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AN APPROXIMATE RESOLUTION OF THE PRODUCT
WITH A COMPACT FACTOR

By

Nikica UGLESI¢C and Vlasta MATIJEVIC

Abstract. For any given approximate resolution
p:{Pa|GEA} X — I’:(Xa: Uas Paa’s A)

of a topological space X, where X is uniform, all X, are para-
compact, all U, are locally finite and A is cofinite, and any given
compact Hausdorff space Y, the approximate resolution

r=pXl={r,=p.X1llb=(a, p)= B} : XXY —> XY
Z(XGXY, CUGXSDELLJG.]; paa'XI, B)

of the product space XXY is constructed. Here, the indexing set
B is obtained by means of the set A and certain subfamilies of

D(a)={plp: Uy —=> Cov(Y)}, asA,
while the mesh U, X[ U,] is a stacked covering of X, XY over U,.

1. Introduction.

The notion of approximate resolution of a space was introduced recently
by S. Mardesi¢ and T. Watanabe ([7]). It is a logical synthesis of a suitable
restriction of the approximate inverse limit and a generalization of the (classical)
resolution ([15] and [6], and [3]). The underlying theory eliminates many
previously observed defects of non-compact or compact non-metric inverse
limits.

Let us briefly recall the main definitions from that we need in the
sequel. A normal or numerable (open) covering of a (topological) space X is
an open covering U of X which admits a subordinate partition of unity. The
set of all normal coverings of X is denoted by Cov(X). For any subset X’ X
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and UE&Cov(U), the union of all U U with UNX'# @ is eenoted by st(X’, V)
and called the star of X’ (with respect to V). If U, W<Cov(X) and <V re-
fines U, we write &W<U. For any two maps f, g:Y—X that are %U-near,
i.e. for every yeY there is U U with f(y), gly)eU, we write (f, g)<U.

An aproximate inverse system X is a collection (X,, Uq, paar, A) consisting
of

(i) a preordered indexing set A=(A, <) (it may be not antisymmetric)
which is directed and unbounded (no maximal element);

(ii) for each a=A, a space X. and a normal covering U, of X, (called
the mesh of X,);

(iii) for every two related indices a<<a’, a (continuous) map pgq : Xo— X,
(paa=ly, is the identity map on X,). Furthermore, the following three con-
ditions must be satisfied :

(Al) For any three related indices a<a’<a”,
(PaaParar, Paa)<Ua;
(A2) For each a= A and each U=Cov(X,) there exists a’>a such that
(Paa,Pajay Paa,)<U,
whenever a,>a,>a’;
(A3) For each a= A and each U<Cov(X,) there exists a’>a such that
Uar<Paar ' [Ul={pea'[UJIUE U},
whenever a”>a’.

An approximate inverse system X is called uniform, if it satisfies the addi-
tional condition :

(AU) For any two related indices a<a’,
CUa’<Paa'-1[CUa:| .

With every approximate inverse system X=(X,, Uq, Paa’, 4) We can asso-
ciate a uniform one X*=(X,, Ua, Paa, A*), A*=(A, <*), such that only the
ordering < on A is slightly changed according to a<*a’=a<a’ ([7], (1.6)
Remark).

An approximate mapping p={p.lacA}: X>X=(Xs, Ua, Paa’, A) from a
space X into an approximate inverse system X is a family of maps p.: X—X,,
ac A, such that the following condition holds:
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(AS) For any a= A and any U< Cov(X,) there exists a’>a so that (paarpar, Pa)
<, for every a”>a’.

Let (POL) denote the collection of all polyhedra (endowed with the CW-
topology).

An approximate resolution of a space X is an approximate mapping p=
{palacA}: X>%=(Xa, Ua, paa, A) of X into an approximate inverse system
X satisfying the following two conditions:

(R1) For any Pe(POL), &V&Cov(P) and f: X—P there is a= A such that,
for every a’>a, there exists a map g: Xo—P with (gpa, I<V;

(R2) For any P=(POL) and V< Cov(P) there is a V' &Cov»(P) such that, for
any two maps g, g’': X,—P with (gpa, g'p.)<V’, there exists a’>a so
that (gpaar & Daar) <V, for every a”>a’.

There are a lot of characterizations of (R1) as well as of (R2). We shall
use the following two ([7], §2.):

(B1)* For every UcCov(X) there are acA and VeCov(X.) such that
P VI<U;

(B2)** For each a= A there is a’ A, a’>a, such that

pau’[Xa']gSt(pa[X]r CUa,r)-
At the end of this introduction, we should mention that every space X

admits a (cofinite and even commutative) approximate resolution with all X,
(POL) ([7], (2.19) Theorem).

2. Construction of the indexing set.

The (classical) resolution of a direct product was considered by S. Mardesi¢
([4], Theorems 4 and 5). In that case any system has been comutative and
without meshes, so the desired results followed immediately applying the exist-
ence of the stacked covering refinements. In the case of an approximate re-
solution much more preparations have to be done to obtain an analogous
result.

Let an approximate inverse system X=(X., Ua, Paa’>» A)and a space Y be
given. First of all, we would like to organize the family {X,XY |ac A} of
spaces X XY, acA, and the family {p..X1lla<a’=A} of maps paa. X1:
X XY —-X, XY, a<a’€A, and 1=1,, to get an approximate inverse system
denoted by ¥ XY. Secondly, if p={p.lasA}: X—X is an approximate map-
ping (resolution), we would like pX1: XXY—->2X XY to be also an approximate
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mapping (resolution).

In order to do it, we will firstly define by induction a new (hypothetic)
indexing set B and an orderinng < on it which is refleksive and transitive.
After that we shall prove that (B, <) exists and is directed and unbounded,
whenever ¥ satisfies a few additional conditions.

Denote by ®(a) the family of all functions ¢: Us—Cov(Y), a= A, and
define

(L 01 <@, & (U< p(U*)  for every UV, .
If a’€A, a<a’, and p=P(a), ¢’=P(a’), define

(2) p<*¢' e If U'cU., U¥€Uar and paa [U* ]S VY,
then ¢'(U%)<eU*®).

Observe that if ¢,, p,=®P(a), ¢’=P(a’) and ¢, <. <*¢’ then ¢, <*¢’; similarily,
p<*p,'<¢," implies p<*@,’.

If a= A, let |a| denote the cardinal number of the set {a’'=A|a’<a+#a’}
of all predecessors of @ in A. Assume that there is a A, |a|=0. Define

3) Be= U B*,

acAd.la|=0

where B®={b=(a, ¢)|p=®(a)} for each a, [a]|=0. For b, b'= B, we put
4) b<o b = b="b".

If ac A with |a|=1 exists and a,<a is the unique predecessor of a, |a,|=0,
consider any b,=(a,, ¢,) B*'S B, and the family @(a; b)={¢plpED(a), p.<*p}.
Now define B,= \U B¢, where B°= \U B§ and Bf,={b=(a, )| o= D(a, b,)}.

acd. ja|=1 beBa1
For b, b’ B, put b<,b’ if and only if b=b'.
Suppose that all sets B, and relations <n, 1=m=<n—1, neN, n=22, are
defined such that the following conditions are satisfied :

(5) Bm= U Ba;
acd. la|=m
©) B :(bl.---.bm)E\BJalx---xBam Bloy..om»
where a,, -+, an<a are all the predecessors of a and b;=(a,, ¢ B%, i=
1, -, m;
) B%,...oo=1{b=(a, o)l P(a; by, -, bm)},

where ®(a; by, -, ba)={plp=B(a), p:<*p, i=1, -, m};
@®) b< nb’ &= b=1b',
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for any pair b, b’'< B,,.
Assume that there is a=A'=A\{a’|a’€ A4, |a’|<n—1} with |a|’=0 in A’

with the restricted ordering of A. Let ay, -+, ax<a, k=a, be all the pre-
decessors of a in A. Then |a;|<n—1 for everyi=1, ---, k. By the inductive
assumption there are all the sets (Biaji, <iaz), for all a;, 7=1, -+, k. Now for
any k-tuple b,=(a,, 0 )EB'S B g ), -+, by=(as, pr)EB**< B4, let us con-

sider the family @(a; b, -, bu)={plo=P(a), p;<*p, i=1, -, k} and define
the sets B%, ..»,), B® B, and the relation <, according to (7), (6), (5) and (8)

respectively. If k=n+1, define B,= - =B,_.,=@. Finally, let us define the
set
)] B=\U B,.

nzao

Let the ordering < on B be an extension of all relations <, as follows: Take
any two indices b=(a, ¢), b'=(a’, ¢’)= B such that be B,, b’c B, and m#n.

Then o=®(a; by, -, bn), Where b;=(a,, @)= B*i, while a,, -, an are all the
predecessors of a; similarily, ¢’'€®(a’; b, -+, by), bj=(a}, ¢)= B%, where
ai, -+, an are all the predecessors of a’. We put

(10) b<b' &= (a<a’; ¢:1<@j, 5 On<Pin P<QPjpsy)

where, because of a<a’, m<n and {a,, -, am, a}S{ai{, ---, a,} must hold,
i.e. for every i€ {1, ---, m}, a,=aj, and a=aj,,, for some j,={l, -, n}. It

is easy to verify that < is a reflexive and transitive relation on B. Observe
that b=(a, ¢)<(a’, ¢')=0b" and pq. [U*']SU*, U*E Vs, U* € Uy, imply oU?")
<eU*).

LEMMA 1. Let £=(Xa, Ua, Paar, A) be a uniform approximate inverse sys-
tem with all U, locally finite and A cofinite, and let Y be any space. Then the
set B with the ordering <, defined by (3)—(10), can be constructed. Mroeover,
B is a dirvected and unbounded set.

PROOF. According to the previous considerations, it is sufficient to prove
that B is not empty and that for any pair b, b’ B there exists 8’ B such
that b<b”+#b and b’'<<b”=0b’. In order to do it, we are proving four claims.

CLAmM 1. For every a= A, the set B*S B, is not empty. More precisely,
all the families @(a) and @(a; by, ---, b\4,) are not empty.

We prove this claim by induction on |a|EN,, a=A. The set A is cofinite,
so every a< A has at most finitely many predecessors, and there is a= A with
la|=0. Let us consider any a= A, |a|=0. Then @(a)# @ (for instance, the



80 Nikica UGLESIC and Vlasta MATIJEVIC

function ¢: Us—Cov» (Y), U*)={Y} for all U*eU,, belongs to @(a)) and
consequently B*={b=(a, ¢)|p=P(a)}+@. Suppose that for all ac A4, |a|=
n—1, ne N, the sets B* and all the families @(a; b,, -+, b,a;) are not empty.
Let a= A be any element with |a|’=0 in the set A’=AN{a’|a’'€ A, |a’'|<n—1}
with restricted ordering of A, and let a,, ---, ax<a, k=n, be all the predeces-
sors of a in A. Then |a;|<n—1 for every i=1, ---, k, so all B*+@ and all
@(a;; bi, - ‘bla,)=@ by the inductive assumption. For each i choose one
bi=(aq, )& B%, 1=1, .-+, k, and define ¢: U,—Cov(Y) by the following rela-
tion

go(U“)———/i\(U/a\i i(U%1)), where U*€ U, with pa,.[U%]

cU%eU,,, i€{1, -+, k};
¢o(U*)=any covering from Cov(Y), otherwise.

Here A <V, denotes the family {N\V/|V/ecy;, j&J}. Since U, are locally
j

jed
finite coverings and 1<:/<keN, the function ¢ is well defined. Moreover
pi<*p, i=1, -, k, i.e. p=@(a; by, -+, bp)* @ and thus (a, )= B*+ Q.

CLAaIM 2. For each b=(a, p)= B and each g=®(a), if p<§ then (a, &)=
be B.

This claim is an immediate consequence of the definition of B? and rela-
tions (1) and (3).

Cramm 3. For each b=(a, ) B and each a’€A, a<a’+#a, there exists
¢’ €®P(a’) such that (a’, ¢’)=b'&€ B and b<b'#b.

To prove it, observe that all the predecessors a,, -, an, of a and a are
some of all the predecessors af,---,an of a’, n=Zm+1=1. Denote ai=a,, -,
AGm=0am, AGmy1=a. Let b belong to BY,...b,), 1.€. by=(a;, ¢, )& B* and ¢;<*p,
i=1, .-, m. Take bn.=(a, p)= B*=B%,,,. By Claim 1, every B% is not
empty, so choose any b;=(a}, 90,-)63“3‘, j=m+2,---,n. Let us define ¢’:
Ua—Cov(Y) as follows:

QU )=A(A @ U),  where U €U and pasa (U]
J paj
gU”"jecl]a}’ ]E{l’ Sty n};
¢’(U* )=any covering from Cov(Y), otherwise.

We conclude, as in the proof of Claim 1, that ¢’=®(a’; by, -, b,) and (a’, ¢’)
=b'cB%,..»,»,SB*<SB. From the definition of ¢’ and follows b<<b’#b.

CLAIM 4. For every pair b=(a, ¢), b=(a, $)= B*< B and every a’>a there
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exists b’=(a’, ¢’)= B such that b<<b’ and b<b’.
To see that, take ¢’: Usy—Cov (Y),

U= N/ (U NAGU)), U E Vs
aj

and paje (U ISUNE Vay, JE{L -, 0}
¢’(U% )=any covering from Cov(Y), otherwise,

where a,, -+, an are all the predecessors of a; ai=a,, -, An=am, Amu1=
a, -+, ap are all the predecessors of a’; ¢;, -, ¢n and @, -+, gn are deter-
minated by b and b respectively; ¢n.1=¢ and G...=@; ¢, =3, is determinated
by any b;=(a;, ;)= B%, j=m+2, -, n.

Then ¢’ is well defined and belongs to @(a’; by, -, by), so (a’, ¢")=b"&E B.
By the definition of ¢’ and we infer that b<<b’ and b<b’ hold.

To finish the proof of Lemma 1, observe only that it is an immediate con-
sequence of the four previous claims.

REMARK 1. (a) The set (B, <) in Lemma 1 is generally non-cofinite (even
Y is compact);
(b) Claim 1 and B,=¢@ for some »n do not contradict each other.

3. Construction of the approximate product resolution.

Let @ be any open covering of a space X, and let, for every U=, an
open covering <Vy of a space Y be given. Then the family S={UXV |Us U,
Veayy} is an open covering of the product space XXY, so called a stacked
covering of XXY (over ).

The well known fact is that for every space X, every compact Hausdorff
space Y and every normal covering % of XXY, there exist a normal covering
U of X and a stacked covering & of XXY (over ) which refines % ([1], pp.
357, 361). Moreover, S is normal, i.e. it belongs to Co»(XXY). We shall
denote this stacked covering S by UX(Vylyev.

Let X=(X,, Ua, Daar» A), Y and (B, <) be the same as in Lemma 1. For
each b=(a, p)= B, let us define the space Z,=X,XY and the mesh S,=the
stacked covering UaX(@(U*))yecwv,, and, for each pair b<b’=(a’, ¢’)= B, the
mapping 7wy = paa X1t Xo XY =2y — Z,= Xo XY The collection Z=
(Zs, Sb, rre, B) we rather write down as XY =(Xo XY, Ua X[ U], paa X1, B).
We are ready to prove that it forms a system.

LEMMA 2. Let X=(Xa, Ua, Daa>» A) be a uniform approximate inverse sys-
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tem with all U, locally finite and A cofinite. If all X, are paracompact and Y
is a compact Hausdorff space, then XXY =(X,XY, UaXp[Ua], paar X1, B), s
a uniform approximate inverse system.

PrROOF. The condition (Al) one checks trivially by means of (Al) for X.
In order to verify (A2), let b=(a, ¢)=B and W Cov(Z,)=Cov(XaXY) be arbi-
trary elements. Choose a stacked covering UX(Vy)yevECov (X XY) refining
9, where UcCov(X,). By (A2) for %, there is ad€ A, @>a, such that, for
all a”>a’>a, (Paa Pararr Paar)<U holds. By Claim 1, there is b=(&, @)= B.
Let b’=(a’, ¢'), b”=(a”, ¢”)= B be chosen arbitrarily, so that b<b’<b”. Then
a”>a’>a. Hence (ryp?ssm, 7osr)=(PaarX1D)e(PararX1), paarX1)=(paa’Parar) X1,
Paar XK UX(Vp)yey <W, and (A2) for £ XY is satisfied. To prove (A3) for
XXY, let b=(a, p) B and WECov(Z,)=Cov(XaXY) be chosen arbitrarily.
Since X, is paracompact, we can choose a stacked covering UX(WVylyevE
Cov(XoXY) which refines 9%, where U&Cov(X,) is locally finite. Pick up a
covering U’'€Cov(X,) such that st U’ refines /. By (A2) and (A3) for %,
there is a’= A, a’>a, so that, for every a”>a’, (Paa' PararPaa )<V’ and Vg

paw[U’] hold. Let a,, -+, an be all the predecessors of a¢ and let a;=a,, -,
Gmn=am, Gmy1=a, -+, an be all the predecessors of a’. Then p=®@(a; by, -, bw),
where b;=(a;, ¢)= B, i=1, ---, m. Choose now b;=(aj, ¢)E B%, j=1, -, n,
where bi=b,, -+, bn=bm, bny1=b and bj=(aj, ¢j) are taken arbitrarily for j=
m+2, -, n, Let us define ¢': Ugs—Cov(Y) by

¢ W=\ GIU DA NV,

where U €U,, pao[U*]SUE, paja,[ua']gua’jem} and jel{l, -, n}.
Since all CL]a]: and U are locally finite and 2 is uniform, the function ¢’ is well
defined. Moreover, that definition implies ¢'=®@(a’; by, =, bm, b, byys, -, bl)
and hence (a’, ¢’)=b'=B and b'>b. Let b”=(a”, ¢”)= B be any index such
that ”>b’. Then a”>c¢’ and thus for every U*"= U, there is Ui U’ so that
PaarlUa»1SU;. Since X is uniform, there is U® & U, so that p...[U*"]SU%,
therefore ¢”(U*")<¢’'(U*’). Finally, pao-[U% 1SU; for some U;s U’ and Uy, U;
CSstU’, U)SU for some U'evU’ and U=U. Hence ¢’ (U*)<Vy. Thus we
may conclude that for every U®"eU,. there exists U U such that p,..[U*"]
€U and ¢"(U*")<Vy, i.e. Spr=VarXQ@"[ Uar] < pae [ UIX(Vp)ver=(paarX1)*-
[UXU(V)ver]<(Paar X 1) [ W]=rw[W] and (A3) is verified.

To prove the uniformity condition for X XY, let b=(a, ¢), b’=(a’, ¢’)=B
be any two indices with b<b’. Since X is uniform, U, <pzLi [U.] holds.
Furthemore, if p... [U*]1SU*® then ¢’ (U*)<@U*®). Therefore Ua X¢'[ Uy 1<
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pas [ValX o[ Ual=(paa X 1) [Ue X[ V.11 and Lemma 2 is completely proved.

REMARK 2. The assumption in Lemma 2 that all €U, are locally finite,
beside all X, are paracompact, may seem superfluous, but stricktly speaking it
is not the case. Indeed, if all X, are paracompact, and some U, are not locally
finite, we can choose locally finite coverings Ui Cov(X,), VE<U,, aE A, to
be the new meshes. Of course, one loses now (Al) and (AU) for &, while
(A2) and (A3) remain valid. Reordering (A, <) in an obvious way (using (A2)
and (A3)) one obtains A*=(A, <*), which is also cofinite, and the uniform ap-
proximate inverse system X*=(X,, U¥, paor, A*) closely related to X (compare
[7], (1.6) Remark). But now X* induces a new set B* and a new ordering on
it. Therefore Lemma 2 can be only restated in these new terms.

We now state our main theorem:

THEOREM. Let p={pslacA}: X—> X=(X,, Ua, Paa', A) be any approxi-
male resolution of a space X, such that X is uniform, all X, are paracompact,
all U, are locally finite and A is confinite. If Y is a compact Hausdor[f space
and XY =(XoXY, UaX@[Ual, Paar X1, B) the system as in Lemma 2, then

r=pXl={r,=p.X1lb=(a, ¢)=B}: XXY —> X XY

is a uniform approximate resolution of the product space XXY .

PROOF. Because of Lemma 1 and Lemma 2 it is sufficient to verify the
conditions (AS), (R1) and (R2).

Let b=(a, p) B and WeCov(X,XY) be given. Choose a stacked cover-
ing UX(WVyyevECov(XoXY) refining 9, where UE&Cov(X,:). Applying
(AS) for p on ¢ and U, take a’=A, a’>a, such that, for every a”>a’,
(Paarpan, Pa)<U holds. Take any b'=(a’, ¢’)= B with b’>b, which exists by
Claim 1. Let b”=(a”, ¢”)=B be given such that b”>b’. Then a”>a’ and
(Foor? oy ¥5)=((PaarX1D)e(parX1), pa XD)=((Paarpar) X1, paX1) < UX(Vplyer <W.
Therefore r=pX1: XXY—>X%XY is an approximate mapping.

In order to verify (R1) for r=p X1, recall that (R1) is equivalent to (Bl)*
([71, §2):

For every ®W<Cov(X,XY) there exist b=(a, ¢)= B and SSCo» (X, XY ) such
that 7;'[S]1=(p. X 1) [ST<W.

Let W<Cov(XXY) be given. Choose a stacked covering UX(V)plyev €
Cov (XXY) refining %, where U<Cov(X). Applying (B1)* for p on U, we get
a=A and U'ECov(X,) such that pz'[vU’']<U. Take any b=(a, p)=B. Let
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S=U' X (Vh ) yrew €Cov(XaXY) be the stacked covering obtained by choosing
W =Yy for some U=U with U'Sp.[U]. Then (paX1)'[SI=(pa X D[V’
X (Vi v 1=pa' [V IX (Vi )y ev < UX(Vylyev <W, and (R1) for pX1 holds.

It remains to verify (R2) for r=pXx1. We will check the equivalent con-
dition (B2)** ([7], §2):

For every b=(a, ¢)< B there exists b'=(a’, ¢’)E B, b’>b, such that 7, [ Z,]
Sst(r,[Z], Sb), i.€. (Paa X D[ Xa XY IEst(pa XDHLXXY ], Vo X[ Ua)).

Let b=(a, p)= B be given. The condition (B2)** for X provides a’€ A4,
a’>a, such that puq[X, ]Sst(p.[X], U.). Take any b’'=(a’, ¢')EB, b'>b
(Claim 3). Then

(Paa X D[ Xar XY I=paa [ Xa: IXY Sst(pa[X], Ua)XY
=st((pa X D[ XXY ], Ua X[ Ual),

which completes the proof of the theorem.

The authors are grateful to Sibe Mardesic for his helpful suggestions.
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