ON SOME STARLIKENESS CONDITIONS FOR ANALYTIC FUNCTIONS

By
Mamoru Nunokawa and Shinichi Hoshino

Let $A(p)$ denote the class of functions $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ which are analytic in the open disk $E=\{z:|z|<1\}$.

A function $f(z) \in A(p)$ is called p-valently starlike with respect to the origin iff

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0 \quad \text { in } E .
$$

We denote by $S^{*}(p)$ the subclass of $A(p)$ consisting of functions which are p-valently starlike in E.

Mocanu [3, Theorem 1] proved that if $f(z) \in A(1)$ and

$$
\left|\arg f^{\prime}(z)\right|<\frac{\pi}{2} \alpha_{0}=0.968 \cdots, \quad z \in E
$$

where $\alpha_{0}=0.6165 \cdots$ is the unique root of the equation

$$
2 \tan ^{-1}(1-\alpha)+\pi(1-2 \alpha)=0,
$$

then $f(z) \in S^{*}(1)$.
In [5], Nunokawa proved the following theorem.
Theorem A. Let $p \geqq 2$. If $f(z) \in A(p)$ satisfies

$$
\left|\arg f^{(p)}(z)\right|<\frac{3}{4} \pi \quad \text { in } E,
$$

then $f(z)$ is p-valent in E.
Definition 1. Let $F(z)$ be analytic and univalent in E, and suppose that $F(E)=D$. If $f(z)$ is analytic in $E, f(0)=F(0)$, and $f(E) \subset D$, then we say that $f(z)$ is subordinate to $F(z)$ in E, and we write

$$
f(z)<F(z) .
$$

Definition 2. If the function $f(z)$ is analytic in E and if for every nonReceived February 25, 1991.
real z in E

$$
\operatorname{sign}(\operatorname{Im} f(z))=\operatorname{sign}(\operatorname{Im} z),
$$

then $f(z)$ is said to be typically-real in E. We owe this definition to [1, p. 184].
We shall use the following lemmas to prove our results.
Lemma 1. Let $\beta^{*}=1.218 \cdots$ be the solution of

$$
\pi \beta=\frac{3 \pi}{2}-\tan ^{-1} \beta
$$

and let

$$
\alpha=\alpha(\beta)=\beta+\frac{2}{\pi} \tan ^{-1} \beta
$$

for $0<\beta \leqq \beta^{*}$.
If $p(z)$ is analytic in E, with $p(0)=1$, then

$$
p(z)+z p^{\prime}(z)<\left(\frac{1+z}{1-z}\right)^{\alpha} \Longrightarrow p(z)<\left(\frac{1+z}{1-z}\right)^{\beta}
$$

We owe this lemma to [2, Theorem 5].
Lemma 2. Let $f(z) \in A(p)$ and suppose

$$
\operatorname{Re} \frac{z f^{(p)}(z)}{f^{(p-1)}(z)}>0 \quad \text { in } E .
$$

Then we have

$$
\operatorname{Re} \frac{z f^{(k)}(z)}{f^{(k-1)}(z)}>0 \quad \text { in } E,
$$

or

$$
f^{(p-k)}(z) \in S^{*}(k)
$$

for $k=1,2,3, \cdots, p$.
We owe this lemma to [4, Theorem 5].

ThEOREM 1. Let $p \geqq 2$. If $f(z) \in A(p)$ satisfies

$$
\begin{equation*}
\left|\arg f^{(p)}(z)\right|<\frac{3}{4} \pi \quad \text { in } E \tag{1}
\end{equation*}
$$

and $f^{(p-1)}(z) / z$ is typically-real in E, then $f(z) \in S^{*}(p)$.
Proof. Let us put

$$
p(z)=\frac{f^{(p-1)}(z)}{p!z} .
$$

From the assumption (1), Lemma 1 and applying the same method as the proof of [5, Main theorem], we have

$$
p(z)+z p^{\prime}(z)=\frac{f^{(p)}(z)}{p!}<\left(\frac{1+z}{1-z}\right)^{3 / 2} \quad \text { in } E,
$$

$p(0)=1$ and therefore we have

$$
\frac{f^{(p-1)}(z)}{p!z}<\left(\frac{1+z}{1-z}\right) \quad \text { in } E .
$$

This shows that

$$
\begin{equation*}
\operatorname{Re} \frac{f^{(p-1)}(z)}{z}>0 \quad \text { in } E . \tag{2}
\end{equation*}
$$

By the same calculation as [6, p. 276], we have

$$
\begin{align*}
\frac{f^{(p-2)}(z)}{z f^{(p-1)}(z)} & =\int_{0}^{1} \frac{f^{(p-1)}(t z)}{f^{(p-1)}(z)} d t \tag{3}\\
& =\int_{0}^{1} \frac{z}{f^{(p-1)}(z)} \cdot \frac{t z}{z} \cdot \frac{f^{(p-1)}(t z)}{t z} d t
\end{align*}
$$

On the other hand, we easily have

$$
\begin{align*}
& \left|\arg \left(\frac{z}{f^{(p-1)}(z)} \cdot \frac{t z}{z} \cdot \frac{f^{(p-1)}(t z)}{t z}\right)\right| \tag{4}\\
& \quad=\left|\arg \frac{f^{(p-1)}(t z)}{t z}-\arg \frac{f^{(p-1)}(z)}{z}\right|<\frac{\pi}{2} .
\end{align*}
$$

Since $f^{(p-1)}(z) / z$ is typically-real in E and satisfies the condition (2). From
(3) and (4), we easily have

$$
\operatorname{Re} \frac{f^{(p-2)}(z)}{z f^{(p-1)}(z)}>0 \quad \text { in } E .
$$

This shows that

$$
\begin{equation*}
\operatorname{Re} \frac{z f^{(p-1)}(z)}{f^{(p-2)}(z)}>0 \quad \text { in } E . \tag{5}
\end{equation*}
$$

From Lemma 2 and (5), we easily have

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0 \quad \text { in } E .
$$

This completes our proof.
Theorem 2. Let $p \geqq 2$. If $f(z) \in A(p)$ satisfies

$$
\begin{equation*}
\left|\arg f^{(p)}(z)\right|<\frac{\pi}{2} \cdot \alpha_{1} \quad \text { in } E . \tag{6}
\end{equation*}
$$

where $\alpha_{1}=1 / 2+(2 / \pi) \tan ^{-1}(1 / 2)=0.79516 \cdots$, then $f(z) \in S^{*}(p)$.

Proof. Let us put

$$
p(z)=\frac{f^{(p-1)}(z)}{p!z}
$$

From the assumption (6), Lemma 1 and by the same calculation as in the proof of Theorem 1, we have

$$
p(z)+z p^{\prime}(z)=\frac{f^{(p)}(z)}{p!}<\left(\frac{1+z}{1+z}\right)^{a_{1}} \quad \text { in } E,
$$

$p(0)=1, \alpha_{1}=\alpha(1 / 2)=(1 / 2)+(2 / \pi) \tan ^{-1}(1 / 2)=0.79516 \cdots$ and therefore, we have

$$
\frac{f^{(p-1)}(z)}{p!z}<\left(\frac{1+z}{1-z}\right)^{1 / 2} \quad \text { in } E
$$

This shows that

$$
\begin{equation*}
\left|\arg \frac{f^{(p-1)}(z)}{z}\right|<\frac{\pi}{4} \quad \text { in } E . \tag{7}
\end{equation*}
$$

By the same calculation as the proof of Theorem 1, we have

$$
\frac{f^{(p-2)}(z)}{z f^{(p-1)}(z)}=\int_{0}^{1} \frac{z}{f^{(p-1)}(z)} \cdot \frac{t z}{z} \cdot \frac{f^{(p-1)}(t z)}{t z} d t
$$

From (7), we easily have

$$
\begin{aligned}
& \left|\arg \left(\frac{z}{f^{(p-1)}(z)} \cdot \frac{t z}{z} \cdot \frac{f^{(p-1)}(t z)}{t z}\right)\right| \\
& \quad \leqq\left|\arg \frac{f^{(p-1)}(z)}{z}\right|+\left|\arg \frac{f^{(p-1)}(t z)}{t z}\right|<\frac{\pi}{2} \quad \text { in } E .
\end{aligned}
$$

Therefore, we have

$$
\operatorname{Re} \frac{f^{(p-2)}(z)}{z f^{(p-1)}(z)}>0 \quad \text { in } E .
$$

This shrws that

$$
\operatorname{Re} \frac{z f^{(p-2)}(z)}{f^{(p-2)}(z)}>0 \quad \text { in } E
$$

or $f(z)$ is p-valently starlike in E. This completes our proof.
From Theorem 2, we easily have the following corollary.
Corollary 1. Let $f(z) \in A(2)$ satisfies

$$
\left|\arg f^{\prime \prime}(z)\right|<\frac{\pi}{2} \alpha_{1} \quad \text { in } E .
$$

then $f(z)$ is 2-valently starlihe in E.
REMARK. $\alpha_{0}=0.6165 \cdots<\alpha_{1}=0.79516 \cdots$.

References

[1] Goodman, A. W., Univalent Functions, Vol. 1, Mariner Publishing Company, Tampa, Florida, 1983.
[2] Miller, S.S. and Mocanu, P.T., Marx-Strohhäcker differential subordination systems, Proc. Amer. Math. Soc. 99 (1987), 527-534.
[3] Mocanu, P.T., Some starlikeness conditions for analytic functions, Rev. Roumaine Math. Pures. Appl. 33 (1988), 1-2, 117-124.
[4] Nunokawa, M., On the theory of multivalent functions, Tsukuba J. Math. 11 (1987), 273-236.
[5] -, A note on multivalent functions, Tsukuba J. Math. 13 (1989), 453-455.
[6] -, On certain multivalently starlike functions, Tsukuba J. Math. 14 (1990), 275-277.

Department of MaThematics
University of Gunma
Aramaki, Maebashi, 371
Japan

