 x.d8 < @)D, D),

§|Dla<xl, £.)1%d x,d&,< || Dyll*,

where suppvC{x | |x,]<h}. Therefore, it follows from [(4.2) and [4.5) that




Hypoellipticity for a class of degenerate elliptic 231

holds. In fact, we have
{28(14-212 /114 1) PV D < K< (28 A B /114 1))~ 1+ /2

This gives 22K-+D(1+4+2'*2/1(1+1)(<1 and 2°Q2K)**'A,Bi/l(l+1)<]1.

Let us prove the assertion (i) of Now take ¢(t)e 3> in
As(x, &) so that ¢(t)=0. Note that e,(x, £)=0in (3.6). (3.6) and show that
(3.1) holds. This proves the assertion (1) of

LEMMA 4.6. [If (1.3) holds or lim,.ot*I'(t) log A(t)=0, then for any ¢>0 there
exists C.>0 ana ¥(x)= B=(R?) such that supp ¥ N\ {x|x,=0}=@ and

(4.6)  |Re(es(x, D)Im By(x, 0, 1)(log A(D))v, v)|
Ze{|Dw(*+(a(x) Do, Do)} +Cellv)*+ C{I(1—X(x, D)w[i+ 11T (x)v|i3}
for veCs%, where X(x, &) is the same as in [Lemma 4.1l

In in §3 we have already proved that (4.6) holds under the
assumption [(1.3). Therefore, from now on we shall prove that (4.6) holds if
lim,_ot?1'(t) log A(t)=0. We may assume that UC{x|| x| <co}. Lg=Di+ A(x1)E5.
A simple modification of the proof of Proposition 3.1 in [3] gives the following

LEMMA 4.7. For any €>0 there exists n,>0 such that

[retog &) 100, 8)1%dx, S e Lei(xs, 605, Edx,

for veCyU) and for all &:=n., where P(x,, 52):-5 exp (—ix&)v(x)d x,.

PROOF. Assume that supp 9(-, &)C{x,€R|A(x,)|&:]|'?=1/2}. Let ¢>0. If
|&|>e"*, then we have

[reeocog g.h1aes, ga17dxs g 100, 817,
gzcsgmxlnemmx,, &)|%d x,

§2C68L5217(x1, &) 5z, Eydxs -

Next assume that suppd(-, &)C{x,€R | A(x,)|&]|"*<2}. Choose a=a(é;) so
that A(a)|&|'/?=2. Noting that #(xs, 59:—5“ 95/0x:(s, £)ds, we have
Ty

S:F(xl)lﬁ(xl, Sz)lzdxéf(a)¢122“SLezﬁ(xn &) 0(xy, E)d x, .
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By the assumption we can see that
I'(a)a® log |&.| <e(log |&.|)(log A(a))'<Ce
if £>1. In fact, we have lim¢,..a(§:)=0. Therefore, we obtain
S:F(xl)(loglle)lﬁ(xx, Ez)lzdx1§CeSL52f)(x,, §2)-U(xy, E2)d x, .

Now we can prove the lemma for general ve C¢, repeating the same argument
as in the proof of Proposition 3.1 in [3].
Finally, if we prove

(4.7) |Re (es(x, D)Im B.(x, 0, 1)(log (D)), v)|
éZSF(xl)(log &) 0(xy, &) 12d x,:d&+ CH{Iv|P+(1—A(x, D)vliF}

for veC(U), then we will obtain (4.6) in view of Lemma 4.7. Note that
es(x, §)=es(x) does not depend on & Lot us prove (4.7).
Write

Re (e5(x) Im B,(x, 0, 1)(log A(D))v, v)
=Re (es(x) Im B,(x, 0, 1)(log A(D))'/?v, (log A(D))'/*v)
+Re ([es(x) Im Bi(x, 0, 1), (log A(D))'/*1(log A(D))'"*v, v)

=L+1,.

Since [es(x)Im B.(x, 0, 1), (log A(D))'/*](log A(D))'* L} ,, we obtain
1| =Cllvl*  for v&CTWU).
Next we shall consider I,. For simplicity, set
(log A(D))!"*v=(log A(D))'"*v+{(log A(D))"/*—(log <Dy>)'"*}v

=utus,

where (10g<D2>)‘/2v=Sexp(z‘xzéz)(log <€2))'/*0(x1, €2)d§,. Recall that [ImB4(x,0,1)]

<I'(x,). Therefore, we have

11,15 |{esx) Im Bu(x, 0, 1] log ADY) v |*d x

o) MV AENNIPFEILFATEN

[t is easy to see that
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[rceo{flueordrax,
=\TGeo]{tog eions, ga1tag}dx,,
[reeoffiuwirdntax,

gCSIuz<x)|2dxgC'S<e><1—~¢<s>>m<s>12de,

where ¥(£)e Sy, is positively homogeneous of degree 0 for |&|=3, 0<¥ ()<,
T(E)=1 if £,=2|£1/3=22, and supp ¥ (§)C{=R?|&,>|&]/2>1}. Note that
supp XN\R2Xsupp (1-¥'(£))=@, thus we have

S<§>(l—w(5)) 10) 1*aé < C{lI(A1—X(x, D)wlE+lvlI*},

which proves (4.7).

Now take o(t)e 3=(R?) in As(x, &) so that p(f)=¢®>. Then from the estimate
(3.6), and 4.6, we obtain (3.1) in the same manner as in the proof
of [Theorem 1.2. So we can apply Lemma 3.1, and prove that (0, 0, 0, 1)& W F()
if u€9’ and (0, 0, 0, )& WF(P(x, D)u), applying the same argument with the
origin replace by a point in SNUC{x=R?| x,=0}, we can prove the assertion

(ii) of

§5. Further remark.

In this section we consider the operator of the form P,(x), D)=Di+a(x)D}
+B(x)D,, in R? where a(x)= C>(R?) is non-negative, a(0)=0, and B(x)=C>(R?)
is complex-valued. Put S={x=R?*|a(x)=0}. In what follows we consider the
various types of S, and always assume that there exist a positive integer / and

a constant C>0 so that
(Re B(x))*+(Im B(x))* < Ca(x).

ExAMPLE 1. Assume that S={x|f(x)=0}, where df(0)+#0, 0f/dx,(0)=0,
and 0f/0x,(x)#0 if x+0. Then P, is microhypoelliptic in R? In fact, since
(S)=@, from [Corollary 1 of [Theorem 1.2 it follows that P, is microhypo-
elliptic in R®.

EXAMPLE 2. Assume that S=S;US,, where S;={x|s;(x)=0}, 0s;/0x,(x)#0
for x+0 (=1, 2) and S;N\S,={0}. Then in the same manner as in Example
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1, P, is microhypoelliptic in R>.

EXAMPLE 3. Assume that S=\U7,S;\US,, where S;={x|s;(x)=0}, ds;/0x,(x)
#0 for any x=R*;=0,1,2, ---), S;N\S,=@ if j, k=1 and j+#£k, and S,=
U SNUT-1S;. Then P, is microhypoelliptic in R% In fact, since z(S)CS,

and t%(S)C7(So)=@, in view of [Corollary 1| of [Theorem 1.2, P, is microhypo-
elliptic in R2.

EXAMPLE 4. Assume that S=U7LS;US VU T e UT,, where S;={x]s;(x)
=0}, ds;/0x,(x)#0 for any x€R*(j=1, 2, ---), So=}x|so(x)=0}, 0so/0x,(x)+#0 if
x#0, $0(0)=05s0/0%,(0)=0, T,={x|te(x)=0}, 0t,/0x,(x)#0 for any xc=R*k=
1,2, ). Te={x|te(x)=0}, 0t,/0x,(x)+0 if x+0 and t,(0)=0¢,/0x,(0)=0, S,N\S; =
TeNT o=@ if j£5", k#k, 7,7 k. k' 21, So=U=SAUZLS;, To=Tri T :~\NUi T
and S;N\T.={a;:} (, k=1). Then P, is microhypoelliptic in R2 In fact
since (S)C(SoUTo)\J{a; rlj, =1}, T2(S)CTt(Se T\ J{a; +|j, R=1}HDCTSNJIT,,
(S)CtASoUT o U{a; £ NTT(SoUT {0} and z4(S)=@, P, is microhypoelliptic
in R? in view of Corollary 1 or [I'heorem 1.2
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