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COVERINGS OVER d-GONAL CURVES

By

Naonori IsHII

§1. Introduction.

Let M be a compact Riemann surface and f be a meromorphic function on
M. Let (f) be the principal divisor associated to f and (f). be the polar
divisor of f. We call f a meromorphic function of degree d if d=degree (f).
If d is the minimal integer in which a meromorphic function of degree d
exists on M, then we call M a d-gonal curve.

Now we assume that M is d-gonal, and consider a covering map n’: M'-»M
that M’ still remains d-gonal. The purpose of this paper is to show how such
n’ can be characterized.

The case that =’ is a normal covering and d=2 (i.e., M is hyperelliptic)
has been already studied ([2], [3], and [7]). In this case the existence of
the hyperelliptic involution v’ on M’ plays an important role. More precisely,
as v/ commutes with each element of the Galois group G=Gal(M’'/M), v’ in-
duces the hyperelliptic involution v on M and we can reduce n’ to a normal
covering n: P{— P, with Galois group G, where P| and P, are Riemann
spheres isomorphic to quotient Riemann surfaces M’/{v’)> and M/{v) respec-
tively. On the other hand it is known that finite subgroups of the linear trans-
formation group are cyclic, dihedral, tetrahedral, octahedral and icosahedral.
Horiuchi decided all the different normal coverings z': M'—M over a
hyperelliptic curve M that M’ still remains a hyperelliptic curve by investigat-
ing each of above five types.

Let M be a d-gonal curve. In this paper we will show at first that a
covering map =n’: M’—M (not necessarily normal) with d-gonal M’ canonically
induces some covering map n: P;—P, (Theorem 2.1 §2). Moreover if both M
and M’ have unique linear system g} and =’ is normal, then we can see that
7 is also normal (Cor. 2.3).

In §3, §4 and §5 we assume that M is a cyclic p-gonal curve for a prime
number p. We will determine all ramification types of normal coverings
n': M'->M with p-gonal M’ by the same way as Horiuchi did in case p=2(§4),
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and we give some results about unramified coverings n’: M’'—M, where =’ is
not necessarily normal (§5).

§2.

Let n’: M'—>M be a covering over an arbitrary compact Riemann surface
M. Let C(M) and C(M’) be the function fields of M and M’ respectively and
Nmy=Nm: C(M')>C(M) be the norm map. For a divisor D= ; ni@Q: (n,eZ)

on M’, we define a divisor Nm, D=Nm D on M by

Nm, D=3n,n"(Qy).
Then the following equation of principal divisors holds ([I] Appendix B):
Nm ((f))=(Nm f).

If two divisors D’ and E’ are linearly equivalent, write D’'~E’, the above
equation means that Nm D'~Nm E’.

Let #’*P denote a divisor on M’ obtained by the inverse image of a point
Pe M with ramification points counted according to multiplicity. For a divisor
D=3n;P;, n’*D: =X n,x’*P,. |D| is the complete linear system of D and
L(D) is the C-vector space consisting of 0 and meromorphic functions f satisfy-
ing (f)+D>0. (D) is the dimension of £(D) over C.

After this we assume that M is d-gonal. Then there exists a positive
divisor D of degree d on M satisfying ((D)=2, and I(E)=1 for any positive
divisor E of degree less than d. Actually on this D we can easily see that
{(D)=2, and then the linear system |D| defines a covering map of degree d;

do=¢: M—> P,

where P, is a Riemann sphere. Explicitely ¢(P) is defined by ¢¢(P)=h(P)c
C\U(0) for P€ M, where h is a non-trivial meromorphic function in £(D). ¢
is defined uniquely up to linear transformations of P;,. By the minimality of
d, a divisor ¢*¢(P) is uniquely determined not corresponding to the choice of
h. For distinct points P and P’ on M, ¢*¢(P) and ¢*¢(P’) are linearly equi-
valent and having no common point in their supports.

Let n’: M'—>M be a covering of degree n over M that M’ still remains
d-gonal. Let D’ be a positive divisor on M’ of degree d satisfying [(D")=2.
Then we have;

THEOREM 2.1. Put D=Nm, D'.  Then
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i) There exists a covering map n: P{— P, satisfying the following diagram

with deg n'=deg n=n and deg ¢'=deg p=d.
iiy Let C(M"), C(M), C(P}) and C(P,) be the function fields. Then
CIMINC(P)=C(Py) in C(M’) ana C(M)C%:))C(P{):C(M’).
1

d
To prove this Theorem we prepare some lemmas. Put D'= -ElP‘ (P; are
i=

d
not necessarily distinct), and zn’*z’P;= >} P{®.
k=1

LemMMA 2.1.1. For each i,
N ' *¢'(P§#)= Nm o' *¢ (P)y=Nm D', p=1,2, - n.

PROOF. Nm. ¢'*¢'(P{*’) and Nm,.'*¢'(P;) are divisors of degree d on M,
and they have a common point n’(P{¥)==n'(P;). But they are linearly equivalent
as ¢'*QP'(P{P)~¢'*¢’'(P;). Then we have Nmy'*¢'(P{#)=Nm,'*¢'(P;) by
the minimality of d. O

d
As I(D')>1, we may assume that D'= ;Pi (=¢'*¢'(Py)) satisfies the fol-
lowing conditions *);

*) P; are distinct, n’ is unramified over n'(P;), 1<i<d,
and ¢’ is unramified over ¢’(P{®), 1<k =<n.

Let Nm,D'=d,R,+d;R.+ - +d:R,;, d,+ds+ - +d;=d, where R; are distinct
points in M and =n’(P,)=R,. Changing the indeces of P;, we may assume that

n'(P)= - =7C'(P¢1)=R1, ”,(Pd1+1): :ﬁ’(Pd1+d2):R21 Ty
z,(Pd1+d2+-~-+d,:_,+1): :n,(Pd1+---+dt):Rt .
LemMMA 2.1.2. d,|n, dild and di=d,= --- =d,.

PROOF. Put n"*R;=n"*n'(Py s.sasre,)=AL+ - + A, si=1, -, d;, i=
1,.--,t. Then A{® (k=1, .-, n) are distinct by x). By Lemma 2.1.1
Nmo ' *Q'(Ai#)=d R+ -+ 4+-d.R;. For ¢’ is unramified over ¢’(A{*>), ¢"*H(AM)
also consists of distinct d points. Changing the induces k£ of A{*> for each j,
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we may write;

PP (AP)=(A{P+ - +A*O)+ (A + - + AP+ - HADF - +AP),

Especially d,<n. By the minimality of d, ¢'*¢'(A{"?)= --- =¢'*¢'(Af{*?). If
d,<n, take a point over R,, namely A{*'*", not equal to A{*’, 1<k<d,. Then
we may write;

¢/*¢/(Al(dl+1)):(Al(dl+1)+ —|—A1(2d1))+ +(A§d”“)+ +A¢(2d‘))
and ¢'*¢'(A{M+D)= ... =¢"*P'(A{**). If still 2d,<n, repeat the same manner

as above and finally we have the following sd,+1 equations of divisors;

[ O FPY (AP =(AP+ - +ALY4 o F(AH - FALAD) (1.1)

PHY(ALY) =(AP+ - F AL+ - F AP+ - +ASR) (L 4
¢'*¢/(Afd1+l))=(A1(d1+l>+ +A1(2d1))+ +(At(dl,+1)+ +At(2dt>) (2_1)

PHFEP(APIP) =(A{ D+ - ALY e F(AD)+ - APNY) (2.dy)

[ ¢/*¢ (A((s 1)d1+1)) (A((s 1)dl+l)+ _|__A(sd1))+ +(A((a 1)d¢+1)+ +A(3'it)) (S 1)

Sb,*gb’(A{Sdl)) __(A((s l)dl+l)+ +A(sd1))+ +(A((s 1)dt+1)+ +A(3dt)) (s dl)

and
T R =(A®+ - + ALY+ oo F(AfS-DaID L L B840 (%)

Then n=d,-s. If d,>d,, then n=d,-s>d;-s. There exists a point over R,
namely A{®, never appears in the right hand sides of the above equations
(1.1)~(s.d,). On the other hand ¢’*¢’'(A{*) has A{*> for some k& in its support
by Lemma 2.1.1. For the minimality of d, ¢'*¢'(Ai™)=¢ *¢'(A{*’). This is a
contradiction. If d,<d,, then n=d,-s<d;s. This also can not be happened. [

By Lemma 2.1.2, and the above equations (1.1)~(s.d,), **), we have;
LEMMA 2.1.3.

3 9 (PE)= 33 ' x/(Py=n"*Nm (D') .
k=1 t=1

PROOF OF THEOREM 2.1.

Let E'’=3Q; and E”=3)S; be in |D’| satisfying the conditions *). Let A’
be a non-constant function in .£(D’) and A=Nm h’.
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div(hon)=n"*Nm E'—=n’*Nm E”

= P (QP)— S ¢*¢(S*™) by Lemma 2.1.3

k=1 k=1
= Zn] [{™* Q" (QF)—"* Q" (P} — {p"™*¢'(S)— ¢ *¢'(Py)} ]
=3 L{ > (Q)— D'} —{"*¢'(S))— D’} ]
= 3} {(ash/+bi)—(cah'+d o)}

L akh’—i—bk
(B od)

k=1 Ckh'+dk
Then hez’ is in C(h")=C(P}) and we have

C(M") D C(P))
U U
C(M)>D C(P,), with [C(M"): C(M)]=[C(Py): C(P))]J=n and

[C(M): C(P)]=[C(M"): C(P)I=d.
As [C(P) ® C(M): C(P)]=[C(M"): C(Py)], we have ii). 0
C(Py>

Conversely we have;

REMARK 2.2. Let ¢: M—P, be a d-gonal curve with a d-th coverinng ¢
over a Riemann sphere P,. Let n’: P{—P, be an arbitrary covering. Then
function fields C(M) and C(Pj]) are linearly disjoint over C(P,), and the Rie-
mann surface M’ obtained from the function field C(M)C§>)C(P{)=C(M)-C(P1)

1

is d-gonal.

PrROOF. Consider the canonical surjective map C(M)C@P) C(P)—-C(M)-C(P)).
P>
Put d’=[C(M)- C(P}{): C(P})]. If d’<d, then M should be d”-gonal for some

d”<d’. This is a contradiction. O

Concerning about the digram in Theorem 2.1, z is not necessarily normal
even if n’ is normal. But we have;

COROLLARY 2.3. If M’ has unique linear system g} and n' is normal, then
x ts normal and Gal (M'/M)=Gal (Pi/P,).
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PROOF. Let ¢ be an automorphism on M’. For the uniquness of g; there
is an automorphism ¢ on P]{ satisfying the following diagram:

M —— P

g | g
M’ P,
As C(M)NC(P)=C(P,), Gal(M'/M)=Gal (Pi/P,). O

REMARK 2.4. Under the two assumptions of corollary 2.3, (i.e., =’ is
normal and the uniqueness of g}, we can prove Theorem 2.1. i) easier. In
fact Gal(M’/M) acts on P; as the proof of the corollary 2.3, and the fixed
subfield of C(P}) by the action of Gal (M’'/M) is C(M)NC(P7). This field is
a function field of genus 0, and [C(M): C(M)NC(P{)]=d for the minimality
of d.

REMARK 2.5. The condition that M’ has unique g} is satisfied in the fol-
lowing case:

M’ is p-gonal of genus=(p—1)>+1 for a prime number p
([9], Cor. 2.4.5), especially M’ is defined by the equation
D(u, y)=0 (§3(1)) with m=2p+1 ([9], [8], [5]).

REMARK 2.6. Let p be a prime number. We assume that M has a p-th
covering over P,. Then the condition that M is p-gonal is satisfied when
genus of M>(p—1D)(p—2) ([9], Cor. 2.4.5).

§ 3.

Let p be a prime number and M be a Riemann surface defined by the
equation

D(u, y):=y?—(u—a)* - (u—an)*»=0 (1
where a; (1</<m) are distinct and k; are integers satisfying 1<k;<p—1 and
> k=0 mod p. Let ¢: M—P, be the cyclic normal covering of degree p over

P, defined by (u, y)—u. The branch points of ¢ are a;=P,, and ¢ is com-

pletely ramified over a;. Put S={a;|1=<:<m}. The genus of M is @_—i)‘z__(rn——Z)

Sometimes we use another equation D’(u, y) for M

D'(u, p):=y?—(u—B)* - (u—fm-1)*m-1=0 @)
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with 1<k;<p—1 and 3k,;7£0 mod p. ¢ is defined as above and the set S of the
branch points of ¢={B;, ---, Bm-1, c}. In this case let k,>0 denote a minimal

m-=1
integer satisfying k,=— > k; mod p, then we can get an equation of type (1)
i=1

birational equivalent to (2).

We call M a cyclic p-gonal if M is p-gonal and defined by (1) or (2). Here-
after we assume that M is cyclic p-gonal and having unique g;. If m=2p—1,
M is p-gonal by Remark 2.6. If m=2p+1, M has unique g; by Remark 2.5.
n’: M'—M always means a covering map with p-gonal M’. Then a covering
n’: M'—>M corresponds to a covering n’: P{— P, by Theorem 2.1.

In this section we show the method how to get the equation of M’ and =’
explicitely from the equation of M and n. Put P,=Proj C[z, z,], Pi=
Proj CTuo, u,], z=2z,/2z0 and u=1u,/u,. Assume that n’ is defined by (z., z,)—
(Fo(zo; z1): Fi(zo; 21)), where F; (=1, 2) are relatively prime homogeneous poly-
nomials of same degree n. V=Spec C[z]p,u;.» and U=Spec C[u] are affine

open subsets of P{ and P, respectively. Then =#’:V—-U is represented by
fﬂ(l: Z)gg}
Fo(l:z)
U=C for all ;.. Put A=C[u, y1/(D(u, y)). By Theorem 2.1,

Z—rU =

f. Assume M is defined by the equation D(u, y)=0 with a;<

CM"H=CM) ® C(P)

cPy
=A Q C(P)
Cru)
DA Q Clzlirya:n
Cruj
(1
=C [Z]wo(x:z))[y]/(l) (ﬁogl " Z;, y))

put

Then Spec B.——-V?]<Spec A. If we have factorizations;
10 (4>
Fi(l: 2)—F(1: z)ai—-rcitII1 (z—af®)e

_ 1D
with some constants ¢;, a{?<=C and e¢{®¥< N satisfying tZ‘, ef¥<n, then
=1

Spec A}>,< Spec C[z] is defined by the equation
1

(L m (1) k
Fy(l: 2)i%" yr— 1T (ci T (z—aé”)egi)) 0,
i=1 t=1
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Put

m 1D

Gay=Ful: &7 i - M e—a@y et rom(fie) ©

LERY
=1 * p,

where [a/b] is Gauss symbol. Changing G(z)y by y we have an equation of
type (1) for M’
m L) W
y— T I z— )¢ =0 ®3)
=1 t=1
where f{ are positive integers satisfying 0<f{¥<p and f{P=e{¥k; mod p.
n’ is defined by

(¥, 2)— (G(2)'y, F\(1, 2)/F(1, 2)).
Let f. be the integer satisfying 2Etf,‘iw—fm—z‘o mod p and 0 f..<p. The set

S’ of branch points of ¢’ consists of af® with f{¥=+0 and oo if f.#0.
Next assume that M is defined by the equation D’(u, y)=0 in (2) and we
have factorizations;

) i
A eét)

Fi(1: 2)—B:Fo(1: z)=c,~tl='! (z—b¥) (I=si=m—1)

and
Fo(l: Z):cm(z_rl)rl. .(2—7’8)73’ rl+ +r;§n .

Let f» (1<i<m—1) be numbers satisfying e{”-k;=f{ mod p and 0= f{’<p.
Let g; (1£7<s) be numbers satisfying r;-kn=g; mod p and 0<g;<p, where
k. is defined as before. By the same way as above we have an equation
of M';

m-1 (D) ) f(i) . .
yp——<il;ll zg (z—b)'¢t >(2—)‘1) L (z—79) =0 4)

7 is defined by
(J’, Z) (G'(Z)_ly, Fl(l . Z)/Fo(]. . Z))

where
-1

G/(2)y= Fo(1: 2) &0 " (Tl e """ T

L® @
T (z— b()-te-kisma
i1 =1

8
XTI (=) Cr s bmim
j=1

Let f. be the integer satisfying ZL [P+ 3 g+ f=0 (moa p) and 0= fo.<p.
Ty J

The set S’ of branch points of ¢’ consists of b (f{?=+0), 7; (g;#0) and o if
fw#0.
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LEMMA 3.1. For a point P=M’, put ¢'(P)=a and n-¢'(P)=a. e (resp. e’)
denotes the ramification index of n (resp. n’) at a (resp. P).

(1) Assume a is a branch point of ¢. Then e'=e/p if ple, ana e=e’ if
pre.

(2) Assume a is not a branch point of ¢. Then e=e’.

PrROOF. We may assume that M is defined by the equation (1). If a is a
branch point of ¢, then a=a;, a=a{® and e=e{® for some 7 and ¢. If ple,
then f{¥=0 and a is not a branch point of ¢’ by (3). On the other hand the
ramification index of ¢ over a; is p. As ¢on'=me’, p-e’=e. If p)e, then
fi?=+0 and a=a{® is a branch point of ¢. .".e=e’. O

§ 4.

Let #’: M’—M be as in §3. Moreover we assume that n’ is normal with
Galois group G. By Corollary 2.3 in §2 = induced by =’ is also normal with
Galois group G. Then we use the following lemma to determine r’;

LemMA 4.1. ([6], [8]) By choosing suitable coordinates z and u for P) and
P, respectively, any mnormal coverings =’ . P{—P, (z—u=f(2)) are one of the
following five types;

_ ramification indeces
group #G  u=f(x) {branch points }

n n
I cyclic C., n u=z" { }

(e ]

b

Il dihedral D, 2y y=-T-7

8

no

(z*—2+/iz*+1)
—12+/372(z* 1)

2
o1 )
3 3
b1 o

(24 14z+1) {3 2 4}
0 1
3 2
b1

III  tetrahedral A, 12 U=

8

IV octahedral S, 24 = 10824z —1)*

8

[9)]

(= (z*41)+228(2'°*—2°)—4942°)
17282°(z*°+-112°—1)°

V  icosahedral A; 60

(e o]

Ny Ny -

a } means that m’ is ramified over a; with ramification
1 a2 e

where the symbol {

index n;.
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Now we determine all ramification types of normal coverings n’': M'—M

for an arbitrary prime number p as Horiuchi did in case p=2.
As notations we use P, P/, P”, --- for ramification points of ¢, and Q,, Q.,

e Qu(Qf, o, Qh; QY -+, Q) ---) mean p distinct points with ¢(Q,)= -
m e .
} means that =z’ is

=@(Q) QD= =¢(Q4); HQN="). The symbol {¢

ramified over R with ramification index m.

PROPOSITION 4.2. All the ramification types of normal coverings m’' with
Galois group G=C, are as follows,
i) If ptn, then
n n n n vee n n e n n .ea n
. { } 5 } o }
P P’ P Q,Q, Q. Q, Q- Q)
ity If pln and p+n, then

) {n/p n/p} b {n/p n - n } {n n n n }
a .
P’ P Qi Q, Qi Qp Qi Q)

ii)If p=n, then

n o-n n n n n
a) wunramified b) { } c) { }
Q. Q, Q. Q, Q.- Q)

n n
PrROOF. We may assume that the ramification type of x is {0 } Let
o0

S be the set of branchpo ints of ¢: M—P;,. When SN {0, o}={0, o}, we have

i, ii, iii~a) by Lemma 3.1. When SN {0, co}={0} or {0}, we have i, ii, iii-b).
O

When SN {0, «o}=@, we have i, ii, iii-c).
PROPOSITION 4.3. All the ramification types of normal coverings =w’ with
Galois group G=D, are as follows;

i) If p)2v, then
2 2 v 2 2 vy 2--2 2 v
O {ppnf ¥ KR }
P pr pr PP Q, - Q, Q,---Q, P P’
2 ...2 92 ..92 ,,}

2 2 .2 oy
DBnu o

P {2 2 2 2 v v }
Qi Qp Q1--Qp Q7 Q3
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ii) If plv, p#v and v odd, then

2 2 v/p} {2 2 v v} ) {2 e 2 2»/1)}
¢

P P P PP Q. Q, Qi+ Qp P P’

|
JEcreen L prs et

p Ql' Qp Q1 Qf Qi Qp Qi Qp P

a)

2 ... 2 Yy ooy
n |
v Ql Qp Q; Q;J Qlll Z

iii) If p=y and v is oda, then
2 2 2 2 vy 2 -2 2
O lppf O b9 toa, ol
p p PP Q- Q, Qi Qp P
> | oo |
P Q,Qp Qi+ Qp Qi Qp Q1 Qp

2 .2 2 .9 Yy ey
) { }
Qx"'Qp Ql Q;o Q”‘“Q”

iv) If p=2 anad v is odd, then
v v vy 2 2
LRSI A B A
P Q: Q. Q. Q. P
2 2 v v 2 2 2 2 v
> | oo }
Q: Q. Q1 Q; Q. Q. Qf Q; P

f {2 2 2 2 v y}
Q: Q. Q1 Q; Q7 QF

v) If p=2 and v is even=4, then
v/2 v v 2 2 v/2
oL} o fuel 9 lo o
P Q1 Q: Q. Q. P
2 2 v vy 2 2 2 2 y/2
Db o b
Q: Q. Qi Qs Q: Q. Q1 Q; P
2 2 2 2 v vy
» 3
Q: Q. Q1 Q; QF QF
vi) If p=v=2 (Theorem 2’ [3], [4]),

183
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2 2 2 2 2 2
a) wunramified b) { } c) { }
Q: Q. Q: Q. Q1 Q:

& {2 2 2 2 2 2}
Q. Q. Qi Q5 Q1 QY

2 v

1

oo}. The cases i~v a), i~V

PROOF. The ramification type of = is {(2)

b), i~v «¢), i~v d), i~v e) and i~v f) are corresponding to SN{0, 1, oo}
=2{0, 1, oo}, {0, 1}, {0, o} or {1, o}, ©{0} or {1}, ©®{co} and /@ respec-
tively. In case vi), a), b), ¢) and d) are corresponding to SN{0, 1, co}=
{0, 1, =}, {0, 1} or {0, o} or {1, o=}, ©{0} or {1} or {} and *>@ respec-
tively.

PROPOSIN 4.4. All the ramification types of normal coverings n’ with G=A4

are as follows;
i) If p=5, then

33 2 33 2.2 3 .33 2
el P ool 7 lomarel
P P P” PP Q - Q, Q. Q, PP
3 3..3 2 ..2 3 ...3 3 ..3 2
| oo !
P QiQp Qi Qb QiQp Q1 Qp P
3 ..3 3 ..3 2 ..2
n | }

Qi1 Qp Q1 Qp Q- Q3
ii) If p=3, then

2 2 2 2 3 3 3 2
" 2 leaa 2 laaad
P Q: Q: Qs Q. Q: Qs P

d){333222} ){3333332}
e
Q. Q: Qs Q1 Q: Qi Q. Q: Qs Q1 Q: Qs P

f {3 3 3 3 3 3 2 2 2}
Q1 Q. Qs Q1 Q: Qs Q7 QF Q3
iii) If p=2, then

3 3 3 3 2 2 3 3 3
lert P braa 9 fradl
P P PP QQ P Q: @
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3 3 3 2 2 3 3 3 3
| |9 {0 0 0f
P Q. Q. Qi O Q: Q: Qi 0}

f {3 3 3 3 2 2}
Q: Q. Q. Qs Q1 Qu°

PRrRoOOF. The ramification type of = is {g :1; 020} The cases i~iii @), i~

iii b), i~iii ¢), i~iii d), i~iii e) and i~iii f)are corresponding to SN{0, 1, o}
=%{0, 1, oo}, 2{0, 1}, ©{0, oo} or {1, oo}, ¥{0} or {1}, ®{co} and /’P respec-
tively. O

PROPOSITION 4.5. All the ramification types of normal coverings n’ with
G=S, are as follows;
i) If p=5, then

3 2 4 32 4.4 3 2.2 4
O fopn 9| KR }

P P’ P” PP Q. Qp PQ - Q, P

{3 -3 24} ){32---2 4---4}

e
Qp P P’ P Ql"'QP QiQ;)

{3 324-~-4} ){3-~-3 2 .- 2 4}
D) g

Ql Qp P Ql" Q Ql"'Qp Q{Q;J P

{3 e 2 4 ... 4 }

Qi Qy Q1 Qp Q7 Q3
i) If p=3, then

4 2 4 4 4 2 2 2 4
2 dort P fraae 9 loaan
P P P Q. @ Q Q@ Qs Qi P

h)

[\

{ 324} {222444}
d e)
: Q. Q. Qs PP’ Q. @, Q: Q1 Q; Qs
3 3 3 2 4 4 4 3 3 3 2 2 2 4
f){ } g){ }
Q. Q: Q; P Qi Q; Qs Q. Q: Qs QF Q; Qs P

{3 3 3 2 2 2 4 4 4}
h) .
Q. Q. Q; Q1 Q: Q: Q7 QF QF

iii) If p=2, then
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3 4 4 3 2 2 2
{ } {P 0. Qz} & {P Q. . P'}
3 3 2 2 4 4
{Ql Q. } K {P Q. Q. Qé}
3 3 4 3 3 2 2 2
£ {Ql Q. Qé} o {Q, Q. Qi Q P}
3 2 2 4 4
{ Q. Qi Qi Q"Q}'

v

3 2
0 1

i~iii b), i~iii ¢), i~iii d), i~iii e), i~iii f), i~iii g) and i~iii h) are corre-
sponding to SN {0, 1, c0}=2{0, 1, oo}, »{0, 1}, {0, oo}, ®’{1, oo}, @{0}, {1},
#{c} and M@ respectively. 0

PrROOF. The ramification type of =« is { fo} The cases i~iii a),

PROPOSITION 4.6. All the ramification types of normal coverings m' with

G=A; are as follows,
i) If p=7, then
3 2 5 3 2 5--5 3 225
O 1o pf O oo }
P P P” PP Q- Q, P Q- Q, P
{3...325} ){32...2 5...5}
e
Q.- Q, PP PQ,Q, Q.- Q)
P {3...325...5} ){3...3 2 ... 2 5}
g
Q. Q, P Q- Q) Q- Qp Qi Q) P
{3...3 2...25...5}

Ql Qp Q; Q;) Q’x’ Qg
i) If p=>5, then

3 2 3 2 5.5 3 2.2
2forl v lraied bl
P P’ P P Q- Qp P Q- Qp

3..3 2 3 2...2 5 .5
aad o ;
Q. Q, P PQ Q, Q Q)

h)
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3 ..3 2 5..5 3 -3 2.2
2 S
Q. Q, P QL Q) Q. Q, Qi Q)
3 .3 2 ...2 5 ...5
h) }

Qi Qp Q1 Qp Q7+ QF
iii) If p=3, then

2 5 2 5 5 5 2 2 2 5
o bl P ool ? oo
P P’ P Q, Q. Q, Q. Q. Qp P
{3 3 3 2 5 2 2 2 5 5 5
. oo ;
Q. Q. Q; PP Q: Q: Qs Q1 Qz Qs
3 3 3 2 5 5 5 3 3 3 2 2 2 5
f){ } g){ o, }
Q: Q. Qs P Q1 Q: Qs Q: Q. Qs Q1 Q; Qs P
3 3 3 2 2 2 5 5 5
” |

Q: Q. Qs Q7 Q; Qs Q7 Q7 QF
iv) If p=2, then

3 5 3 55 32 2 5
o for) 0 el ? lraan
P P’ P Q: Q: PQ QP
335} ){23355}
e
@ Q. P P Q. Q. Q Q:

3 3 5 5 3 3 2 2 5
5 { } g) { }
Q: Q. Q1 Q; Q. Q, Q1 Qp P

3 3 2 2 5 5}
Q. Q. Q. @ Q1 Qu°

PrROOF. The ramification type of = is {3 2 050} The cases i~iv a),

0 1

i~iv b), i~iv €), i~iv d), i~iv e), i~viv f), i~viv g) and i~iv h) are corre-
sponding to SN {0, 1, co}=2{0, 1, oo}, {0, 1}, {0, oo}, ®{1, o}, e){O},'f'>{1},’
#{o} and ¥ @ respectively. , =

REMARK 4.7. There exists unique covering =z’ that attains each type in

proposition 4.2~4.6. If we appoints branch points P, P/, ---; Qy, Qa, ---; Qf, -+-.
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By Lemma 4.1, §3.(4) and Proposition 4.2~4.6 we have;

THEOREM 4.8. Let M be a cyclic p-gonal curve. All the unramified normal
coverings n’': M'—>M with a p-gonal curve M’ are obtainea by the following
manners ;

i) Let p be an arbitrary prime number. Take two ramification points P, P’
of ¢: M—>P,. Let n: P;—>P, be a normal covering with Gaiois group C,
ramified over (P) and ((P'). Then =n' as in Theorem 2.1 is unramified.
Moreover if M and = are defined by yP—u™(u—az)™* - (u—a,_)" =0 (a:€
C—{0}, 2m;#0 moa p) and = : z2—z®, then M’ and n’' are defined by

YyP—(2P—a))™2 - (2P—a,_,)"-1=0 and =n’:(z, y)—> (2P, z7™y).

ii) p=2. ([3], [4]) Take three ramification points P, P’, P” of ¢ and a
normal covering n of degree 4 with Galois group D, ramifiea over ((P), {(P’),
¢(P”). Then =’ is unramified. Moreover if M and ¢ are definea by
yV—u(u—1¥u—as) - (u—a,-)=0, r—1£0 mod 2, a; € C—{0} and =:z2—u=
(2°+1)*/42%, then M’ and ¢’ are defined by

y:—{(z2*+1)?*—4a;s2?} --- {(2®+1)*—4a,_,22}=0 and

*+1)* (Z*+1)(=*—1) )
4z 7 2z )

n':(z, y)—> ((z

§ 5.

Let M be a cyclic p-gonal curve with m=2p+1 and =n’: M’'—M be as be-
fore, but we do not assume that n’ is normal. We consider the condition that
’

n’ is unramified (if =’ is normal, all umramified z’ are obtained by Theorem
4.8). By Lemma 3.1 we have:

LEMMA 5.1. Let n: Pi—P, and ¢: M—>P, be as in Theorem 2.1. Then

the followings are equivalent;

i) =’ is unramified.

ii) Any branch points of m are also branch points of ¢ and any ramification
tndeces of m are equal to p.

Finally we give an example of an unramified covering =n’ that is not normal.

EXAMPLE 5.2. Let n: P;— P, be defined by
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- 1V2(7— b)?
; (2 1);?,~@.>_ where k+#0, =1

9 s

Then the ramification points (€ P}) of = are 1, k, 0, < and ++/k with ramifica-
tion index p. m(1)=n=(k)=0, 7(0)=n(cc)=0c0, n(+vk )=(1—+/k)* and r(—~k)
=(1+4++k)*. Thus 7 is not normal. Let M be a hyperelliptive curve defined
by

Y—uf{u—(1—vE Y Hu—1+vVEk )Y Hu—as) - (u—as,,,)=0.

Then n’: M’—M as in Theorem 2.1 is unramified. Explicitely M’ and n’ are

represented by
Y2— 22— (2—2VE +2k)z+k}{22—(2+2VER +2k)z+k}

A1) z—k)*—asz®} X - X{(z—1)(2—k)*— a34422°}=0
and
(z—1)(z—k)*

' (z, y)—> (- >

2D+ R Yz—VE)Y).
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