ON COMPLETE SPACE-LIKE SURFACES WITH CONSTANT MEAN CURVATURE IN A LORENTZIAN 3-SPACE FORM

By

Reiko AIYAMA

Introduction

By a Lorentzian (n+1)-space form $M_1^{n+1}(c)$ we mean a Minkowski space R_1^{n+1} , a de Sitter space $S_1^{n+1}(c)$ or an anti-de Sitter space $H_1^{n+1}(c)$, according as c>0, c=0 or c<0, respectively. That is, a Lorentzian space form $M_1^{n+1}(c)$ is a complete connected (n+1)-dimensional Lorentzian manifold with constant curvature c.

A hypersurface in a Lorentzian manifold is said to be *space-like* if the induced metric on the hypersurface is positive definite. On a space-like hypersurface, the first fundamental form, the second fundamental form and the mean curvature are defined in the same way as those on a hypersurface in a Riemannian manifold [§ 1].

It has been proved by Bernstein and others that the only entire minimal hypersurface in a Euclidean space R^{n+1} is a linear hyperplane for $n \le 7$, but there are other examples for n > 7. So, Calabi proposed to study a Lorentzian analoge, called the Bernstein type problem, in Minkowki space R_1^{n+1} , and this was solved by Cheng and Yau [4] for every n.

More precisely, a space-like hypersurface in a Lorentzian manifold is said to be maximal, if the mean curvature is zero. The Bernstein type problem has led to the conclusion that the only entire maximal space-like hypersurface in R_1^{n+1} is a linear hyperplane. In order to prove this, Cheng and Yau [4] established the following result:

(*) If an entire space-like hypersurface M in R_1^{n+1} has a constant mean curvature H, then the induced Lorentzian metric on M is a complete Riemannian metric and the length of second fundamental form of M is bounded from above by $n \mid H \mid$.

It follows from this result that if M is maximal, then it is totally geodesic.

Moreover, Nishikawa [11] studied the Bernstein type problem for complete maximal space-like hypersurfaces in other Lorentzian manifolds, and Ishihara

Received January 23, 1990. Revised March 27, 1990.

[8] found a similar result for complete maximal space-like submanifolds M^n in a semi-Riemannian space form $M_p^{n+p}(c)$.

On the other hand, in the theory of relativity, certain space-like hypersurfaces with constant mean curvature in arbitrary space-times are also investigated. For instance, Choque-Bruhat, Fischer and Marsden [5] studied the Bernstein type problem in a space-time $M_1^4(c)$ $(c \ge 0)$ in connection with the positivity of mass, and proved that a compact maximal space-like hypersurface in $M_1^4(c)$ $(c \ge 0)$ must be totally geodesic.

We shall consider, in this paper, complete space-like hypersurfaces with non-zero constant mean curvature in a Lorentzian space form $M_1^{n+1}(c)$. The well-known standard models of these are the totally umbilical space-like hypersurfaces and the following product manifolds:

$$H^{k}(c_{1}) \times M^{n-k}(c_{2})$$

$$= \begin{cases} H^{k}(c_{1}) \times S^{n-k}(c_{2}) & \text{in } S_{1}^{n+1}(c) \\ H^{k}(c_{1}) \times R^{n-k} & \text{in } R_{1}^{n+1} \\ H^{k}(c_{1}) \times H^{n-k}(c_{2}) & \text{in } H_{1}^{n+1}(c) \end{cases} \begin{bmatrix} \frac{1}{c_{1}} + \frac{1}{c_{2}} = \frac{1}{c}, c_{2} < 0 \end{bmatrix},$$

where $k=1, \dots, n-1$. $H^1(c_1) \times M^{n-1}(c_2)$ is, in particular, called a *hyperbolic* cylinder.

Goddard [6] conjectured that the only complete space-like hypersurfaces of constant mean curvature in $M_1^4(c)$ $(c \ge 0)$ are the above standard models. However, it is proved by Treibergs [16] that many other examples of complete space-like surfaces with constant mean curvature exist in R_1^3 . Thus, conversely, it seems to be interesting to characterize the above standard models among these space-like surfaces.

In this direction, Akutagawa [2], Ramanathan [14] and Cheng and Nakagawa [3] obtained the conditions for a complete space-like hypersurfaces with constant mean curvature in $S_1^{n+1}(c)$ to be totally umbilical.

On the other hand, K. Milnor [10] and Yamada [17] characterized the hyperbolic cylinder $H^1(c_1) \times R^1$ in R_1^3 as the only complete "uniformly" non-umbilical space-like surface with non-zero constant mean curvature. In particular, K. Milnor proved this result by making use of the Cheng-Yau result (*).

The purpose of this paper is to prove a certain extension of the Cheng-Yau result (*) as stated in Theorem 1 [§2]. This theorem means that a complete space-like surface with constant mean curvature in $M_1^3(c)$ is totally umbilical, or the Gaussian curvature is non-positive. Furthermore, by applying

theorem 1, a characterization of the hyperbolic cylinder $H^1(c_1) \times M^1(c_2)$ in $M_1^3(c)$ is obtained in Theorem 2 [§ 3].

THEOREM 1. Let M be a complete space-like surface with constant mean curvature H in a Lorentzian 3-space form $M_1^3(c)$. Let α be the second fundamental form of M. Then the following hold:

- (1) If c is non-positive, then $|\alpha|^2 \leq 4H^2 2c$.
- (2) If c is positive, then M is totally umbilical or $|\alpha|^2 \leq 4H^2 2c$.

THEOREM 2. The hyperbolic cylinder is the only complete space-like surface in $M_1^3(c)$ with non-zero constant mean curvature whose principal curvatures λ and μ satisfy inf $(\lambda - \mu)^2 > 0$.

The author would like to thank Prof. Hisao Nakagawa for his guidance and advice.

1. Space-like hypersurfaces in a Lorentzian manifold.

Let \widetilde{M} be an (n+1)-dimensional Lorentzian manifold and M be a space-like hypersurface in \widetilde{M} . Throughout this paper, manifolds are always assumed to be connected and geometric objects are assumed to be smooth, unless otherwise stated. We choose a local field of Lorentzian orthonormal frames $\{E_A\} = \{E_0, E_1, \cdots, E_n\}$ defined on a neighborhood of \widetilde{M} in such a way that, restricted to M, $\{E_1, \cdots, E_n\}$ are space-like and tangent to M and E_0 is time-like and normal to M. Let $\widetilde{\nabla}$ (resp. ∇) denote the Levi-Civita connection of \widetilde{M} (resp. M).

We use the following convention on the ranges of indices throughout this paper, unless otherwise stated:

$$A, B, \dots = 0, 1, \dots, n;$$
 $i, j, \dots = 1, \dots, n.$

With respect to the frame field $\{E_A\}$, let $\{\omega_A\} = \{\omega_0, \omega_i\}$ denote its dual frame field. Then the Lorentzian metric tensor \tilde{g} of \tilde{M} is given by $\tilde{g} = \sum \varepsilon_A \omega_A \otimes \omega_A$, where ε_A is defined by $\varepsilon_0 = -1$ and $\varepsilon_i = 1$. The connection forms on \tilde{M} are denoted by ω_{AB} , that is, ω_{AB} is defined by $\omega_{AB}(E_C) = \tilde{g}(E_A, \tilde{\nabla}_{E_C}E_B)$. The canonical forms ω_A and the connection forms ω_{AB} of the ambient space satisfy the structure equations

$$(1.1) d\omega_A + \sum \varepsilon_B \omega_{AB} \wedge \omega_B = 0, \omega_{AB} + \omega_{BA} = 0,$$

$$d\omega_{AB} + \sum \varepsilon_{C}\omega_{AC} \wedge \omega_{CB} = \tilde{\Omega}_{AB},$$

$$\tilde{\Omega}_{AB} = -\frac{1}{2} \sum \varepsilon_{C}\varepsilon_{D}\tilde{R}_{ABCD}\omega_{C} \wedge \omega_{D}.$$

where $\tilde{\Omega}_{AB}$ is called the Riemannian curvature form on \tilde{M} , and \tilde{R}_{ABCD} denotes the component of the Riemannian curvature tensor \tilde{R} on \tilde{M} . That is, \tilde{R}_{ABCD} is defined by

$$\begin{split} & \widetilde{R}_{ABCD} \!\! = \! \widetilde{g}(\widetilde{R}(E_A, \, E_B) E_C, \, E_D) \,, \\ & \widetilde{R}(E_A, \, E_B) E_C \!\! = \! \widetilde{\nabla}_{E_A} \widetilde{\nabla}_{E_B} E_C \!\! - \! \widetilde{\nabla}_{E_B} \widetilde{\nabla}_{E_A} E_C \!\! - \! \widetilde{\nabla}_{[E_A, \, E_B]} E_C \,. \end{split}$$

Restricting these forms to the hypersurface M, we have

$$(1.3) \omega_0 = 0,$$

and the Riemannian metric g of M induced from the Lorentzian metric \tilde{g} on \tilde{M} is given by $g = \sum \omega_j \otimes \omega_j$. Then, with respect to this metric, $\{E_j\}$ becomes a local orthonormal frame field and $\{\omega_j\}$ is a local dual frame field of $\{E_j\}$. Further, ω_{ij} is the connection form on M satisfying $\omega_{ij}(E_k) = g(E_i, \nabla_{E_k} E_j)$. From the structure equations of \tilde{M} it follows that the structure equations for M are given by

$$(1.4) d\omega_i + \sum \omega_{ij} \wedge \omega_j = 0, \omega_{ij} + \omega_{ji} = 0,$$

(1.5)
$$d\omega_{ij} + \sum \omega_{ik} \wedge \omega_{kj} = \Omega_{ij},$$

$$\Omega_{ij} = -\frac{1}{2} \sum R_{ijkl} \omega_k \wedge \omega_l,$$

where Ω_{ij} is the Riemannian curvature form on M and R_{ijkl} is the component of the Riemannian curvature tensor R on M. That is, R_{ijkl} is definded by

$$R_{ijkl} = g(R(E_i, E_j)E_k, E_l),$$

$$R(E_i, E_j)E_k = \nabla_{E_i}\nabla_{E_i}E_k - \nabla_{E_i}\nabla_{E_i}E_k - \nabla_{[E_i, E_i]}E_k.$$

It follows from (1.3) and Cartan's lemma that the exterior derivative of (1.3) gives rise to

(1.6)
$$\omega_{0i} = \sum h_{ij}\omega_j, \qquad h_{ij} = h_{ji}.$$

On the other hand, the second fundamental form α of M is defined by

$$\tilde{\nabla}_X Y = \nabla_X Y + \alpha(X, Y)$$
,

where X and Y are local vector fields on M. Then α is the symmetric bilinear form with values in the normal bundle and it can be written as

$$\alpha = \varepsilon_0 \sum h_{ij} \omega_i \otimes \omega_j E_0$$
.

It follows from (1.2), (1.5) and (1.6) that the Gauss equation is given by

$$(1.7) R_{ijkl} = \widetilde{R}_{ijkl} + \varepsilon_0 (h_{il}h_{jk} - h_{ik}h_{jl}).$$

The components of a Ricci tensor S are given by

$$(1.8) S_{ij} = \sum R_{kijk} = \sum \widetilde{R}_{kijk} + \varepsilon_0 h h_{ij} - \varepsilon_0 h_{ij}^2,$$

where $h=\operatorname{trace} h=\sum h_{kk}$ is n times the mean curvature function H of M and $h_{ij}^2=\sum h_{ik}h_{kj}$.

Now, the components h_{ijk} of the covariant derivative $\nabla \alpha$ of the second fundamental form α of M are given by

$$\sum h_{ijk} \boldsymbol{\omega}_k = dh_{ij} - \sum (h_{kj} \boldsymbol{\omega}_{ki} + h_{ik} \boldsymbol{\omega}_{kj})$$
.

Then, by substituting dh_{ij} in this definition into the exterior derivative of (1.6), we obtain the Codazzi equation

$$h_{ijk} - h_{ikj} = \widetilde{R}_{0ijk}.$$

Similarly, the components h_{ijkl} of the second covariant derivative $\nabla^2 \alpha$ of α can be defined by

$$\sum h_{ijkl}\omega_l = dh_{ijk} - \sum (h_{ljk}\omega_{li} + h_{ilk}\omega_{lj} + h_{ijl}\omega_{lk})$$
,

and the simple calculation gives rise to the Ricci formula

$$(1.10) h_{ijkl} - h_{ijlk} = \sum (h_{mi} R_{milk} + h_{im} R_{milk}).$$

In particular, let the ambient space \widetilde{M} be a Lorentzian space from $M_1^{n+1}(c)$ of constant curvature c. In this case, the Riemannian curvature \widetilde{R} of \widetilde{M} is given by

$$\widetilde{R}_{ABCD} = c \varepsilon_A \varepsilon_B (\delta_{AD} \delta_{BC} - \delta_{AC} \delta_{BD})$$
.

Then the Gauss equation and the Codazzi equation are given by

$$(1.11) R_{ijkl} = c(\delta_{il}\delta_{jk} - \delta_{ik}\delta_{jl}) + \varepsilon_0(h_{il}h_{jk} - h_{ik}h_{jl}),$$

$$h_{ijk}=h_{ikj}.$$

The Ricci curvature is given by

$$(1.13) S_{ij} = c(n-1)\delta_{ij} + \varepsilon_0 h h_{ij} - \varepsilon_0 h_{ij}^2.$$

By means of (1.9) and (1.10), the Laplacian $\Delta h_{ij} = \sum h_{ijkk}$ of the function h_{ij} is given by

$$\Delta h_{ij} = (h)_{ij} + c(nh_{ij} - h\delta_{ij}) - \varepsilon_0 h_2 h_{ij} + \varepsilon_0 h h_{ij}^2$$
,

where $(h)_{ij} = \nabla_{E_j} \nabla_{E_i} h$ and h_2 is a function on M defined by $h_2 = |\alpha|^2 = \sum h_{ij}^2 = \sum h_{ij} h_{ij}$. Then the Laplacian Δh_2 of the function h_2 is given by

$$\Delta h_2 = 2\sum (h)_{ij}h_{ij} + 2c(nh_2 - h^2) - 2\varepsilon_0(h_2)^2 + 2\varepsilon_0hh_3 + 2|\nabla\alpha|^2$$
,

where $h_3 = \sum h_{ij} h_{jk} h_{ki}$ and $|\nabla \alpha|^2 = \sum h_{ijk} h_{ijk}$.

Now, let the mean curvature H of M be constant. Then, since $(h)_{ij}=0$, the Laplacian of h_2 is given by

(1.14)
$$\Delta h_2 = 2c(nh_2 - h^2) - 2\varepsilon_0(h_2)^2 + 2\varepsilon_0hh_3 + 2|\nabla\alpha|^2.$$

These formulas are obtained by Cheng and Yau [4].

2. Proof of Theorem 1.

Let M be a space-like surface with constant mean curvature H in a Lorentzian 3-space form $M_1^3(c)$, and let λ and μ be the principal curvatures of M. We can choose a local field of Lorentzian orthonormal frames $\{E_0, E_1, E_2\}$ on $M_1^3(c)$ in such a way that, restricted to M, $\{E_1, E_2\}$ are tangent to M and

(2.1)
$$h_{11}=\lambda$$
, $h_{12}=h_{21}=0$, $h_{22}=\mu$.

In this case, the Gaussian curvature $G=R_{1221}$ of M is given by

$$(2.2) G=c-\lambda\mu,$$

and the constant mean curvature H is represented as

$$(2.3) H = \frac{h}{2}, h = \lambda + \mu.$$

The function $h_2 = |\alpha|^2$ is given by

$$(2.4) h_2 = \lambda^2 + \mu^2 = 2G + h^2 - 2c (\geq 0).$$

It follows from (1.14) that the Laplacian of h_2 is calculated as

(2.5)
$$\Delta h_2 = 2G(\lambda - \mu)^2 + 2|\nabla \alpha|^2 \ge 2G(\lambda - \mu)^2.$$

In this section, we prove Theorem 1 which gives the estimate of the function h_2 on a complete space-like surface with constant mean curvature in $M_1^3(c)$. For this purpose, the following generalized maximum principle due to Omori [12] and Yau [18] is needed for the estimate of the Laplacian of the function of class C^2 .

Theorem (Omori and Yau). Let N be a complete Riemannian manifold whose Ricci curvature is bounded from below and let F be a function of class C^2 on N. If F is bounded from below, then for any $\varepsilon > 0$ there exists a point q such that

(2.6)
$$|\nabla F(q)| < \varepsilon$$
, $\Delta F(q) > -\varepsilon$, $F(q) < \inf F + \varepsilon$.

In fact, since M is a complete space-like surface with constant mean curvature H, it follows from (1.13) that the Ricci curvature tensor $S_{ij} = \sum_{k} R_{kijk}$ is given by

(2.7)
$$S_{11} = S_{22} = G = c - \lambda \mu = c - \lambda (h - \lambda) = c - h\lambda + \lambda^{2} = c + (\lambda - H)^{2} - H^{2} \ge c - H^{2},$$

$$S_{12} = S_{21} = 0.$$

implying that the Ricci curvature is bounded from below by constant $c-H^2$. Accordingly, we can apply this theorem to prove Theorem 1.

PROOF OF THEOREM 1. Given any positive number a, we define a smooth function F on M by $(h_2+a)^{-1/2}$, which is positive and is also bounded from above by positive constant $a^{-1/2}$. So we can apply the generalized maximum principle due to Omori and Yau to F.

First, we compute the gradient and the Laplacian of F:

$$\begin{split} & \nabla F = -\frac{1}{2}(h_2 + a)^{-3/2} \nabla h_2 = -\frac{1}{2} F^3 \nabla h_2 \;, \\ & \Delta F = -\frac{3}{2} F^2 \nabla F \nabla h_2 - \frac{1}{2} F^3 \Delta h_2 = 3 F^{-1} |\nabla F|^2 - \frac{1}{2} F^3 \Delta h_2 \;. \end{split}$$

Consequently, the following inequality

$$(2.8) F^4 G(\lambda - \mu)^2 \le 3|\nabla F|^2 - F\Delta F$$

is obtained by (2.5).

For a convergent sequence $\{\varepsilon_m\}$ such that $\varepsilon_m>0$ and $\varepsilon_m\to 0$ $(m\to\infty)$, by the theorem due to Omori and Yau, there is a point sequence $\{q_m\}$ such that F satisfies (2.6) at each q_m for ε_m :

$$(2.6')$$
 $|\nabla F(q_m)| < \varepsilon_m$, $\Delta F(q_m) > -\varepsilon_m$, $\inf F \leq F(q_m) < \inf F + \varepsilon_m$.

Then the sequence $\{F(q_m)\}$ converges to $\inf F$, which implies by the definition of F that $h_2(q_m) \rightarrow \sup h_2(m \rightarrow \infty)$. We shall prove that h_2 is bounded.

Suppose $\sup h_2 = +\infty$. Since $h_2 = \lambda^2 + \mu^2 = 2(\lambda - H)^2 + 2H^2$, the sequence $\{\lambda(q_m)\}$ then diverges to positive infinity, by taking a subsequence if necessary. Moreover, we have

$$\frac{\mu(q_m)}{\lambda(q_m)} \longrightarrow -1 \qquad (m \to \infty),$$

for $\mu/\lambda+1=(\mu+\lambda)/\lambda=h/\lambda$. On the other hand, from the inequality (2.8), we get the relation

$$(2.9) F(q_m)^4 G(q_m) \{ \lambda(q_m) - \mu(q_m) \}^2 < 3\varepsilon_m^2 + \varepsilon_m F(q_m),$$

in which the right hand side converges to 0, because the function F is bounded. Hence the left hand side of (2.9) converges to a non-positive number. But, since the left hand side is

$$\frac{\{c - \lambda(q_m)\mu(q_m)\}\{\lambda(q_m) - \mu(q_m)\}^2}{\{\lambda(q_m)^2 + \mu(q_m)^2 + a\}^2} = \frac{\left\{\frac{c}{\lambda(q_m)^2} - \frac{\mu(q_m)}{\lambda(q_m)}\right\}\left\{1 - \frac{\mu(q_m)}{\lambda(q_m)}\right\}^2}{\left\{1 + \frac{\mu(q_m)^2}{\lambda(q_m)^2} + \frac{a^2}{\lambda(q_m)^2}\right\}},$$

it should converge to 1 as $m\to\infty$. This is a contradiction. Accordingly, h_2 is bounded.

This implies that the sequence $\{G(q_m)\}$ converges to $\sup G$ which is bounded. So we have

$$\{\lambda(q_m)-\mu(q_m)\}^2 \longrightarrow \sup(\lambda-\mu)^2 < \infty \qquad (m\to\infty),$$

since $(\lambda - \mu)^2 = (\lambda + \mu)^2 - 4\lambda \mu = h^2 + 4G - 4c$. Then if follows from (2.9) that we have

$$(2.10) sup G \cdot sup (\lambda - \mu)^2 \leq 0.$$

Hence, if $\sup (\lambda - \mu)^2$ is positive, then G is non-positive. On the other hand, when $\sup (\lambda - \mu)^2 = 0$, $\lambda - \mu$ is identically zero. In consequence, under the assumption of Theorem 1, M is either totally umbilical or $G \leq 0$. Note that, when c is non-positive, if M is totally umbilical then G is non-positive, for $G = c - \lambda \mu = c - \lambda^2$. Finally, it follows from (2.4) that the condition $G \leq 0$ is equivalent to $h_2 = |\alpha|^2 \leq 4H^2 - 2c$.

REMARK 1. Cheng and Nakagawa [3] extend the Cheng-Yau result and give an estimate of $|\alpha|$ for a complete space-like hypersurface with constant mean curvature in $M_1^{n+1}(c)$, $c \le 0$. In the case $c \le 0$, Theorem 1 is equivalent to of their result, but the method of proof is different from theirs.

REMARK 2. In the case c>0, a totally umbilical surface $S^2(c_2)$ in $S_1^3(c)$ has positive Gaussian curvature c_2 , and the other surfaces in $S_1^3(c)$ have non-positive curvature. On the other hand, Akutagawa [2] gave the condition for a complete space-like hypersurface M^n in $S_1^{n+1}(c)$ to be totally umbilical. In the case n=2, Akuatgawa's theorem can also be proved by Theorem 1:

COROLLARY (Akutagawa). Let M be a complete space-like surface with constant mean curvature H in $S_1^3(c)$. Suppose $c \ge H^2$, then M is totally umbilical.

PROOF. Since the Gaussian curvature G is given by $G=c-\lambda\mu=(\lambda-H)^2+c-H^2$, G is non-negative by the assumption $c\geq H^2$. Then, it follows from Theorem 1 that G is positive constant or identically zero. Hence, M is a totally umbilical surface in $S_1^3(c)$.

3. Proof of Theorem 2.

In this section, we prove Theorem 2 which characterizes a hyperbolic cylinder in a Lorentzian space form $M_1^3(c)$.

First, it is to be remarked that hyperbolic cylinders are the only flat space-like surfaces with non-zero constant mean curvature in $M_1^3(c)$. This fact is proved by the use of a theorem due to Abe, Koike and Yamaguchi [1]. Hence we have only to prove that the Gaussian curvature of a "uniformly" non-umbilical space-like surface with constant mean curvature in $M_1^3(c)$ is identically zero. On the other hand, Theorem 1 asserts that if a space-like surface with constant mean curvature in $M_1^3(c)$ is not totally umbilical, then the Gaussian curvature is non-positive. Accordingly, Theorem 2 will follow immediately from the following lemma.

LEMMA. Let M be a complete space-like surface with constant mean curvature H in $M_1^3(c)$. If the principal curvatures λ and μ of M satisfy

$$inf(\lambda-\mu)^2>0$$
,

then the Gaussian curvature G of M is non-negative.

In order to prove this lemma, the generalized maximum principle due to Omori [12] and Yau [18] is used here again. So, we are going to compute the Laplacian of the Gaussian curvature G of M.

Now, since the mean curvature H=h/2 and c are constant, the relation $\Delta h_2=2\Delta G$ is obtained from (2.4). Then it follows from (2.5) that the Laplacian ΔG is given by

$$\Delta G = G(\lambda - \mu)^2 + |\nabla \alpha|^2,$$

where $|\nabla \alpha|^2 = (h_{111})^2 + 3(h_{221})^2 + (h_{222})^2 + 3(h_{112})^2$. Since the principal curvatures λ and μ are mutually different everywhere by the assumption $\inf(\lambda - \mu)^2 > 0$, it is known that they are both smooth functions on M (see Szabó [15], for example).

Recalling the definition of the components h_{ijk} , the derivatives of λ and μ are given by

$$d\lambda = dh_{11} = h_{111}\omega_1 + h_{112}\omega_2$$
,

$$d\mu = dh_{22} = h_{221}\omega_1 + h_{222}\omega_2$$
.

Since h is constant, the derivative $dh=d\lambda+d\mu$ is identically zero, and hence the following relations are obtained;

$$h_{111}+h_{221}=0$$
 and $h_{112}+h_{222}=0$.

Also, from (2.2), the derivative of G is given by

$$\nabla G = dG = -(d\lambda)\mu - \lambda(d\mu) = (\lambda - \mu)d\lambda$$
.

Hence we have

$$|\nabla \alpha|^2 = 4\{(h_{111})^2 + (h_{112})^2\} = 4|d\lambda|^2 = \frac{4}{(\lambda - \mu)^2}|\nabla G|^2$$
,

which combined with (3.1), implies that the Laplacian ΔG is given by

(3.2)
$$\Delta G = G(\lambda - \mu)^2 + \frac{4}{(\lambda - \mu)^2} |\nabla G|^2.$$

PROOF OF LEMMA. It follows from (2.7) that we can apply the generalized maximum principle due to Omori and Yau to a smooth function F bounded from below. Here, we define F to be exp[aG] for any given positive number a. Note that F is a smooth function bounded from below by a positive constant $F_0 = exp[a(c-H^2)]$, because of (2.7).

The gradient and the Laplacian of F are then given by

$$\nabla F = a \exp \left[aG \right] \nabla G = aF \nabla G$$
.

$$\Delta F = a \nabla F \nabla G + a F \Delta G = a^2 F |\nabla G|^2 + a F \Delta G$$
.

Further, it follows from (3.2) that the Laplacian ΔF is given by

(3.3)
$$\Delta F = a F G(\lambda - \mu)^2 + \left\{ 2a^2 - \left(a^2 - \frac{4a}{(\lambda - \mu)^2} \right) \right\} F |\nabla G|^2.$$

We put $k=inf(\lambda-\mu)^2$, which is positive by the assumption of the lemma. Let a be greater than 4/k. Then

$$a^2 - \frac{4a}{(\lambda - \mu)^2} \ge a^2 - \frac{4a}{k} = a\left(a - \frac{4}{k}\right) > 0.$$

Accordingly, from (3.3), the Laplacian ΔF is evaluated by

$$\Delta F \leq aFG(\lambda-\mu)^2 + 2a^2F|\nabla G|^2$$
.

which implies, since $\nabla F = aF\nabla G$ and F > 0, the following inequality;

$$(3.4) aF^2G(\lambda-\mu)^2 \ge F\Delta F - 2|\nabla F|^2.$$

For a convergent sequence $\{\varepsilon_m\}$ such that $\varepsilon_m>0$ and $\varepsilon_m\to 0$ $(m\to\infty)$, the theorem due to Omori and Yau implies that there is a point sequence $\{q_m\}$ such that F satisfies (2.6'). Then the sequence $\{F(q_m)\}$ converges to $\inf F$, which satisfies $\inf F \geq F_0>0$. So the definition of F implies that $G(q_m)\to \inf G$ $(m\to\infty)$, where $\inf G$ is bounded.

Moreover, by taking subsequences if necessary, $\lambda(q_m)$ and $\mu(q_m)$ tends to some numbers;

$$\lambda(q_m) \longrightarrow \lambda_1, \qquad \mu(q_m) \longrightarrow \mu_1 = h - \lambda_1 \quad (m \to \infty).$$

This is proved in the following way. Suppose $\{\lambda(q_m)\}$ is not bounded. Then we can regard $\{\lambda(q_m)\}$ and $\{\mu(q_m)\}$ as sequences which diverge to positive infinity and negative infinity, respectively. It follows from (2.2), that $G(q_m)$ must diverge to positive infinity. This contradicts the fact that $G(q_m)$ converges to its infimum. Thus $\{\lambda(q_m)\}$ is bounded and hence it contains a subsequence converging to some finite number.

On the other hand, from the inequality (3.4), the following relation is obtained;

$$aF(q_m)^2G(q_m)\{\lambda(q_m)-\mu(q_m)\}^2>-\varepsilon_m\{F(q_m)+2\varepsilon_m\},$$

in which the right hand side converges to 0 as m tends to ∞ , since the function F is bounded. Accordingly, we get

$$(3.5) a(\inf F)^2(\inf G)(\lambda_1-\mu_1)^2 \ge 0.$$

Since a>0, inf F>0 and $(\lambda_1-\mu_1)^2 \ge k>0$, the inequality (3.5) now implies that inf G is non-negative. Hence the Gaussian curvature G is non-negative everywhere.

As mentioned above, Theorem 2 is proved by this lemma and Theorem 1 immediately.

REMARK 1. Recently, various kinds of surfaces of revolution with constant mean curvature in Minkowski space R_1^3 are constructed by Hano and Nomizu [7] and Ishihara and Hara [9], which shows that the condition $\inf(\lambda-\mu)^2>0$ in this theorem cannot be omitted in the case c=0.

REMARK 2. The examples given by Akutagawa [2], each of which is a space-like rotation surface in $S_1^3(c)$, are complete space-like surfaces with con-

stant mean curvature and negative Gaussian curvature. They are not totally umbilical and satisfy $\inf(\lambda-\mu)^2=0$. This shows that there are many surfaces with constant mean curvature in $S_1^3(c)$ such that $G\leq 0$ which are different from the hyperbolic cylinders.

Finally, it is to be noted that the fact that all the above examples of complete space-like surfaces in R_1^3 and $S_1^3(c)$ have negative Gaussian curvature leads us to the following conjecture: Let M be a complete space-like surface with constant mean curvature in $M_1^3(c)$. If there is a point p in M at which the Gaussian curvature is zero, the Gaussian curvature is identically zero on M.

References

- [1] Abe, N., Koike, N. and Yamaguchi, S., Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form, Yokohoma Math. J. 35 (1987), 123-136.
- [2] Akutagawa, K., On spacelike hypersurfaces with constant mean curvature in the de Sitter space, Math. Z. 196 (1987), 13-19.
- [3] Cheng, Q.-M. and Nakagawa, H., Totally umbilic hypersurfaces, Hiroshima Math. J. 20 (1990), 1-10.
- [4] Cheng, S. Y. and Yau, S. T., Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math. 104 (1976), 407-419.
- [5] Choque-Bruhat, Y., Fisher, A.E. and Marsden, J.E., Maximal hypersurfaces and positivity of mass, Proc. of the Enrico Summer School of the Italian physical Soc., J. Ehlers (ed.), North-Holland, 1979.
- [6] Goddard, A.J., Some remarks on the existence of spacelike hypersurfaces of constant mean curvature, Math. Proc. Cambridge Philos. Soc. 82 (1977), 489-495.
- [7] Hano, J. and Nomizu, K., Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space, Tôhoku Math. J. 36 (1984), 427-437.
- [8] Ishihara, T., Maximal spacelike submanifolds of a pseudoriemannian space of constant curvature, Michigan Math. J. 35 (1988), 345-352.
- [9] Ishihara, T. and Hara, F., Surfaces of revolution in the Lorentzian 3-space, J. Math. Tokushima Univ. 22 (1988), 1-13.
- [10] Milnor, T.K., Harmonic maps and classical surface theory in Minkowski 3-space, Trans. Amer. Math. Soc. 280 (1983), 161-185.
- [11] Nishikawa, S., On maximal spacelike hypersurfaces in a Lorentzian manifold, Nagoya Math. J. 95 (1984), 117-124.
- [12] Omori, H., Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), 205-214.
- [13] O'Neill, B., Semi-Riemannian Geometry, Academic Press, New York, London, 1983.
- [14] Ramanathan, J., Complete spacelike hypersuafaces of constant mean curvature in de Sitter space. Indiana Univ. Math. J. 36 (1987), 349-359.
- [15] Szabó, Z. I., Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R = 0$, J. Differential Geometry 17 (1982), 531-582.
- [16] Treibergs, A. E., Entire spacelike hypersurfaces of constant mean curvature in Minkowski 3-space, Invent. Math. 66 (1982), 39-56.
- [17] Yamada, K., Complete space-like surfaces with constant mean curvature in the

Minkowski 3-space, Tokyo J. Math. 11 (1988), 329-338.

[18] Yau, S. T., Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228.

Added in proof.

- 1. There are also many complete space-like surfaces with constant mean curvature in $H_1^3(c)$, which are not totally umbilical and satisty $\inf(\lambda-\mu)^2=0$. These examples are constructed by the method similar to Akutagawa's one.
- 2. Recently, Ki, Kim and Nakagawa [19] gave an estimate of $|\alpha|$ for a complete space-like hypersurface with constant mean curvature in $M_1^{n+1}(c)$ for any c and $n \ge 2$. If n=2, their result are equivalent to Theorem 1.
- [19] Ki, U.-H., Kim, H.-J. and Nakagawa, H., On space-like hypersurfaces with constant mean curvature of a Lorentz space form, Tokyo J. Math. 14 (1991), 205-216.

Institute of Mathematics University of Tsukuba Ibaraki 305 Japan