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ON COMPLETE SPACE-LIKE SURFACES WITH
CONSTANT MEAN CURVATURE IN A
LORENTZIAN 3-SPACE FORM

By
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Introduction

By a Lorentzian (n+1) -space form M?%7*'(c) we mean a Minkowski space
R?*! a de Sitter space S?*!(¢) or an anti-de Sitter space H7?*!(c), according as
¢>0, ¢=0 or ¢<0, respectively. That is, a Lorentzian space form M7%(c) is
a complete connected (n--1)-dimensional Lorentzian manifold with constant cur-
vature c.

A hypersurface in a Lorentzian manifold is said to be space-l/ike if the in-
duced metric on the hypersurface is positive definite. On a space-like hyper-
surface, the first fundamental form, the second fundamental form and the mean
curvature are defined in the same way as those on a hypersurface in a Rie-
mannian manifold [§1].

It has been proved by Bernstein and others that the only entire minimal
hypersurface in a Euclidean space R"*! is a linear hyperplane for n<7, but
there are other examples for n>7. So, Calabi proposed to study a Lorentzian
analoge, called the Bernstein type problem, in Minkowki space R%*!, and this
was solved by Cheng and Yau [4] for every n.

More precisely, a space-like hypersurface in a Lorentzian manifold is said
to be maximal, if the mean curvature is zero. The Bernstein type problem has
led to the conclusion that the only entire maximal space-like hypersurface in
R%*! is a linear hyperplane. In order to prove this, Cheng and Yau esta-
blished the following result:

(*) If an entive space-like hypersurface M in RT*' has a constant mean curvature
H, then the induced Lorventzian metric on M is a complete Riemannian metric
and the length of second fundamental form of M is bounded from above by
n|HJ.

It follows from this result that if M is maximal, then it is totally geodesic.
Moreover, Nishikawa studied the Bernstein type problem for complete

maximal space-like hypersurfaces in other Lorentzian maniflolds, and Ishihara
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found a similar result for complete maximal space-like submanifolds A" in
a semi-Riemannian space form M73*?(c).

On the other hand, in the theory of relativity, certain space-like hyper-
surfaces with constant mean curvature in arbitrary space-times are also investi-
gated. For instance, Choque-Bruhat, Fischer and Marsden studied the
Bernstein type problem in a space-time M4i(c) (¢=0) in connection with the
positivity of mass, and proved that a compact maximal space-like hypersurface
in M4(c) (c=0) must be totally geodesic.

We shall consider, in this paper, complete space-like hypersurfaces with
non-zero constant mean curvature in a Lorentzian space form M7?*!(¢). The
well-known standard models of these are the totally umbilical space-like hyper-
surfaces and the following product manifolds:

HE ()X M™ *(c,)

) 1 1 1
H*e)XS™*cp)  in STY(c) [C—+a=7, c2>0],
1
={ H*(,)XR"* in R}*! [c=c,=0],
k n-k N n+1 1 1 - 1
H*c)xH™ *cy) in HT(c) [C-+C——;, c2<o].
1 2

where k=1, ---, n—1. Hc)XM" '(c;) is, in particular, called a hyperbolic
cylinder.

Goddard [6] conjectured that the only complete space-like hypersurfaces of
constant mean curvature in M4(¢) (¢=0) are the above standard models. How-
ever, it is proved by Treibergs that many other examples of complete
space-like surfaces with constant mean curvature exist in R}. Thus, conversely,
it seems to be interesting to characterize the above standard models among
these space-like surfaces.

In this direction, Akutagawa [2], Ramanathan [14] and Cheng and Naka-
gawa obtained the conditions for a complete space-like hypersurfaces with
constant mean curvature in S7?*!(¢) to be totally umbilical.

On the other hand, K. Milnor and Yamada [17] characterized the
hyperbolic cylinder H'(¢,)X R' in R} as the only complete “uniformly” non-um-
bilical space-like surface with non-zero constant mean curvature. In particular,
K. Milnor proved this result by making use of the Cheng-Yau result (*).

The purpose of this paper is to prove a certain extension of the Cheng-
Yau result (*) as stated in Theorem 1 [§2]. This theorem means that a com-
plete space-like surface with constant mean curvature in M3(c) is totally um-
bilical, or the Gaussian curvature is non-positive. Furthermore, by applying
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theorem 1, a characterization of the hyperbolic cylinder H(¢c;)XM*(¢c,) in M3(c)
is obtained in Theorem 2 [§ 3].

THEOREM 1. Let M be a complete space-like surface with constant mean cur-
vature H in a Lorentzian 3-space form M3(c). Let a be the second fundamental
form of M. Then the following hold :

(1) If ¢ is non-positive, then |a|*<4H®—2c.

(2) If ¢ is positive, then M is totally umbilical or |a|*<4H*—2c.

THEOREM 2. The hyperbolic cylinder is the only complete space-like surface
in M3(c) with non-zero constant mean curvature whose principal curvatures A and
p satisfy inf (A—p)*>0.

The author would like to thank Prof. Hisao Nakagawa for his guidance
and advice.

1. Space-like hypersurfaces in a Lorentzian manifold.

Let M be an (n+1)-dimensional Lorentzian manifold and M be a space-
like hypersurface in M. Throughout this paper, manifolds are always as-
sumed to be connected and geometric objects are assumed to be smooth, unless
otherwise stated. We choose a local field of Lorentzian orthonormal frames
{Es}={E,, E., -, E,} defined on a neighborhood of M in such a way that,
restricted to M, {E,, ---, E,} are space-like and tangent to M and E, is time-
like and normal to M. Let ¥ (resp. V) denote the Levi-Civita connection of M
(resp. M).

We use the following convention on the ranges of indices throughout this
paper, unless otherwise stated:

A, B, =0,1,,n; 4,7, =1,

, M.

With respect to the frame field {E4}, let {ws}={w,, w;} denote its dual frame
field. Then the Lorentzian metric tensor g of M is given by =3 0. Qwy,
where &4 is defined by ¢;.=—1 and e¢;=1. The connection forms on M are de-
noted by wsp, that is, wsp is defined by wis(Ec)=F(E4, Ve Ez). The canonical
forms w, and the connection forms w.p 0of the ambient space satisfy the struc-
ture equations

(L.1) dws+2epwapNwp=0, ®ipt+wps=0,
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(1.2) dwsp+Secwic Awcs=0 45,
~ 1 ~
Rup=— ?ESCSDRABCD(UC/\(DD .

where @45 is called the Riemannian curvature form on M, and R.zcp denotes
the component of the Riemannian curvature tensor B on M. That is, ﬁABCD is
defined by

ﬁABCD:gN(ﬁ(EA; Eg)Ec, Ep),

ﬁ<EA; EB)EC:ﬁEAﬁEBEC’—ﬁEBﬁEAEC_vEEA.EB]EC .
Restricting these forms to the hypersurface M, we have
(1.3) Q)OZO y

and the Riemannian metric g of M induced from the Lorentzian metric & on M
is given by ¢=2lw;Qw,. Then, with respect to this metric, {F;} becomes a
local orthonormal frame field and {w;} is a local dual frame field of {E,}.
Further, w;; is the connection form on M satisfying w;(E.)=g(E;, Ve, Ej.
From the structure equations of M it follows that the structure equations for
M are given by

(1.4) dw;+20:;; \0;=0, wi;+0;;=0,
(1.5 dwij+Swi e Nwr;=9:;,
1
Qij:—'z“ERijklwk/\(l)l ’

where £,; is the Riemannian curvature form on M and R;;,, is the component
of the Riemannian curvature tensor R on M. That is, R;j;,; is definded by

Rijmu=g(R(E;, E)E,, E)),
R(E,, Ej)Ek:inijEk—ijinEk—v[Ei,Ej]Ek .

It follows from (1.3) and Cartan’s lemma that the exterior derivative of (1.3)

gives rise to

(1.6) Wi =2 h 05, hij=hj .

On the other hand, the second fundamental form a of M is defined by
VY =VxY +a(X,Y),

where X and Y are local vector fields on M. Then a is the symmetric bilinear
form with values in the normal bundle and it can be written as

aZSOZhUah'@(Don .
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It follows from [1.2), [1.5) and [(1.6) that the Gauss equation is given by
(L.7) Rijkl:ﬁijkl+50(hilhjk—hikhjl) .

The components of a Ricci tensor S are given by
(1.8) Sij:ZRkijkzzﬁkijk+eohhij_soh%jy
where hA=trace h=3h,, is n times the mean curvature function H of M and
h =3 hiphy;. .
Now, the components #;; of the covariant derivative Va of the second

fundamental form a of M are given by
Dhijp@e=dh;— 23Ry j@pi+ hipws;) -

Then, by substituting dh,; in this definition into the exterior derivative of [1.6),
we obtain the Codazzi equation

(1.9 hijk"hikj:ﬁoijk-

Similarly, the components A;;; of the second covariant derivative V?a of a
can be defined by

Ehijklwl:dhijk—z(hljkwli+hilkwlj+hijlwlk) »
and the simple calculation gives rise to the Ricci formula
(1.10) Ripi—Niji=2(A msRmarthimRmje) .

In particular, let the ambient space M be a Lorentzian space from M?%*(c)
of constant curvature ¢. In this case, the Riemannian curvature B of M is
given by

Rapco=ce4ep(04p0p0—04c03p) .
Then the Gauss equation and the Codazzi equation are given by
(1.11) Rijm=0¢(0:1100—0:u0 )+ e hurhjp—haxh 1),
(1.12) hijp=hqp; .
The Ricci curvature is given by
(1.13) Sij=c(n—1)0:;-+eohhi;—eohs;.

By means of [1.9) and [1.10), the Laplacian Ah,;=33 ;. of the function h;; is
given by

Ahij:(h)ij+c(nhij—h5i,~)——soh2hi,~+eohh§j R

where (h)i,-:VEjVEih and h, is a function on M defined by h,=|a|*=3h2,=
2hihi;. Then the Laplacian Ah, of the function ki, is given by
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Ah,=233(h)ijhi+2c(nhs—h*)—2e(hs)*+2e0hhs+2|Va |,
where h3_———2hijhjkhki and Ivalzzzhijkhijk-

Now, let the mean curvature H' of M be constant. Then, since (h);;=0,
the Laplacian of A, is given by
(1.14) Ahy=2c(nh,—h?)—2e,(h,)*+2e0hh;+2(Va|®.

These formulas are obtained by Cheng and Yau [4].

2. Proof of Theorem 1.

Let M be a space-like surface with constant mean curvature H in a Lorent-
zian 3-space form M3(c), and let A2 and g be the principal curvatures of M. We
can choose a local field of Lorentzian orthonormal frames {E,, E,, E,} on M3$(c)
in such a way that, restricted to M, {E,, E,} are tangent to M and

2.1 hy =2, hiz=hz =0, ho=pt .

In this case, the Gaussian curvature G=R,,;, of M is given by
(2.2) G=c—y,

and the constant mean curvature H is represented as

(2.3) H:’—Z’, h=A+p.

The function h,=|a|? is given by

(2.4) hy=+p?=2G+h*>—2c (=0).

It follows from that the Laplacian of A, is calculated as
(2.5) Ah,=2GA—p)*+2|Na|*Z2G(A—p)?.

In this section, we prove Theorem 1 which gives the estimate of the func-
tion h, on a complete space-like surface with constant mean curvature in M3(c).
For this purpose, the following generalized maximum principle due to Omori
and Yau [18] is needed for the estimate of the Laplacian of the function
of class C:2.

THEOREM (Omori and Yau). Let N be a complete Riemannian manifold
whose Ricci curvature is bounded from below and let F be a function of class C?
on N. If F is bounded from below, then for any >0 there exists a point q such
that

(2.6) IVF(g)| <, AF(g)>—¢, F(g)<inf F+e.
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In fact, since M is a complete space-like surface with constant mean cur-
vature H, it follows from that the Ricci curvature tensor Sij-——*% Ry is
given by

(2.7) S11=Se=G=c—Ap=c—Ah—2D)=c—hA+2P=c+(A—H)P—H*=c—H?,
S1z:SZ1:0 .

implying that the Ricci curvature is bounded from below by constant c¢—H?2.
Accordingly, we can apply this theorem to prove Theorem 1.

PRrROOF oF THEOREM 1. Given any positive number a, we define a smooth
function F on M by (h,+a) '/?, which is positive and is also bounded from
above by positive constant a~'/2, So we can apply the generalized maximum
principle due to Omori and Yau to F.

First, we compute the gradient and the Laplacian of F:

VF=— %(hg‘i—a)—a/ZV/lg:— é—ﬁ Nhe,

AF=— —g—FWFVhZ—— %F‘*Ahz =3F"'|VF|? — ‘;—F?’Ahz .
Consequently, the following inequality
(2.8) F*G(A—p)*<3|VF|*— FAF

is obtained by (2.5).

For a convergent sequence {e,} such that &,>0and &,—0 (m—co), by the
theorem due to Omori and Yau, there is a point sequence {¢,} such that F
satisfies (2.6) at each ¢, for e, :

(2.6") IVE(gm)| <em,  AF(gm)>—¢en, inf FSF(gn)<infF+en.

Then the sequence {F(g.)} converges to snf F, which implies by the definition
of F that h,(gm)—sup hy(m—o0). We shall prove that A4, is bounded.

Suppose sup hy=-+co. Since h,=2A*+p*=2(A—H)*+2H?, the sequence {A(gn)}
then diverges to positive infinity, by taking a subsequence if necessary. More-
over, we have

(g m)
A(qm)

—> =1 (n—),
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for p/A+1=(pu+2)/A=h/A. On the other hand, from the inequality we
get the relation

(2.9) F(gn)'G(gm){A(gm)—plgm)}? <3eh+enF(gm),

in which the right hand side converges to 0, because the function F is bounded.
Hence the left hand side of [2.9) converges to a non-positive number. But, since
the left hand side is

¢ pgm) ZCEN.
{c—A(gm)e(gm)} {A(gm)— p(gm)}® :{Z(qu _l(qm)}{l_l(qm)}

{Agn)+plgn)+al? {1+,u(qm)"‘ a? }

Agm)® T Agny

it should converge to 1 as m—oco. This is a contradiction. Accordingly, #4, is
bounded.

This implies that the sequence {G(g~)} converges to sup G which is bounded.
So we have

{A(gm)—plgn)}? —> sup (A—p)* {0 (m—o0),

since (A—p)*=(A+p)?—4Ap=h*+4G—4c. Then if follows from that we
have

(2.10) sup G-sup (A—p)?*=0.

Hence, if sup (A—p)* is positive, then G is non-positive. On the other hand,
when sup (A—p)*=0, A—p is identically zero. In consequence, under the assump-
tion of Theorem 1, M is either totally umbilical or G<0. Note that, when ¢
is non-positive, if M is totally umbilical then G is non-positive, for G=c—Apy
=c¢—2%. Finally, it follows from that the condition G<0 is equivalent to
hy=|a|*<4H*—2c. q.e.d.

REMARK 1. Cheng and Nakagawa [3] extend the Cheng-Yau result and
give an estimate of |a| for a complete space-like hypersurface with constant
mean curvature in M7?*(¢), ¢<0. In the case ¢<0, Theorem 1 is equivalent to

of their result, but the method of proof is different from theirs.

REMARK 2. In the case ¢>0, a totally umbilical surface S*(¢,) in S¥(c¢) has
positive Gaussian curvature c¢,, and the other surfaces in Si(¢) have non-positive
curvature. On the other hand, Akutagawa [2] gave the condition for a com-
plete space-like hypersurface M™ in S?*'(c) to be totally umbilical. In the case
n=2, Akuatgawa’s theorem can also be proved by Theorem 1:
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COROLLARY (Akutagawa). Let M be a complete space-like surface with con-
stant mean curvature H in S}(c). Suppose c=H?, then M is totally umbilical.

PROOF. Since the Gaussian curvature G is given by G=c—2Ap=U1—H)*+
c—H?, G is non-negative by the assumption c¢=H?® Then, it follows from
Theorem 1 that G is positive constant or identically zero. Hence, M is a totally
umbilical surface in Si(c). q.e.d.

3. Proof of Theorem 2.

In this section, we prove Theorem 2 which characterizes a hyperbolic
cylinder in a Lorentzian space form M3(c).

First, it is to be remarked that hyperbolic cylinders are the only flat space-
like surfaces with non-zero constant mean curvature in M3(c). This fact is
proved by the use of a theorem due to Abe, Koike and Yamaguchi [1]. Hence
we have only to prove that the Gaussian curvature of a “uniformly” non-
umbilical space-like surface with constant mean curvature in M3$(c) is identically
zero. On the other hand, Theorem 1 asserts that if a space-like surface with
constant mean curvature in M3(c¢) is not totally umbilical, then the Gaussian cur-
vature is non-positive. Accordingly, Theorem 2 will follow immediately from
the following lemma.

LEMMA. Let M be a complete space-ltke surface with constant mean curva-
ture H in Mi(c). If the principal curvatures 2 and p of M satisfy

inf (A—pu)*>0,

then the Gaussian curvature G of M is non-negative.

In order to prove this lemma, the generalized maximum principle due to
Omori and Yau is used here again. So, we are going to compute
the Laplacian of the Gaussian curvature G of M.

Now, since the mean curvature H=h/2 and ¢ are constant, the relation
Ah,=2AG is obtained from [2.4). Then it follows from that the Laplacian
AG is given by

3.1) AG=GA—p)*+|Val|?,

where |Va|2=(/111)2+3(Aas1)?+(N22)2+3(h115)2. Since the principal curvatures A
and g are mutually different everywhere by the assumption inf (A—pg)*>0, it is
known that they are both smooth functions on M (see Szabé [1I5], for example).
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Recalling the definition of the components h,;, the derivatives of 4 and g are
given by

dA=dhy=h 101+ h1120,,

d#‘—‘dhzz—_—hzzxah‘f‘hzzzwz-

Since A is constant, the derivative dh=dA+dp is identically zero, and hence
the following relations are obtained;

hiithee=0 and  hyp+ha=0.
Also, from the derivative of G is given by

VG=dG=—(dA)p—Adp)=(A—pda.

Hence we have

4
2: 2 2 :4 2: 2
|Va |*=4{(h111)*+(h112)*} =4|d 2] G=py ING|*,
which combined with implies that the Laplacian AG is given by
4
3.2 AG=GA—p)?+-——"— IVG|*.

PrROOF OF LEMMA. It follows from (2.7) that we can apply the generalized
maximum principle due to Omori and Yau to a smooth function F bounded from
below. Here, we define F to be exp[aG] for any given positive number a.
Note that F is a smooth function bounded from below by a positive constant
Fy=exp [a(c—H?)], because of (2.7).

The gradient and the Laplacian of F are then given by

VF=aexp[aGING=aFVNG,
AF=aVFVG+aFAG=a*F|NG|*+aFAG.

Further, it follows from (3.2) that the Laplacian AF is given by
4a
— 21 2 2 2
3.3) AF=aFGQA—p) —t—{2a —(a ~a—p* #)2)}F|vc| .

We put k=inf (A—p)?, which is positive by the assumption of the lemma. Let
a be greater than 4/k. Then

4a 4a 4
2o FC e R =
-7 e Za*—— a(a k)>0'

Accordingly, from (3.3), the Laplacian AF is evaluated by

AF<aFG(A—p)*+2a*FING|?,
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which implies, since VF=aFVG and F>0, the following inequality;
(3.4) alF*GA—pl?=FAF-2|VF|*.

For a convergent sequence {e¢,} such that ¢,>0 and &,—0 (m—), the
theorem due to Omori and Yau implies that there is a point sequence {¢,} such
that F satisfies (2.6’). Then the sequence {F(¢.)} converges to inf F, which
satisfies inf F=F,>0. So the definition of F implies that G(g,)—inf G (m—oo),
where /nf G is bounded.

Moreover, by taking subsequences if necessary, A(¢») and p(gn) tends to
some numbers ;

AGm) —> 4, ﬂ(Qm) E— [11:/2'—21 (m-—o0) .

This is proved in the following way. Suppose {A(¢»)} is not bounded. Then
we can regard {A(gn)} and {p(g.)} as sequences which diverge to positive in-
finity and negative infinity, respectively. It follows from that G(g») must
diverge to positive infinity. This contradicts the fact that G(g.) converges to
its infimum. Thus {A(¢,)} is bounded and hence it containes a subsequence
converging to some finite number.

On the other hand, from the inequality the following relation is ob-
tained ;

aF(qu)?G(gm){Agn)—p(gm)}* > —en{F(gn)+2em},

in which the right hand side converges to 0 as m tends to oo, since the func-
tion F' is bounded. Accordingly, we get

(3.5) a(inf F?(inf G)(A,—p1)*=0.
Since a>0, inf F>0 and (4,—p,)*=%>0, the inequality now implies that

inf G is non-negative. Hence the Gaussian curvature G is non-negative every-
where. g.e.d.

As mentioned above, Theorem 2 is proved by this lemma and Theorem 1

immediately.

REMARK 1. Recently, various kinds of surfaces of revolution with constant
mean curvature in Minkowski space R} are constructed by Hano and Nomizu
[7] and Ishihara and Hara [9], which shows that the condition inf(2—u)*>0

in this theorem cannot be omitted in the case ¢=0.

REMARK 2. The examples given by Akutagawa [2], each of which is a
space-like rotation surface in Si(c), are complete space-like surfaces with con-
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stant mean curvature and negative Gaussian curvature. They are not totally
umbilical and satisfy inf(A—p)*=0. This shows that there are many surfaces
with constant mean curvature in Si(c¢) such that G=<0 which are different from
the hyperbolic cylinders.

Finally, it is to be noted that the fact that all the above examples of com-
plete space-like surfaces in R} and S3¥(¢) have negative Gaussian curvature leads
us to the following conjecture: Let M be a complete space-like surface with
constant mean curvature in M3(¢). If there is a point p in M at which the
Gaussian curvature is zero, the Gaussian curvature is identically zero on M.
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