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CONSTRUCTING ORDERS BY BLOWING-UP

By

Yuji YOSHINO and Yukihiro OSA

In his paper [1], M. Artin succeeded to classify maximal orders of global
dimension and Krull dimension two having the formal power series rings over
$C$ as centers. In his method of classification, [1, Theorem (2.15)] is basic, in
which he constructs a new order from a given maximal order and an extension
of the center. In the present paper we reconstruct his orders avoiding several
assumptions in his theorem. It will be done by defining the blowing-up, see
Definition below. We are inspired this by [2]. The point is that we can
define it globally, and that we can clarify what was really necessary in Artin’s
theorem.

Throughout this paper $R$ is a Noetherian normal domain and $K$ is the field
of quotients of $R$ . Let $L$ be a finite field extension of $K$ and let $S$ be the
integral closure of $R$ in $L$ . We always assume that $S$ is module-finite over $R$ .
Furthermore $\Sigma$ is a K-Azumaya algebra and $A$ is an R-order in $\Sigma$ .

We denote by $X^{1}(R)$ (resp. $X^{1}(S)$ ) the set of prime ideals in $R$ (resp. $S$ ) of
height one. For any element $\mathfrak{P}\in X^{1}(S)$ with $\mathfrak{p}=\mathfrak{P}\cap R$ , we define as follows:

$J_{\mathfrak{p}}=radA_{\mathfrak{p}}\cap A$ ,
$r_{\mathfrak{P}}=\min\{n|\mathfrak{P}^{n}S_{\mathfrak{P}}\subset \mathfrak{p}S_{\mathfrak{P}}\}=the$ ramification index of the extension $R_{\mathfrak{p}}\subset S_{\mathfrak{P}}$ ,
$e_{\mathfrak{p}}=\min\{n|(radA_{\mathfrak{p}})^{n}\subset \mathfrak{p}A_{\mathfrak{p}}\}=the$ ramification index of $A_{\mathfrak{p}}$ .

In what follows we assume that $A$ is a tame R-order, $i.e.$ $A$ is a reflexive
R-module and $A_{\mathfrak{p}}$ is a hereditary $R_{\mathfrak{p}}$-order for any $\mathfrak{p}\in X^{1}(R)$ . Notice that maximal
orders are tame. Since the set of $\mathfrak{p}\in X^{1}(R)$ with $e_{\mathfrak{p}}\neq 1$ is finite, denote it by
$\{\mathfrak{p}_{1}, \mathfrak{p}_{2}, \cdots, \mathfrak{p}_{l}\}$ . For each $i(1\leqq i\leqq l)$ , we denote by $\{\mathfrak{P}_{i1}, \mathfrak{P}_{i2}, \cdots, \mathfrak{P}_{i\nu_{i}}\}$ the set
of prime ideals of $S$ which lie over $\mathfrak{p}_{i}$ . For simplicity we write $e_{i}=e_{p_{i}},$ $r_{ij}=$

$r_{\mathfrak{P}_{ij}}$ and $J_{i}=J_{\mathfrak{p}_{i}}$ for $1\leqq i\leqq l,$ $1\leqq j\leqq\nu_{i}$ . Furthermore we denote $s_{ij}=e_{i}/r_{ij}\in Q$ .

DEFINITION. We define the blowing-up $B(A, S)$ of $A$ along $S$ by the
following:

$B(A, S)=\Sigma(n_{1}, n_{2}\ldots..n_{l})\in Z^{l}\{\prod_{i=1}^{l}(J_{i}^{-n_{i}}\prod_{j=1}^{\nu_{i}}\mathfrak{P}_{ij^{i}}^{[n/s_{tj}])\}^{**_{\subset}}\Sigma\otimes_{K}L}$ ,

where $($ $)^{**}=Hom_{R}(Hom_{R}(, R),$ $R$ ) and $[q]=\min\{n\in Z|n\geqq q\}$ for any $q\in Q$ .
Received July 10, 1990.
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REMARK. Since $[n_{i}/s_{ij}+n_{i}^{\prime}/s_{ij}]\leqq[n_{i}/s_{ij}]+[n_{i}^{\prime}/s_{ij}]$ , it is easily seen that
$B(A, S)$ is closed under multiplication. Hence $B(A, S)$ is an S-algebra and
$B(A, S)\otimes_{S}L=\Sigma\otimes_{K}L$ . We also define that, if $e_{\mathfrak{p}}=1$ for any $\mathfrak{p}\in X^{1}(R)(i. e. l=0)$ ,

then $B(A, S)=A\otimes_{R}S$ .

LEMMA 1. $B(A, S)$ is finitely generated as an S-module.

PROOF. Remarking that $[(n_{i}+e_{i})/s_{ij}]=[n_{i}/s_{ij}]+r_{ij}$ , we have

$\mathfrak{P}^{\zeta(n_{i^{+e}i)/s_{ijJ}}}=\mathfrak{P}^{\mathfrak{c}n_{i}/s_{ijJ}}\cdot \mathfrak{P}^{r_{ij}}$ .
Letting $B(n_{1}, n_{2}, \cdots, n_{\iota})=\Pi_{i=1}^{l}(J_{i}^{-n_{i}}II_{j=1}^{\nu}i\mathfrak{P}_{tJ^{i/s_{ijJ}}}^{\zeta n})$ , we see from this that

$B(n_{1}, \cdots, n_{i}+e_{i}, \cdots, n_{l})=B(n_{1}, n_{2}, \cdots n_{l})\cdot(J_{i}^{-e}i\prod_{j=1}^{\nu_{i}}\mathfrak{P}_{ij^{ij}}^{r})$ .

Here, since $(J_{i}^{-e}i\Pi_{j^{i}}^{\nu_{=1}}\mathfrak{P}_{ij^{ij}}^{r})^{**}=A\otimes_{R}S$ , we obtain

$B(A, S)=\sum_{e(n_{1}.n_{2}.\cdots.n_{l})\in Z^{l}.0\leq n_{i<i}}B(n_{1}, n_{2}, \cdots n_{l})^{**}$ .

Each $B(n_{1}, n_{2}, \cdots, n_{l})^{**}$ is a finitely generated S-module, therefore $B(A, S)$ is. $\blacksquare$

If we denote the center of $B(A, S)$ by $Z$ , then clearly $S\subset Z\subset L$ and $Z$ is
finitely generated as an S-module by the lemma. Hence we have $S=Z$ , show-
ing the following:

PROPOSITION 1. $B(A, S)$ is an S-order in $\Sigma\otimes_{K}L$ .
We note that blowing-ups are preserved by certain base changes. More

precisely we can see the following lemma whose proof is left to the reader.

LEMMA 2. (2.1) If $U$ is a multiplicatively closed subset of $S$ and if $V=U$

$\cap R$ , then $B(A, S)_{U}=B(A_{V}, S_{U})$ .
(2.2) If $R\rightarrow R^{\prime}$ is a finite \’etale extension, then $B(A, S)\otimes_{R}R^{\prime}=B(A\otimes_{R}R^{\prime}$ ,

$S\otimes_{R}R^{\prime})$ .
(2.3) If both $R$ and $S$ are discrete valuation rings, then $B(\hat{A},\hat{S})=B(A, S)\otimes_{S}\hat{S}$ .

In the rest of the paper we write $s_{ij}$ as
$s_{ij}=q_{ij}/p_{ij}$ , $q_{ij},$ $p_{ij}\in N$ with $(p_{ij}, q_{ij})=1$ .

Notice that, if $r_{ij}$ divides $e_{i}$ , then $q_{ij}=s_{ij}=e_{i}/r_{ij}$ , and that $q_{ij}=1$ if and only

if $e_{i}$ divides $r_{ij}$ . In general, $q_{ij}=e_{i}/(e_{i}, r_{ij})$ .
We can now state our main theorem of this paper.

THEOREM 1. Assume that $\kappa(\mathfrak{p})=R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$ is a perfect field for any $\mathfrak{p}\in X^{1}(R)$ .
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Then $B(A, S)$ is also a tame S-order and, for any $\mathfrak{P}\in X^{1}(S)$ , the ramification
index of $B(A, S)$ at $\mathfrak{P}$ is equal to $q_{ij}$ if $\mathfrak{P}=\mathfrak{P}_{ij}$ , and 1 otherwise.

PROOF. Take $\mathfrak{P}\in X^{1}(S)$ and set $\mathfrak{p}=\mathfrak{P}\cap R$ .
Suppose, first, that $\mathfrak{P}$ is distinct from any of $\mathfrak{P}_{ij}$ Then we see from

Lemma 2 that $B(A, S)_{\mathfrak{P}}=B(A_{\mathfrak{p}}, S_{\mathfrak{P}})=A_{\mathfrak{p}}\otimes_{R_{\mathfrak{p}}}S_{\mathfrak{P}}$ . Since $e_{\mathfrak{p}}=1$ and since $\kappa(\mathfrak{p})$ is
perfect, we can see that $B(A, S)_{\mathfrak{P}}$ is an Azumaya algebra over $S_{\mathfrak{P}}$ , in particular,
it is hereditary with ramification index one.

Next assume that $\mathfrak{P}=\mathfrak{P}_{ij}$ for some $i,$ $j$ . For simplicity, set $r=r_{ij},$ $e=e_{i}$

and $s=s_{ij}$ . By Lemma 2, we may assume that $(R, \mathfrak{p})$ and $(S, \mathfrak{P})$ are complete

discrete valuation rings. Since $\kappa(\mathfrak{p})$ is perfect it is known by [4, Chap. XII \S 1

Theorem 1] that there is a finite \’etale extension $R\rightarrow R^{\prime}$ such that the quotient
field of $R^{\prime}$ splits $\Sigma,$ $i.e$ . $\Sigma\otimes_{R}R^{\prime}$ is a matrix algebra over the quotient field of
$R^{\prime}$ . Considering $R^{\prime}$ instead of $R$ and using Lemma 2, we may assume that $\Sigma$

is a matrix algebra over $K$. Then by [3, Theorem (39.14)] we can find integers
$m,$ $m_{0},$ $m_{1},$ $\cdots$ , $m_{e-1}$ with $m=\Sigma_{i=0}^{e-1}m_{i}$ and R-free modules of rank $m$ ;

$V_{i}=\mathfrak{p}\oplus\cdots\oplus \mathfrak{p}\oplus R\oplus\cdots\oplus R$

(there are $m_{0}+m_{1}+\cdots+m_{i-1}\mathfrak{p}\prime s$ in $V_{i}$ and $1\leqq i\leqq e$ )

and the hereditary order $A$ is obtained as follows:
For any integer $n$ , if $n=ce+d$ with $c,$ $d\in Z$ and $1\leqq d\leqq e$ , then we define

$V_{n}=\mathfrak{p}^{c}\otimes_{R}V_{d}$ . Note that $\subset V_{n+1}\subset V_{n}\subset V_{n-1}\subset\cdots$ . We denote this “flag” by $f$

and, for any integer $n$ , we write as follows:

$End_{R}(f)_{n}=$ { $\varphi\in End_{K}(V_{0}\otimes_{R}K)|\varphi(V_{i})\subset V_{i+n}$ for all $i$ }.

Then the hereditary order $A$ is isomorphic to $End_{R}(f)_{0}$ as an R-order. More
generally, if $J$ is the Jacobson radical of $A$ , then $J^{n}=End_{R}(f)_{n}$ under this
isomorphism.

For the proof of the theorem we need several auxiliary results.

DEFINITION. For a rational number $a\in Q$ , we define the scaled Rees ring
with center $\mathfrak{p}$ by

$R[\mathfrak{p}, a]=\sum_{n\in Z}\mathfrak{p}^{[n/a]}r^{n}\subset K[t, t^{-1}]$

We should notice the following:

LEMMA 3. Let $a=q/p$ be a rational number with $p,$ $q\in N$ coprime. If an
integer $n$ has an equation $n=cq+d,$ $(c, d\in Z, 0\leqq d<q)$ , then $t^{n}R[\mathfrak{p}, a]\cong t^{a}R[\mathfrak{p}, a]$

as a graded $R[\mathfrak{p}, a]$ -module.
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Furthermore, graded $R[\mathfrak{p}, a]$ -modules $\{R[\mathfrak{p}, a],$ $t^{1}R[\mathfrak{p}, a],$ $t^{2}R[\mathfrak{p}, a],$ $\cdots$ ,
$t^{q-1}R[\mathfrak{p}, a]\}$ are non-isomorphic.

PROOF. Since $t^{q}R[\mathfrak{p}, a]=\mathfrak{p}^{-p}R[\mathfrak{p}, a]\cong R[\mathfrak{p}, a]$ by definition, the first claim
follows.

For the second, we define the function $\rho_{a}$ : $Z\rightarrow N$ by the following:

$\rho_{a}(i)=\ddot{m}\{j\in Z|[]/a]=i\}$ .
Note that

$ R[\mathfrak{p}, a]=\cdots\oplus R\oplus\cdots\oplus R\oplus \mathfrak{p}\oplus\cdots\oplus \mathfrak{p}\oplus \mathfrak{p}^{2}\oplus\cdots\oplus \mathfrak{p}^{2}\oplus\cdots$ ,

where each $\mathfrak{p}^{i}$ appears $\rho_{a}(i)$-times. It is, then, easy to see that Lemma 3
follows from the next lemma.

LEMMA 4. With the same notation as above, $p$ is the minimal period of the
function $\rho_{a}$ and

$p1\sum_{i=0}^{-}\rho_{a}(i)=\#\{j\in Z|0\leqq[p]/q]<p\}=q$ .

PROOF OF LEMMA 4. It is obvious that $\rho_{a}(i+p)=\rho_{a}(i)$ for any $i\in Z$ . Let
$s$ be the minimal positive integer with this property. Then clearly $s$ divides
$p$ . We have to show $s=p$ . Letting $a^{\prime}=(p+q)/p$ , we can see that $\rho_{a^{\prime}}(i)=$

$\rho_{a}(i)+1$ for any $i\in Z$ . Hence we may assume that $0<q<p$ . Then $\rho_{a}$ takes
either 1 or $0$ , hence

$p1\sum_{i=0}^{-}\rho_{a}(i)=\#\{j\in Z|0\leqq j<p, \rho_{a}(])=1\}$

$=\#\{j|0\leqq j<q\}=q$ .

On the other hand the leftmost of this equation is equal to $(p/s)\Sigma_{i=0}^{s-1}\rho_{a}(i)$ , since
$s$ is the period of $\rho_{a}$ . Therefore $p/s$ divides $q$ and thus $p=s$ . $\blacksquare$

Now we continue the proof of the theorem. For simplicity we write $(t^{i})=$

$t^{i}R[\mathfrak{p}, e]$ and consider the $R[\mathfrak{p}, e]$ -free module:

$V=(1)\oplus(1)\oplus\cdots\oplus(1)\oplus(t)\oplus\cdots\oplus(t)\oplus(t^{2})\oplus\cdots\oplus(t^{2})\oplus\cdots\oplus(t^{e-1})$ ,

where each $(t^{i})$ appears $m_{i}$ -times. By the choice of $\{m_{i}\}$ , there is an equality
of graded rings:

$End_{R[\mathfrak{p}.e]}(V)=\sum_{n\in Z}J^{n}t^{n}\subset\Sigma[t, t^{-1}]$ .

Note that the hereditary order $A$ is the part of degree $0$ in this endomorphism
ring, $i$ . $e$ . $A=End_{R[\mathfrak{p}.e]}(V)_{0}$ .

Note also that there is an extension of commutative graded rings; $R[\mathfrak{p}, e]$
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$\subset S[\mathfrak{P}, s]$ , since $\mathfrak{p}^{[n/e]}\subset(\mathfrak{P}^{r})^{[n/e]}\subset \mathfrak{P}^{[n/s]}$ Then by definition there is an equality:

$B(A, S)=(\sum_{n\in Z}J^{n}t^{n}\otimes_{R[\mathfrak{p}.e]}S[\mathfrak{P}, s])_{0}$

Since $V$ is a free $R[\mathfrak{p}, e]$ -module, we obtain from this that

$B(A, S)=(End_{S[\mathfrak{P}.s]}(V\otimes_{R[\mathfrak{p},e]}S[\mathfrak{P}, s]))_{0}$

Now let $s=q/p$ with $p,$ $q\in Z$ coprime. Then we showed in Lemma 3 that the
set $\{(1), (t), (t^{2}), \cdots, (t^{q-1})\}$ is all of the indecomposable free non-isomorphic
graded modules. Therefore we have an isomorphism of $S[\mathfrak{P}, s]$ -modules;

$V\otimes_{R[\mathfrak{p}.e]}S[\mathfrak{P}, s]\cong(1)^{l_{0}}\oplus(t)^{l_{1}}\oplus(t^{2})^{l_{2}}\oplus\cdots\oplus(t^{q-1})^{l_{q-1}}$ ,

where $l_{i}=\sum\{m_{j}|0\leqq j\leqq e-1, j\equiv i(mod q)\}$ . Defining the flag $\overline{f}$ by

$...\supset S^{\oplus m}\supset \mathfrak{P}^{\oplus l_{0}}\oplus S^{\oplus l_{1}}\oplus\cdots\oplus S^{\oplus\iota_{q-1}}$

$\supset \mathfrak{P}^{\oplus(l+l)}01\oplus S^{\oplus l_{2}}\oplus\cdots\oplus S^{\oplus l_{q-1}}\supset\cdots$

$\supset \mathfrak{P}^{\oplus(l_{0}+l_{1}+l_{2}+\cdots+\iota_{q-2^{)}}}\oplus S^{\oplus\iota_{q-1}}\supset \mathfrak{P}^{\oplus m}\supset\cdots$ ,

we thus show that $B(A, S)=End_{S}(f)_{0}$ . This implies that $B(A, S)$ is a hereditary

S-order with ramification index $q$ . $\blacksquare$

REMARK. (i) Generally $ A\subset B(A, S)\cap\Sigma$ . Thus if $A$ is a maximal order,

then $ A=B(A, S)\cap\Sigma$ .
(ii) Suppose $L/K$ is a finite Galois extension with Galois group $G$ . Then

$G$ acts on $\Sigma\otimes_{K}L$ naturally, that is, $g(\sigma\otimes l)=\sigma\otimes g(l)(g\in G, \sigma\in\Sigma, l\in L)$ . Notice
that, in this case, the primes $\{\mathfrak{P}_{i1}, \mathfrak{P}_{i2}, \cdots , \mathfrak{P}_{i\nu_{i}}\}$ lying over $\mathfrak{p}_{i}$ are conjugate
by the action of $G$ . Hence, $s_{i1}=s_{i2}=\cdots=s_{i\nu_{i}}$ , and the action of $G$ on $\Sigma\otimes_{K}L$

induces the action on $B(A, S)$ .
In this case we can prove:

PROPOSITION 2. Suppose that $L/K$ is a finite Galois extension with Galois
group G. Then we have $B(A, S)^{G}=A$ .

PROOF. We have only to prove the proposition after localizing at $\mathfrak{p}\in X^{1}(R)$ .
Thus we may assume from Lemma 2 that $(R, \mathfrak{p})$ is a discrete valuation ring,
and therefore $(S, \mathfrak{P}_{1}, \mathfrak{P}_{2}, \cdots, \mathfrak{P}_{\nu})$ is a semilocal ring.

If $e_{\mathfrak{p}}=1$ , then, since $B(A, S)=A\otimes_{R}S$ , we have

$B(A, S)^{G}=(A\otimes_{R}S)^{G}=A\otimes_{R}S^{G}=A$ .

Assume $e_{\mathfrak{p}}>1$ . Then noting that
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$(\prod_{j=1}^{\nu}\mathfrak{P}_{j}^{[n/\epsilon])\cap K=\mathfrak{p}^{[[n/s]/r]}=\mathfrak{p}^{[n/e]}}$

for any $n\in Z$, we show that

$A\subset B(A, S)^{G}\subset B(A, S)\cap(\Sigma\otimes_{K}K)=\sum_{n\in Z}J^{-n}\mathfrak{p}^{[n/e]}\subset A$ ,

hence the proposition. $\blacksquare$

Also we can show that the extension $B(A, S)/A$ is “Galois” when $S/R$ is
nice enough.

THEOREM 2. Suppose the field extension $L/K$ is Galois with Galois group $G$ .
For any $\mathfrak{p}\in X^{1}(R)$ we assume the following conditions:

(i) If $\mathfrak{p}$ is different from any of $\{\mathfrak{p}_{i}\}(i. e. e_{\mathfrak{p}}=1)$ , then $R_{\mathfrak{p}}\subset S_{\mathfrak{p}}$ is an un-
ramified extension.

(ii) The characteristic of the field $\kappa(\mathfrak{p})$ is prime with the order $|G|$ of $G$ .
(iii) The numbers $s_{ij}$ are integers, $i.e$ . each $r_{ij}$ divides $e_{i}$ .
Then there is a natural isomorphism of R-algebras:

$B(A, S)*G\cong End_{A}(B(A, S))$ ,

where the left-hand-side denotes the skew group ring of $G$ over $B(A, S)$ .

PROOF. As before we may assume that $(R, \mathfrak{p})$ is a discrete valuation ring.
We write $B=B(A, S)$ for short.

If $e_{\mathfrak{p}}=1$ , then, by the assumption, the natural map $S*G\rightarrow End_{R}(S)$ is an
isomorphism. Thus it follows that

$End_{A}(B)=End_{A}(A\otimes_{R}S)\cong A\otimes_{R}End_{R}(S)$

$\cong A\otimes_{R}(S*G)=(A\otimes_{R}S)*G=B*G$

Suppose $e_{\mathfrak{p}}>1$ . Since $L/K$ is a Galois extension, there is a natural isomor-
phism $\varphi$ defined as follows:

$\varphi:End_{\Sigma}(\Sigma\otimes_{K}L)\rightarrow\Sigma\otimes_{K}End_{K}(L)\rightarrow\Sigma\otimes_{K}(L*G)=(\Sigma\otimes_{K}L)*G$ .
Note that $End_{A}(B)\subset End_{\Sigma}(\Sigma\otimes_{K}L)$ and $B*G\subset(\Sigma\otimes_{K}L)*G$ . It is clear from the
definition of $\varphi$ that $\varphi^{-1}(B*G)\subset End_{A}(B)$ . It is sufficient to show that $\varphi(End_{A}(B))$

$\subset B*G$ . To this end, let $G=\{g_{1}, g_{2}, \cdots , g_{n}\}(n=|G|)$ , and for a fixed $ f\in$

$End_{A}(B)$ write

$\varphi(f)=\sum_{i=1}^{n}\xi_{i}g_{i}$ $(\xi_{i}\in\Sigma\otimes_{K}L)$ .

We want to prove that $\xi_{i}\in B$ for any $i$ . For an R-free basis $\underline{\lambda}=\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\}$
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of $S$ , we set $\Delta(\underline{\lambda})=\det(g_{i}(\lambda_{j}))_{1\leq i.j\leq n}$ . It is well-known that the ideal $\Delta(\underline{\lambda})S$ is
independent of the choice of $\underline{\lambda}$ . In fact, $\Delta(\underline{\lambda})^{2}S$ is the discriminant of the ex-
tension $S/R$ . By [4, Chap. III \S 6 Proposition 13] it is also known that

$\Delta(\underline{\lambda})^{2}S=\prod_{i=1}^{l}\mathfrak{P}_{i^{(r-1)n}}$ ,

where $r$ is the ramification index at $\mathfrak{P}_{i}$ on $\mathfrak{p}$ . Let $\mathfrak{Q}=\Pi_{i=1}^{l}\mathfrak{P}_{i}$ and $d=\dim_{\kappa(\mathfrak{p})}$

$(S/\mathfrak{Q})$ . Since $dr=n$ , we can take an R-free basis $\{\lambda_{i}|1\leqq i\leqq n\}$ of $S$ with the
property that $\lambda_{i}\in \mathfrak{Q}^{[id]-1}/-\mathfrak{Q}^{[i/d]}$ for any $i(1\leqq i\leqq n)$ . Then by the definition
of $B$ the following are all contained in $B$ ;

$\lambda_{1},$

$\cdots,$
$\lambda_{d},$ $J^{-u_{1}}\lambda_{d+1},$

$\cdots,$
$J^{-u_{1}}\lambda_{2d},$ $J^{-u_{2}}\lambda_{2d+1},$

$\cdots,$
$J^{-u_{2}}\lambda_{3d},$

$\cdots,$
$J^{-u_{r-1}}\lambda_{n}$ ,

where $u_{i}=\max\{u\in Z|[u/s]\leqq i\}$ . Hence their images under the map $f$ are also
in $B,$ $i.e$ .

$\sum_{i}\xi_{i}g_{i}(\lambda_{1}),$ $\cdots,$ $\sum_{i}\xi_{i}g_{i}(\lambda_{d})\in B$ ,

$J^{-u_{1}}\sum_{l}\xi_{i}g_{i}(\lambda_{d+1}),$ $\cdots,$ $J^{-u_{1}}\sum_{l}\xi_{i}g_{i}(\lambda_{d+2}),$ $\cdots,$ $J^{-u_{r-1}}\sum_{l}\xi_{i}g_{i}(\lambda_{n})\subset B$ .

Denoting the matrix $(g_{i}(\lambda_{j}))_{1\leq i,j\leq n}$ by $C$ , we thus showed that $(\xi_{1}, \xi_{2}, \cdots, \xi_{n})C$

$\in(B)^{\oplus d}\oplus(J^{u_{1}}B)^{\oplus d}\oplus\cdots(J^{u_{r-1}}B)^{\oplus d}$ . Let $C_{ij}$ be the cofactor of the matrix $C$ . Then
it follows from the choice of $\{\lambda_{i}\}$ that

$C_{ij}\in \mathfrak{Q}^{n(r-1)/2-[J/a]+1}$ .
Therefore we have

$\xi_{i}\Delta(\underline{\lambda})\in \mathfrak{Q}^{n(r-1)/2}(B+\mathfrak{Q}^{-1}J^{u_{1}}B+\cdots+\mathfrak{Q}^{-(r-1)}]^{u_{r-1}}B)$ .
Here, since $s$ is an integer, we note that $[-u_{i}/s]=-i$ for any $i$ . Hence
$\mathfrak{Q}^{-i}J^{u_{i}}\subset B$ . Combining this with the above we have

$\xi_{i}\in\Delta(\underline{\lambda})^{-1}\mathfrak{Q}^{n(r-1)/2}B=B$ ,

as required. $\blacksquare$

Finally we give an example.

EXAMPLE. Let $n$ be an integer and $k$ be any field that contains the pri-
mitive n-th root $\zeta$ of unity. Consider the extension of polynomial rings over $k$ :

$R=k[x^{n}, y^{n}]\subset S=k[x, y]$ .
We define an R-order $A$ by

$A=R\langle u, v\rangle/(u^{n}-x^{n}, v^{n}-y^{n}, uv-\zeta vu)$ .
By computing the reduced discriminant of $A$ over $R$ it is easy to check that $A$
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is ramified only on the primes $\mathfrak{p}_{1}=x^{n}R$ and $\mathfrak{p}_{2}=y^{n}R$ , and $n$ is the ramification
index of $A$ on each prime. Furthermore $S$ is also ramified on $\mathfrak{p}_{1}$ and $\mathfrak{p}_{2}$ with
ramification index $n$ . Thus by the definition of blowing-up we have

$B(A, S)=\sum_{n_{0}.n_{1}=1}^{n-1}\{(u)^{n_{1}}(v)^{n_{2}}(x)^{-n_{1}}(y)^{-n_{2}}\}$ ,

which is the $k[x, y]$ -algebra generated by $\{u/x, v/y\}$ . In this case it is also
easy to see that $B(A, S)$ is isomorphic to the matrix ring $M_{n}(S)$ by the follow-
ing mapping:

$u/x\leftrightarrow\ovalbox{\tt\small REJECT}_{1}^{0}$

$01$

1

$0$

$01\ovalbox{\tt\small REJECT}$ , $v/y-\ovalbox{\tt\small REJECT}^{1}$

$\zeta$

$\zeta^{2}$

$\zeta^{n-1}$
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