FRAMED-LINK REPRESENTATIONS OF 3-MANIFOLDS

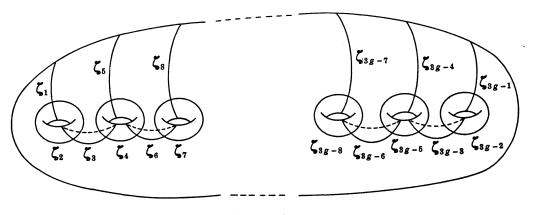
By

Moto-o Takahashi

By Wallace [7] and Lickorish [2], it is proved that every closed orientable connected 3-manifold can be obtained by Dehn surgery along a link in S^3 , in other words, every closed orientable connected 3-manifold has a framed-link representation.

The proof of it by Lickorish in [2] is based on the fact that the mapping class group of a closed orientable connected 2-manifold is generated by Dehn twists. However, by Lickorish [3], a special finite set of generators for the mapping class group of a closed orientable connected 2-manifold is found.

These are Dehn twists along the loops shown in Figure 1.



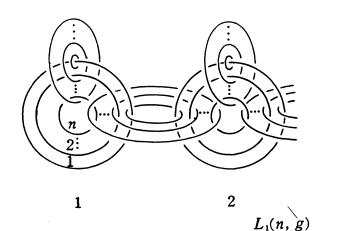
From this fact, the Wallace-Lickorish theorem can be refined as follows. Let $L_1(n, g)$ be the link illustrated in Figure 2.

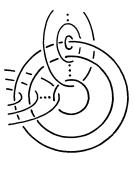
THEOREM A. (c. f. Montesinos [4])

Every closed orientable connected 3-manifold can be obtained by ± 1 Dehn surgery along a sublink of $L_1(n, g)$ for sufficiently large n and g. In other words, every closed orientable connected 3-manifold can be obtained by ± 1 or ∞ Dehn surgery along a link $L_1(n, g)$ for sufficiently large n and g.

In this paper we shall prove the following more refined theorem.

Received June 12, 1990, Revised July 16, 1990.





g



THEOREM 1. Every closed orientable connected 3-manifold can be obtained by +1 Dehn surgery only (or -1 Dehn surgery only) along a sublink of $L_1(n, g)$ for sufficiently large n and g. In other words, every closed orientable connected 3-manifold can be obtained by +1 or ∞ Dehn surgery (or, -1 or ∞ Dehn surgery) along a link $L_1(n, g)$ for sufficiently large n and g.

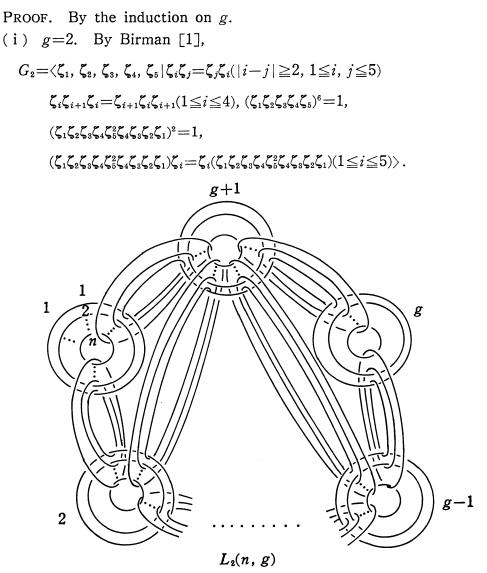
PROOF OF THEOREM 1. Let M be a closed orientable connected 3-manifold. Then M has a Heegaard splitting of genus g for sufficiently large g. Consider the closed orientable connected 2-manifold of genus g and the mapping class group G_g of it.

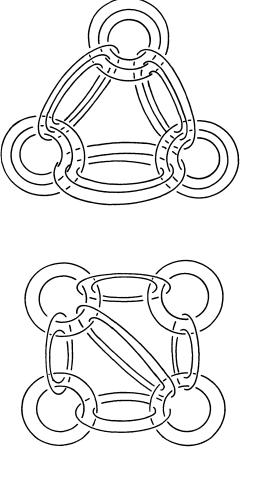
Then M is represented by a word in the generators ζ_i , $i=1, 2, \dots, 3g-1$ (c. f. Figure 1).

 ζ_i corresponds to +1 Dehn surgery and ζ_i^{-1} corresponds -1 Dehn surgery. So, it is sufficient to prove that every word is equal to a positive word (a word which does not contain ζ_i^{-1}) in G_g .

For this it is sufficient to prove that each ζ_i^{-1} is equal to a positive word in G_g . For this it is sufficient to show that there is a positive word w which is equal to 1 in G_g and which includes all the generators ζ_i 's, for $w = A\zeta_i B = 1$ (A, B are positive words or empty words) implies $\zeta_i^{-1} = BA$, and BA is a positive word. So we shall show the following.

LEMMA. For $g \ge 2$, there exists a positive woord w_g such that w_g includes all the Lickorish generators ζ_i of G_g and $w_g=1$ in G_g .





 $L_2(3, 2)$

 $L_2(2, 3)$

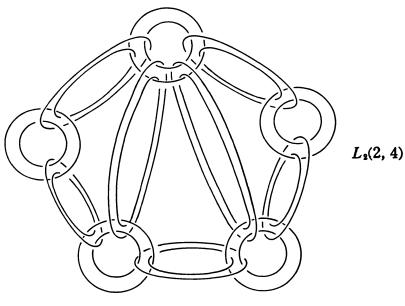


Figure 3.2

So, we can take $(\zeta_1\zeta_2\zeta_3\zeta_4\zeta_5)^6$ or $(\zeta_1\zeta_2\zeta_3\zeta_4\zeta_5^2\zeta_4\zeta_3\zeta_2\zeta_1)^2$ as w_2 .

(ii) g>2. By induction hypothesis, w_{g-1} exists. Consider w_{g-1} as a word for genus g. w_{g-1} includes $\zeta_1, \dots, \zeta_{3g-4}$. w_{g-1} may not be 1 in G_g .

But w_{g-1} is equal to a word v in

$$\zeta_{3g-2}$$
 and ζ_{3g-1} , so, $w_{g-1}v^{-1}=1$ in G_g .

As in the case of genus 2, it is not hard to see

$$u = \{\zeta_1 \zeta_2 (\zeta_3 \zeta_4) (\zeta_6 \zeta_7) (\zeta_9 \zeta_{10}) \cdots (\zeta_{3g-3} \zeta_{3g-2}) \zeta_{3g-1} \}^{2(g+1)} = 1$$

in G_g . u is a positive word and includes ζ_{3g-2} and ζ_{3g-1} . Hence there exists a positive word $v'=v^{-1}$ in G_g . Now $w_{g-1}v'$ is a positive word and equal to 1 in G_g . So, we can take $w_{g-1}v'u$ as w_g , for $w_{g-1}v'=1$ and u=1 in G_g so, $w_{g-1}v'u=1$ and $w_{g-1}v'u$ is a positive word. Moreover w_{g-1} includes ζ_1, ζ_2, \cdots , ζ_{3g-4} and u includes $\zeta_{3g-3}, \zeta_{3g-2}, \zeta_{3g-1}$ and hence $w_{g-1}v'u$ includes all the Lickorish generators of G_g .

This completes the proof of Lemma and hence of Theorem 1.

REMARK. In the Theorem A and Theorem 1, $L_1(n, g)$ can be replaced by $L_2(n, g)$ illustrated in the Figure 3.1.

References

- [1] J.S. Birman, Braids, links, and mapping class groups, Princeton (1974), p 184.
- [2] W.B.R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math. 76 (1962), 531-540.
- [3] W.B.R. Lickorish, A finite set of generators for the homeotopy group of a 2manifold, Proc. Camb. Phil. Soc. 60 (1964), 769-778.
- [4] J. M. Montesinos, Surgery on links and double branched covers of S³, Knots, Groups, and 3-manifolds (Princeton, ed. by L. P. Neuwirth) (1975), 227-259.
- [5] D. Rolfsen, Knots and links, Math. Lecture series 7, Publish or Perish, (1976).
- [6] M. Takahashi, A theorem on the homology of Dehn surgered 3-manifolds, Topology and Computer Science (Kinokuniya, ed. by S. Suzuki) (1986), 51-60.
- [7] A.D. Wallace, Modification and cobounding manifolds, Can. J. Math. 12 (1960), 503-528.

Institute of Mathematics University of Tsukuba Ibaraki, 305, JAPAN