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IDEALS ON v WHICH ARE OBTAINED FROM
HAUSDORFF-GAPS

By

Shizuo Kamo

Let ¢ be a Hausdorff gap in “w. Hart and Mill defined the ideal Ig
which is the family of all subsets of w whose restriction of g is filled. In this
paper, we shall show two results (Theorems 1, 6) about these ideals.

Our notions and terminology follow the usual use in set theory. Let X be
a subset of w and f, g functions from X to w. g dominates f (denoted by
f<g), if {neX; gn)<f(n)} is finite. Let ¥ and A be infinite cardinals. A
pair of sequence {{f.|la<k>|{gg|B<A>> is called a (x, 4)-gap, if the following
(1), (2) are satisfied.

1) fa g5 0o, for any a<k, B<A.
(2) [fa<[fr<gs<gp,  for any a<y<k, B<6<A.

A (k, A)-gap fala<rk>|{gglB<A>> is unfilled, if there does not exist a function
h: w— o such that, for all a<k, 8<4, foa<h<gp. We call an unfilled (w;, @;)-
gap a Hausdorff gap (H-gap). The following fact is well-known.

FAacT. For any regular cardinals £ and A with (k, )#(w;, ®,), there exists
a generic extension W such that W preserves all cardinals and, in W, there
are no unfilled (x, 1)-gap.

In contrast to this fact, the following theorem holds about H-gaps.

THEOREM (Hausdorff [1, Theorem 4.3]). There is an H-gap.
Let 6=<{{fala<w)|{gsla<w,>) be a (w,, w,)-gap. Following [2], we define
the ideal /¢ by
Ig={xCw; Fh: x > oVa<wo,(f.Tx<h<g.lx)}.
It is easy to see that
w1l if and only if ¢ is filled,

Fin={xCw; x is finite}Clg.
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In this paper, we shall show two result about these ideals Ig.

THEOREM 1. Assume the Continume Hypothesis (CH). For any ideal | with
FincC/, there exists an (w,, w,)-gap & such that |=Ig.

We need the several lemmas and corollaries to show [Theorem 1. Let ['=
{h; 3xCo (h: x—w)}. For any f, g, f«g means that, for any 2<ew, {ne
dom(f)Ndom(g); g(n)<f(n)+Fk} is finite. For any X, YCI', XY means that,
for all feX and g€v, f«g.

LEMMA 2. Let X, Y be countable subsets of “w, X#+=@, and X<KY. Then
there exists an h: w—w such that X<{h}<Y.

PROOF. The case of Y=¢ is clear. So, we may asumme that Y #@.
Take an enumeration {f;|j<w) of X, and an enumeration <{g;|j<w@> of Y.
For any k<w, since X«Y, it holds that

lim(min{g«n); i<k}—max{fn); jSk})=0.

n-ow

So, we can take a sequence of natural numbers n, (for #<w) such that
Ne<<Mpyy
and ) )
Vne[ng, nes) (min{gy(n); iSk}—max{fn); j<k}=2k).
Define h: w—w by
h(n)=max{f(n); jSk}+k, if nE[n, nes).

It is easy to see that X« {r}<Y. O

COROLLARY 3. Let X, YCI'. Suppose that |X|Zw, |Y|=Zw, XY, and
dfeX(f: o> w). Then, there exists an h: w — o such that X <{h}<KY.
PrROOF. For each f= X, define f4«: w— w by
f(n), if nedom(f),
f*(n)={

0, otherwise .

By there exists g: w— w such that {f4; fe X}« {g}. Foreach fe
Y, define f*: w— w by

f(n), if nedom(f),

g(n), otherwise.

f*(n)={

Then, since {f«; fEX}<{f*; f€Y}, there exists h: w — w such that {fx; f&
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Xi<{h}<{f*; feY}, by This 4 is as required. O

COROLLARY 4. Let X, Y, Z be countable subsets of [' such that X<Z, Z<K
Y, XY, and 3f€X(f: w— w). Then, there exist g, h: w— w such that XK
{h}<Z and Z<{g}<Y and h<g.

PROOF. Since X< ZUY, by we can take h: w— w such that
Xg{h}gZUY. Then Z\U{h}«Y and we can take g: w— w such that Z\U{h}

<{gl«Y. O
LEMMA 5. Let b be an infinite subset of w and s: b—w. Suppose that X, Y
C®w and ZCI' satisfy that
(2.1) X+@ & [ X|=20 & |[V/|=0 & |[Z|20 & XY & XKZKY,
(2.2) Vhe Z(bNdom(h) is finite).
Then, there are f, g: w— o such that
(2.3) X<{f1<Z<{g}<Y and f<g,
(2.4) f10Ks or s<glb.

PROOF. Set a=w\b. By using take f,, g:: a — w such that
Xla<{f1}<Z<{g:}<Ya and f[f.i<g:.
Take f,, g:: b—w such that

X< {fa}<{ga} <Y b & foXs or s¥g

and set
fszUny g=4,\Ug:.

Then, f and g are as required. []

PROOF OF THEOREM 1. Let [ be an ideal on w such that FinC/.

The case of that w={ has no problem. So, we may assume that w&l.
Set X={s; IxCw(x&! & s: x — w)}. By CH, take an enumeration {(s,|a<w,>
of & and an enumeration <{a,|a<w,> of [. For each a<w,, let b,=dom(s,).

By induction on a <w;, we shall take f,, g« :®@— ®wand h,: a, — w which satisfy
the following (1)~(4).

(1 fe<lfakga<ge,  for any é<a.
(2) falas<heK gala, for any ¢é<a.
3) falba®Ksa Or SaKgalba.
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4 fal@a<halgalaa.
Assume that we could take such fa, g4, hae (for a<w,). By (1),
G={fa<w|{gal a<w))
is a gap. By (2), it holds that

falap<<hg<galag, for any a, f<w,.

So, it holds that, for all B<w,, ag<l¢ (i.e., (CIg). And by (3), we have that
1.,

It remains to show that we can take such f,., Za, ha (for a<w,).

Suppose that a<w, and defined f, g he (for §<a) satisfying (1)~(4).
Since it holds that

botl & {ag; é<a}C! & FinCl/,
we can take bCb, such that
b is infinite and bN\a; is finite for each £<a.

By take f., €«: w— @ such that

fe<fakga<g: for all {<a,
falae>heLgalae for all é<a,

falbLsalb or s,'b4£galb,

and take h,: a.—w such that

fal@a<hoakgala.
These fa, Qa, ha satisfy (1)~4). =

Here, we remark that the assumption of CH in Theorm 1 is necessary. To
see this, let V be a ground model which satisfies that 29=2¢1, Then, in V,
there exists an ideal which is not obtained from any (w,, w,)-gaps, since the
cardinality of the family of ideals on w is greater than the cardinality of the
family of (w,, w,)-gaps. Which ideals are obtained from (w,, w,)-gaps, under the
assumption of —CH? The following theorem deals a case whose model is
obtained by a simple generic extension.

THEOREM 6. Assume CH. Let & be a cardinal such that k®=«k and P be the
partial ordering {p; Ix Cr(|x|<w & p: x—2)} which adjoins k-many Cohen
reals. Then, in VF, it holds that the family {lg; G is an H-gap} consists of all
ideals | such that w&!l and FinCl and | are <w,-generated.
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We need the following lemma and corollary to show [Theorem 6. Let Q
be the partial ordering {¢; IxCw(|x|<w & ¢: x—2)} which adjoins a Cohen real.

LEMMA 7. Let ¢=fla<w)|{gsla<w.)) be an H-gap. Then, it holds

that
Ve l=“l; is the ideal generated by (I1g)"”.

PROOF. Set [=(Iz)”. Since VeE“/Cl;”, it suffices to show that
- oVxelsdysl(xCy).
To show this, let
g=Q & x: Q-name & ¢l x=1g.
Take a Q-name A such that
glh: x =0 & YVa<o(f.[x<h<g.lx).
For each a<w,, take ¢,<q¢ and n.<w such that
Ja = VeEx n(fa(R)<h(k)<ga(k)).
Since |Q Xw|=w, there exist r=@ and m<w such that
A={a<w;; ga=r & n,=m} is cofinal in w,.

Set y={k<w; m=<k & Ir'<r(r'Fk<=x)}. It holds that » |- xCyuUm.
CLAamM 1. For any a, <A and any k<y, fu.(k)+1<gg(k).

PROOF OF CLAIM 1. Let a, = A and ksy. Take »'<r such that
r'i-kex.

Since k=m, we have that »’ |- f.(k)<h(k)<gs(k) which implies f,(k)+1<
8s(k)

QED oF CLAIM 1.

By using Claim 1, define 2’: y — w by

h'(R)=max{f.(k); ac A}-+1.

Then, it holds that Va<w,(f.ly<h'<g.ly) and we get y=!l. [

COROLLARY 8. Let = fala<w)|{gala<w>) be an H-gap. Then it holds
VP = “lg is the ideal generated by (I15)"”.
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ProOOF. This follows from and the fact that

VPN@P(w) T U{VFP'?; acV & aCk & |a|Lw}. O

PROOF OF THEOREM 6. First we shall show that, in V?,
V¢ : H-gap (Ig is Sw,-generated).
So, let ¢ be a P-name such that, V¥ = ¢ is an H-gap. Take an A=V such that
ACk & |AlZSw, & geVPr4,
Since V#'4 = CH, we have
VP4 = [, is <w,-generated.
Since P=(PlA)X(PNk\A)) and P=P[(x\A), by
VP11, is =Zw,-generated.
To show the reverse implication, let [ be a P-name such that
VPE we&! and [ is Lw,-generated and FinC!/.
Take an SeV?® such that
VPE |S|<w, and [ is generated by S.
Then, there exists an A=V such that
ACk, |A|<w, and SeVFi4,
Since V¥#'4 = CH, there is a ¢V¥'4 such that
VP4 = ¢ is an H-gap and I; is generated by S.
By VPEI=l. =
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