IDEALS ON ω WHICH ARE OBTAINED FROM HAUSDORFF-GAPS

By

Shizuo KAMO

Let \mathcal{G} be a Hausdorff gap in ${}^{\omega}\omega$. Hart and Mill [2] defined the ideal $I_{\mathcal{G}}$ which is the family of all subsets of ω whose restriction of \mathcal{G} is filled. In this paper, we shall show two results (Theorems 1, 6) about these ideals.

Our notions and terminology follow the usual use in set theory. Let X be a subset of ω and f, g functions from X to ω . g dominates f (denoted by f < g), if $\{n \in X; g(n) \le f(n)\}$ is finite. Let κ and λ be infinite cardinals. A pair of sequence $\langle \langle f_{\alpha} | \alpha < \kappa \rangle | \langle g_{\beta} | \beta < \lambda \rangle \rangle$ is called a (κ, λ) -gap, if the following (1), (2) are satisfied.

- (1) f_{α} , g_{β} : $\omega \rightarrow \omega$, for any $\alpha < \kappa$, $\beta < \lambda$.
- (2) $f_{\alpha} < f_{\gamma} < g_{\delta} < g_{\beta}$, for any $\alpha < \gamma < \kappa$, $\beta < \delta < \lambda$.

A (κ, λ) -gap $\langle\langle f_{\alpha} | \alpha < \kappa \rangle | \langle g_{\beta} | \beta < \lambda \rangle\rangle$ is unfilled, if there does not exist a function $h: \omega \to \omega$ such that, for all $\alpha < \kappa$, $\beta < \lambda$, $f_{\alpha} < h < g_{\beta}$. We call an unfilled (ω_1, ω_1) -gap a Hausdorff gap (H-gap). The following fact is well-known.

FACT. For any regular cardinals κ and λ with $(\kappa, \lambda) \neq (\omega_1, \omega_1)$, there exists a generic extension W such that W preserves all cardinals and, in W, there are no unfilled (κ, λ) -gap.

In contrast to this fact, the following theorem holds about H-gaps.

THEOREM (Hausdorff [1, Theorem 4.3]). There is an H-gap.

Let $\mathcal{G} = \langle \langle f_{\alpha} | \alpha < \omega_1 \rangle | \langle g_{\alpha} | \alpha < \omega_1 \rangle \rangle$ be a (ω_1, ω_1) -gap. Following [2], we define the ideal $I_{\mathcal{G}}$ by

$$I_{\mathcal{G}} = \{x \subset \omega; \exists h: x \to \omega \forall \alpha < \omega_1(f_{\alpha} \upharpoonright x \prec h \prec g_{\alpha} \upharpoonright x)\}.$$

It is easy to see that

 $\omega \in I_{\mathcal{G}}$ if and only if \mathcal{G} is filled,

Fin= $\{x \subset \omega; x \text{ is finite}\}\subset I_g$.

Received January 21, 1991, Revised June 7, 1991.

In this paper, we shall show two result about these ideals $I_{\mathcal{G}}$.

THEOREM 1. Assume the Continume Hypothesis (CH). For any ideal l with Fin $\subset l$, there exists an (ω_1, ω_1) -gap \mathcal{Q} such that $l=I_{\mathcal{Q}}$.

We need the several lemmas and corollaries to show Theorem 1. Let $\Gamma = \{h \; ; \; \exists x \subset \omega \; (h : x \to \omega)\}$. For any $f, g \in \Gamma$, $f \ll g$ means that, for any $k < \omega$, $\{n \in \text{dom}(f) \cap \text{dom}(g) \; ; \; g(n) < f(n) + k\}$ is finite. For any $X, Y \subset \Gamma$, $X \ll Y$ means that, for all $f \in X$ and $g \in Y$, $f \ll g$.

LEMMA 2. Let X, Y be countable subsets of ${}^{\omega}\omega$, $X \neq \emptyset$, and $X \ll Y$. Then there exists an $h: \omega \rightarrow \omega$ such that $X \ll \{h\} \ll Y$.

PROOF. The case of $Y = \emptyset$ is clear. So, we may assume that $Y \neq \emptyset$. Take an enumeration $\langle f_j | j < \omega \rangle$ of X, and an enumeration $\langle g_j | j < \omega \rangle$ of Y. For any $k < \omega$, since $X \ll Y$, it holds that

$$\lim_{n\to\omega}(\min\{g_i(n);\ i\leq k\}-\max\{f_j(n);\ j\leq k\})=\omega.$$

So, we can take a sequence of natural numbers n_k (for $k < \omega$) such that

$$n_k < n_{k+1}$$

and

$$\forall n \in [n_k, n_{k+1}) (\min\{g_i(n); i \leq k\} - \max\{f_j(n); j \leq k\} \geq 2k).$$

Define $h: \omega \rightarrow \omega$ by

$$h(n) = \max\{f_i(n); j \leq k\} + k, \text{ if } n \in [n_k, n_{k+1}).$$

It is easy to see that $X \ll \{h\} \ll Y$. \square

COROLLARY 3. Let $X, Y \subset \Gamma$. Suppose that $|X| \leq \omega$, $|Y| \leq \omega$, $X \ll Y$, and $\exists f \in X(f : \omega \to \omega)$. Then, there exists an $h : \omega \to \omega$ such that $X \ll \{h\} \ll Y$.

PROOF. For each $f \in X$, define $f_* : \omega \to \omega$ by

$$f_*(n) = \begin{cases} f(n), & \text{if } n \in \text{dom}(f), \\ 0, & \text{otherwise.} \end{cases}$$

By Lemma 2, there exists $g: \omega \to \omega$ such that $\{f_*; f \in X\} \ll \{g\}$. For each $f \in Y$, define $f^*: \omega \to \omega$ by

$$f^*(n) = \begin{cases} f(n), & \text{if } n \in \text{dom}(f), \\ g(n), & \text{otherwise.} \end{cases}$$

Then, since $\{f_*; f \in X\} \ll \{f^*; f \in Y\}$, there exists $h: \omega \to \omega$ such that $\{f_*; f \in Y\}$

X} \ll {h} \ll {f*; f \in Y}, by Lemma 2. This h is as required. \square

COROLLARY 4. Let X, Y, Z be countable subsets of Γ such that $X \ll Z, Z \ll Y, X \ll Y$, and $\exists f \in X (f : \omega \to \omega)$. Then, there exist $g, h : \omega \to \omega$ such that $X \ll \{h\} \ll Z$ and $Z \ll \{g\} \ll Y$ and $h \ll g$.

PROOF. Since $X \ll Z \cup Y$, by Corollary 3, we can take $h: \omega \to \omega$ such that $X \ll \{h\} \ll Z \cup Y$. Then $Z \cup \{h\} \ll Y$ and we can take $g: \omega \to \omega$ such that $Z \cup \{h\} \ll \{g\} \ll Y$. \square

LEMMA 5. Let b be an infinite subset of ω and $s: b \rightarrow \omega$. Suppose that $X, Y \subset^{\omega} \omega$ and $Z \subset \Gamma$ satisfy that

$$(2.1) X \neq \emptyset \& |X| \leq \omega \& |Y| \leq \omega \& |Z| \leq \omega \& X \ll Y \& X \ll Z \ll Y,$$

 $(2.2) \qquad \forall h \in Z(b \cap \text{dom}(h) \text{ is finite}).$

Then, there are $f, g: \omega \rightarrow \omega$ such that

$$(2.3) X \ll \{f\} \ll Z \ll \{g\} \ll Y \quad and \quad f \ll g,$$

$$(2.4) f \upharpoonright b \not\prec s or s \not\prec g \upharpoonright b.$$

PROOF. Set $a=\omega \setminus b$. By using Corollary 4, take $f_1, g_1: a \to \omega$ such that $X \upharpoonright a \ll \{f_1\} \ll Z \ll \{g_1\} \ll Y \upharpoonright a$ and $f_1 \ll g_1$.

Take f_2 , g_2 : $b \rightarrow \omega$ such that

$$X \upharpoonright b \ll \{f_2\} \ll \{g_2\} \ll Y \upharpoonright b$$
 & $f_2 \not\prec s$ or $s \not\prec g_2$

and set

$$f=f_1\cup f_2, \qquad g=g_1\cup g_2.$$

Then, f and g are as required. \square

PROOF OF THEOREM 1. Let l be an ideal on ω such that Fin $\subset l$.

The case of that $\omega \in l$ has no problem. So, we may assume that $\omega \notin l$. Set $\mathcal{X} = \{s \; \exists \; x \subset \omega (x \notin l \; \& \; s : \; x \to \omega)\}$. By CH, take an enumeration $\langle s_{\alpha} \mid \alpha < \omega_1 \rangle$ of \mathcal{X} and an enumeration $\langle a_{\alpha} \mid \alpha < \omega_1 \rangle$ of l. For each $\alpha < \omega_1$, let $b_{\alpha} = \text{dom}(s_{\alpha})$. By induction on $\alpha < \omega_1$, we shall take f_{α} , $g_{\alpha} : \omega \to \omega$ and $h_{\alpha} : a_{\alpha} \to \omega$ which satisfy the following (1) \sim (4).

(1)
$$f_{\xi} \!\!\!\! \prec \!\!\! f_{\alpha} \!\!\! \ll g_{\alpha} \!\!\! \prec \!\!\! q_{\xi}, \quad \text{for any } \xi \!\!\! < \!\!\! \alpha.$$

(2)
$$f_{\alpha} \upharpoonright a_{\xi} \ll h_{\xi} \ll g_{\alpha} \upharpoonright a_{\xi}, \quad \text{for any } \xi < \alpha.$$

(3)
$$f_{\alpha} \upharpoonright b_{\alpha} \prec s_{\alpha} \text{ or } s_{\alpha} \prec g_{\alpha} \upharpoonright b_{\alpha}.$$

$$(4) f_{\alpha} \upharpoonright a_{\alpha} \ll h_{\alpha} \ll g_{\alpha} \upharpoonright a_{\alpha}.$$

Assume that we could take such f_{α} , g_{α} , h_{α} (for $\alpha < \omega_1$). By (1),

$$\mathcal{G} = \langle \langle f_{\alpha} | \alpha < \omega_1 \rangle | \langle g_{\alpha} | \alpha < \omega_1 \rangle \rangle$$

is a gap. By (2), it holds that

$$f_{\alpha} \upharpoonright a_{\beta} \prec h_{\beta} \prec g_{\alpha} \upharpoonright a_{\beta}$$
, for any α , $\beta < \omega_1$.

So, it holds that, for all $\beta < \omega_1$, $a_{\beta} \in I_{\mathcal{G}}$ (i.e., $l \subset I_{\mathcal{G}}$). And by (3), we have that $I_{\mathcal{G}} \subset l$.

It remains to show that we can take such f_{α} , g_{α} , h_{α} (for $\alpha < \omega_1$).

Suppose that $\alpha < \omega_1$ and defined f_{ξ} , g_{ξ} , h_{ξ} (for $\xi < \alpha$) satisfying (1)~(4). Since it holds that

$$b_{\alpha} \notin l \& \{a_{\xi}; \xi < \alpha\} \subset l \& \operatorname{Fin} \subset l$$

we can take $b \subset b_{\alpha}$ such that

b is infinite and $b \cap a_{\xi}$ is finite for each $\xi < \alpha$.

By Lemma 5, take f_{α} , g_{α} : $\omega \rightarrow \omega$ such that

and take h_{α} : $a_{\alpha} \rightarrow \omega$ such that

$$f_{\alpha} \upharpoonright a_{\alpha} \ll h_{\alpha} \ll g_{\alpha} \upharpoonright a_{\alpha}$$
.

These f_{α} , g_{α} , h_{α} satisfy (1) \sim (4).

Here, we remark that the assumption of CH in Theorm 1 is necessary. To see this, let V be a ground model which satisfies that $2^{\omega}=2^{\omega_1}$. Then, in V, there exists an ideal which is not obtained from any (ω_1, ω_1) -gaps, since the cardinality of the family of ideals on ω is greater than the cardinality of the family of (ω_1, ω_1) -gaps. Which ideals are obtained from (ω_1, ω_1) -gaps, under the assumption of \neg CH? The following theorem deals a case whose model is obtained by a simple generic extension.

THEOREM 6. Assume CH. Let κ be a cardinal such that $\kappa^{\omega} = \kappa$ and P be the partial ordering $\{p; \exists x \subset \kappa(|x| < \omega \& p: x \rightarrow 2)\}$ which adjoins κ -many Cohen reals. Then, in V^P , it holds that the family $\{I_g; g \text{ is an H-gap}\}$ consists of all ideals l such that $\omega \notin l$ and l are $\leq \omega_1$ -generated.

We need the following lemma and corollary to show Theorem 6. Let Q be the partial ordering $\{q: \exists x \subset \omega(|x| < \omega \& q: x \rightarrow 2)\}$ which adjoins a Cohen real.

LEMMA 7. Let $\mathcal{G} = \langle \langle f_{\alpha} | \alpha < \omega_1 \rangle | \langle g_{\alpha} | \alpha < \omega_1 \rangle \rangle$ be an H-gap. Then, it holds that

$$V^Q \models "I_g \text{ is the ideal generated by } (I_g)^V".$$

PROOF. Set $l=(I_g)^v$. Since $V^q\models "l\subset I_g"$, it suffices to show that $\Vdash_{\varrho} \forall x \in I_g \exists y \in l(x \subset y)$.

To show this, let

$$q \in Q \& x : Q$$
-name & $q \Vdash x \in I_{\mathcal{Q}}$.

Take a Q-name h such that

$$q \Vdash h : x \to \omega \& \forall \alpha < \omega_1(f_\alpha \upharpoonright x < h < g_\alpha \upharpoonright x).$$

For each $\alpha < \omega_1$, take $q_{\alpha} \leq q$ and $n_{\alpha} < \omega$ such that

$$q_{\alpha} \Vdash \forall k \in x \setminus n_{\alpha}(f_{\alpha}(k) < h(k) < g_{\alpha}(k)).$$

Since $|Q \times \omega| = \omega$, there exist $r \in Q$ and $m < \omega$ such that

$$A = \{\alpha < \omega_1; q_\alpha = r \& n_\alpha = m\}$$
 is cofinal in ω_1 .

Set $y = \{k < \omega; m \le k \& \exists r' \le r(r' \Vdash k \in x)\}$. It holds that $r \Vdash x \subset y \cup m$.

CLAIM 1. For any α , $\beta \in A$ and any $k \in y$, $f_{\alpha}(k) + 1 < g_{\beta}(k)$.

PROOF OF CLAIM 1. Let α , $\beta \in A$ and $k \in y$. Take $r' \leq r$ such that $r' \Vdash k \in x$.

Since $k \ge m$, we have that $r' \Vdash f_{\alpha}(k) < h(k) < g_{\beta}(k)$ which implies $f_{\alpha}(k) + 1 < g_{\beta}(k)$

QED OF CLAIM 1.

By using Claim 1, define $h': y \to \omega$ by

$$h'(k) = \max\{f_{\alpha}(k); \alpha \in A\} + 1.$$

Then, it holds that $\forall \alpha < \omega_1(f_\alpha \upharpoonright y < h' < g_\alpha \upharpoonright y)$ and we get $y \in l$. \square

COROLLARY 8. Let $\mathcal{G} = \langle \langle f_{\alpha} | \alpha < \omega_1 \rangle | \langle g_{\alpha} | \alpha < \omega_1 \rangle \rangle$ be an H-gap. Then it holds $V^P \models "I_{\mathcal{G}}$ is the ideal generated by $(I_{\mathcal{G}})^V$ ".

PROOF. This follows from Lemma 7 and the fact that

$$V^P \cap \mathcal{P}(\omega) \subset \bigcup \{V^{P \upharpoonright a}; a \in V \& a \subset \kappa \& |a| \leq \omega\}.$$

PROOF OF THEOREM 6. First we shall show that, in V^{P} ,

 $\forall \mathcal{G}: H$ -gap $(I_{\mathcal{G}} \text{ is } \leq \omega_1\text{-generated}).$

So, let \mathcal{G} be a P-name such that, $V^P \models \mathcal{G}$ is an H-gap. Take an $A \in V$ such that

$$A \subset \kappa$$
 & $|A| \leq \omega_1$ & $\mathcal{G} \in V^{P \uparrow A}$.

Since $V^{P \uparrow A} \models CH$, we have

$$V^{P \uparrow A} \models I_{\mathcal{G}}$$
 is $\leq \omega_1$ -generated.

Since $P \cong (P \upharpoonright A) \times (P \upharpoonright (\kappa \setminus A))$ and $P \cong P \upharpoonright (\kappa \setminus A)$, by Corollary 8,

$$V^P \models I_g$$
 is $\leq \omega_1$ -generated.

To show the reverse implication, let l be a P-name such that

$$V^P \models \omega \notin l$$
 and l is $\leq \omega_1$ -generated and Fin $\subset l$.

Take an $S \in V^P$ such that

$$V^P \models |S| \leq \omega_1$$
 and l is generated by S .

Then, there exists an $A \in V$ such that

$$A \subset \kappa$$
, $|A| \leq \omega_1$ and $S \in V^{P \upharpoonright A}$.

Since $V^{P \uparrow A} \models CH$, there is a $\mathcal{G} \in V^{P \uparrow A}$ such that

$$V^{P \uparrow A} \models \mathcal{G}$$
 is an H-gap and $I_{\mathcal{G}}$ is generated by S.

By Corollary 8, $V^P \models I_g = l$.

References

- [1] E.K. van Douwen, The Integer and Topology, in Handbook of Set Theoretic Topology, K. Kunen and J.E. Vaughan, editors, North-Holland, Amsterdam.
- [2] K.P. Hart and J. van Mill, Open problems on $\beta\omega$, in Open Problems in Topology, J. van Mill and G.M. Reed, editors, Elsevier Science Publishers B.V., North-Holland.

Department of Mathematics University of Osaka Prefecture Sakai, Osaka, Japan