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ON THE RESIDUAL TRANSCEDENTAL EXTENSIONS
OF A VALUATION. KEY POLYNOMIALS

AND AUGMENTED VALUATION
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Liliana POPESCU and Nicolae POPESCU

Let $K$ be a field and $v$ a valuation on $K$. The problem of extending $v$ to
$K(X)$ (the field of rational functions of one inderminate) has been previously

considered in some works as [7] and [10]. Particularly in [7], MacLane studied
the case when $v$ is discrete and rank one. In solving the problem in this case,
MacLane used some notions as key polynomial and augmented valuation.

An extension $w$ of $v$ to $K(X)$ is called residual transcendental (briefly, an
$r$ . $t$ . extension) if the residue field of $w$ is a transcendental extension of the
residue field of $v$ (MacLane called these extensions “inductive value”). Some
aspects of $r.t$ . extensions have been considered in [5, Ch. VI], [9], [1], [2], [3]

and [11]. Particularly in [2] and [11] all $r.t$ . extensions of $v$ to $K(X)$ were
described using the notion of ”minimal pair” (see definition in Section 1).

Although in [3] some results on minimal pairs were given, the problem of
finding minimal pairs in the general setting seems to be difficult.

In this work we follow, for arbitrary $r.t$ . extensions, MacLane’s ideas of
key polynomial and augmented valuation and show that these give a powerful

tool in the study of all extensions of $v$ to $K(X)$ . In particular, the key poly-

nomials over an $r.t$ . extension give us the possibility of defining some new
minimal pairs (Theorem 5.1).

Now we briefly describe the content of the paper. Section 1 contains nota-
tion, definitions and the main results from [2] and [11], Theorem 1.2 and some
consequences of this theorem will be used in this paper.

In section 2, we give some technical results related to the domination of
valuations on $K(X)$ , which was also introduced by MacLane in [7]. This notion
has been used in [4] to describe all valuations on $K(X))$ . In Section 3 (after

MacLane [7]) key polynomial and augmented valuation are defined.
The key polynomials over an $r.t$ . extension are studied in Section 4. The

main results are given in Theorems 4.4 and 4.6. We remark that Theorem 4.6
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and the proof are inspired by MacLane’s work [7].

In Section 5 it is proved that a (“comensurable”) augmented valuation over
a given $r.t$ . extension is also an $r.t$ . extension (Theorem 5.1). By this theorem
we can define new minimal pairs, starting from a given one. Theorem 5.5
shows how the augmented valuations are closely related to the domination.
Finally in Section 6, using the results of previous sections, we give another
proof of a result which asserts that there exist $r.t$ . extensions with given
residue field and value group (Theorem 6.4, see [3, Theorem 4.4]).

In a forthcoming paper we will use the results developed here to study all
valuations on $K(X)$ and related topics.

1. Notations and definitions

In this section we recall notations, definitions and the main results of [2]

and [11] (see Theorem 1.2), which will be used in the rest of this paper. Also
some new consequences of Theorem 1.2 are given.

1. Let $K$ be a field and $v$ a valuation on $K$. We sometimes emphasize this
situation saying that $(K, v)$ is a valuation pair. $G_{v},$ $O_{v},$ $k_{v}$ and $\rho_{v}$ : $0_{v}\rightarrow k_{v}$

represent the value group of $v$ , the valuation ring of $v$ , its residue field and the
residue homomorphism, respectively. If $x\in O_{v}$ , we usually write by $x^{*}$ the
image $\rho_{v}(x)$ of $x$ in $k_{v}$ . We refer the reader to [5], [6], [12], [13] for general

notions and definitions.
Let $K^{\prime}/K$ be an extension of fields. A valuation $v^{\prime}$ on $K^{\prime}$ will be called

an extension of $v$ if $v^{\prime}(x)=v(x)$ for all $x\in K$. When $v^{\prime}$ is an extension of $v$ ,

we shall identify canonically $k_{v}$ with a subfield of $k_{\iota^{\prime}}$ and $G_{v}$ with a subgroup

of $G_{v^{\prime}}$ .
Throughout this paper, we fix a valuation pair $(K, v)$ , an algebraic closure

$\overline{K}$ of $K$ and an extension $\overline{v}$ of $v$ to $\overline{K}$ . Then $k_{\overline{v}}=\overline{k}_{v}$ an algebraic closure of $k_{c}$

and $G_{\overline{v}}=\overline{G}_{v}=QG_{v},$ $i.e$ . $G_{v}$ is the smallest divisible group which contains $G_{v}$ .
As usual we denote by $K[X]$ and $K(X)$ the polynomial ring and the field

of rational functions of an indeterminate $X$ over $K$, respectively. If $r=f/g$ ,

$f,$ $g\in K[X]$ and $f,$ $g$ are relatively prime, we define the order of $r$ by the
equality: ord $r=\max(\deg f, \deg g)$ . It is easy to see that ord $r=[K(X):K(r)]$ .

2. Let $w$ be an extension of $v$ to $K(X)$ . According to [8] (see also [1] and
[2]), $w$ is called a residual transcendental $(r.t.)$-extension of $v$ if $k_{w}/k_{v}$ is a
transcendental extension. An element $(a, \delta)$ of $\overline{K}\times\overline{G}_{v}$ is usually called a pair.

If $(a, \delta)$ is a pair, we define the valuation $w_{(a,\delta)}$ of $\overline{K}(X)(see[5$ , Ch. VI, par.
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10] :

$w_{(a,\delta)}(f)=\inf(\overline{v}(a_{i})+i\delta)$ when $f(x)=a_{0}+a_{1}(x-a)+\cdots+a_{n}(x-a)^{n}\in\overline{K}[X]$ .

Usually one says that $w_{(a,\delta)}$ is defined by $\inf,\overline{v},$
$a\in\overline{K}$ and $\delta\in\overline{G}_{v}$ . It is

easy to see that $w_{(a,\delta)}$ is an $r.t$ . extension of $\overline{v}$ to $\overline{K}(X)$ ([ $5$ , Ch. VI, par. 10],

or [1]).

PROPOSITION 1.1. ([1]). Every $r$ . $t$ . extension $w$ of $\overline{v}$ to $\overline{K}(X)$ is of the form
$\iota v=w_{(a,\delta)}$ for a suitable pair $(a, \delta)$ . Moreover two pairs $(a, \delta)$ and $(a^{\prime}, \delta^{\prime})$ define
the same valuation on $\overline{K}(X),$ $i$ . $e$ . $w_{(a,\delta)}=w_{(a^{\prime},\delta^{\prime})}$ , if and only if $\delta=\delta^{\prime}$ and $\overline{v}(a-$

$ a^{\prime})\geqq\delta$ .

A pair $(a, \delta)\in\overline{K}\times\overline{G}_{v}$ will be called minimal with respect to $K$ if, for every
$b\in\overline{K}$ such that $[K(b):K]<[K(a):K]$ , one has $\overline{v}(a-b)<\delta$ . In [2], [3], [4] and
[11] it is shown that the minimal pairs play a prominent part in the definition
and in the study of $r$ . $t$ . extensions.

THEOREM 1.2. ([2], [11]). Let $w$ be an $r$ . $t$ . extensions of $v$ to $K(X)$ . Then
there exists a pair $(a, \delta)$ , minimal with respect to $K$ such that $w$ coincides with
the restriction of $w_{(a.\delta)}$ to $K(X)$ . Moreover one has:

a) Denote by $f$ the monic minimal polynomial of $a$ with respect to $K$ and
put $\gamma=w(f)$ . Then

$w(F)=\inf(\overline{v}(F_{i}(a))-\vdash i\gamma)$ , where $F=F_{0}+F_{1}f+\cdots F_{s}f^{s}\in K[X]$ ,

$\deg F_{i}<n=\deg f$ .

b) Let $\tilde{v}$ be the restriction of $\overline{v}$ to $K(a)$ . If $e$ is the smallest natural number
such that $e\gamma\in G_{\tilde{v}}$ one has:

$ G_{w}=G_{\tilde{v}}+Z\gamma$ and $[G_{w} : G_{v}]=e[G_{\tilde{v}} : G_{v}]$ .

c) Let $h\in K[X]$ . If $\deg h<n=\deg f$ and $w(h)=\overline{v}(h(a))=e\gamma=ew(f)$ , then
$r=f^{e}/h$ is the element of $O_{w}$ of the smallest order such that $r^{*}\in k_{w}$ is trans-
cendental over $k_{v}$ .

d) The field $k_{\tilde{v}}$ can be canonically identified with the algebraic closure of
$k_{v}$ in $k$ Moreover, on has $k_{w}=k_{\overline{v}}(r^{*})$ .

NOTATION 1.3. If $w$ is an $r.t$ . extension of $v$ to $K(X)$ , a minimal pair $(a, \delta)$

in the previous theorem is called a minimal pair of definition of $w$ . In what
follows, for every $r.t$ . extension $w$ of $v$ to $K(X)$ , we fix a minimal pair of
definition $(a, \delta)$ . Also, the symbols $f,$ $\gamma,\tilde{v},$ $e,$ $h,$ $r$ and $r^{*}$ are used as in
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Theorem 1.2.
Now we give some consequences of Theorem 1.2, under the same notations

and the hypothesis.

COROLLARY 1.4. (cf. [3, Proposition 1.1]) Let $A_{1},$
$\cdots,$

$A_{s},$ $B_{1},$ $\cdots$ , $B_{t}$ be
elements of $K[X]$ such that $\deg A_{i}<n$ , and $\deg B_{j}<n$ for all $1\leqq i\leqq s,$ $1\leqq j\leqq t$ .

If $w(A_{1}\cdots\cdot\cdot A_{s})=w(B_{1}\cdots\cdot\cdot B_{t})$ , then $y=(\frac{A_{1}\cdot.\cdot.\cdot.\cdot.\cdot.A_{s}}{B_{1}B_{t}})^{*}=(\frac{A_{1}(\alpha)\cdot.\cdot.\cdot.A_{\epsilon}(a)}{B_{1}(a)B_{t}(a)})^{*}\in k_{\tilde{v}}$

COROLLARY 1.5. If $g\in K[X]$ satisfies $w(g)\in G_{\overline{v}}$ then for $q\in K[X]$ such that
$\deg q<n$ and that $w(q)=\overline{v}(q(a))=w(g),$ $(g/q)^{*}\in k_{\tilde{v}}[r^{*}]$ . In particular, if $w(g)=0$

and $g^{*}\in k_{\tilde{v}},\overline{v}(g(a))=0$ and $g^{*}=(g(a))^{*}$ .

PROOF. Let $g=g_{0}+g_{1}f+\cdots+g_{t}f^{t}$ be the $f$-expansion of $g$ with $\deg g_{t}<n$ ,
$0\leqq i\leqq t$ . Then, by definition $w(g)=\inf(\overline{v}(g_{i}(a))+i\gamma)$ . Since $w(g)\in G_{\tilde{v}}$ ,

$\overline{v}(g_{i}(a))+i\gamma>w(g)=w(q)$ , if $i\not\equiv O(mod e)$ .

$Sinc(g)=w(q),onehasf/)\geqq_{s}0,foralli.Hen$
ce

$w(\frac{ghe_{es}w_{s}}{q})\geqq 0becausew(\frac{f^{es}w(g}{h^{s}})^{i}=^{i}w^{q}(r)=0.Therefore,$

$w(\frac{g_{es}h^{s}}{q}\frac{f^{es}}{h^{s}})\geqq 0$ and

$(g/q)^{*}=(g_{0}/q)^{*}+(g_{e}h/q)^{*}r^{*}+\cdots\in k_{\tilde{v}}[r^{*}]$ .
Finally, if $w(g)=0$ and $g^{*}\in k_{\tilde{v}}$ , then we may take $q=1$ , and one has necess-

sarily that $(g_{e}h)^{*}=(g_{2e}h^{2})^{*}=\cdots=0$ . Hence $g^{*}=g_{0}^{*}=(g(a))^{*}$ , as claimed.

COROLLARY 1.6. The assignement: $F\rightarrow F^{*}=\rho_{w}(F)$ defines an onto ring-
homomorphism $\rho_{w}$ : $O_{w}\cap K[X]\rightarrow k_{\tilde{v}}[r^{*}]$ .

PROOF. According to Corollary 1.5, it is enough to show that there exists
$F\in K[X]\cap O_{w}$ such that $F^{*}=r^{*}$ . Indeed, take $t\in K[X]$ such that $\deg t<n$ ,
$w(t)=\overline{v}(t(a))=-w(f^{e})=-w(h)=-\overline{v}h(a))$ , and that (th)* $=1$ . Then $(tf^{e})^{*}=$

$(th\cdot\frac{f^{e}}{h})^{*}=(th)^{*}r^{*}=r^{*}$ , as claimed.

3. NOTATION 1.7. Let $G=u_{0}+u_{1}r^{*}+\cdots+r^{*s}$ be a monic polynomial of
$k_{\overline{v}}[r^{*}]$ . For every $i(0\leqq i<s)$ , choose a polynomial $g_{i}\in K[X]$ such that $\deg g_{i}<$

$n,$ $w(g_{i})\geqq 0$ and that $g_{i}^{*}=u_{i}$ . Let

$A=g_{0}+g_{1}r+\cdots+r^{s}=\frac{g_{0}h^{s}+g_{1}h^{s-1}f_{\ulcorner}^{e_{-}1}}{h^{\epsilon}}$
... $+f^{se}$ .

Then $A\in K(X),$ $w(A)=0$ , and $A^{*}=G$ . We shall say that the polynomial $g=$

$g_{0}h^{s}+g_{1}h^{s-I}f^{e}+\cdots+f^{\epsilon e}$ is a lifting in $K[X]$ of the polynomial $G$ in $k_{\overline{v}}[r^{*}]$ .
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Note that $G$ has many liftings in $K[X]$ .

2. Domination of $r.t$ . extensions of $v$ to $K(X)$

Let $w_{1},$ $w_{2}$ be two $r.t$ . extensions of $v$ to $K(X)$ . Let $(a_{i}, \delta_{i})$ be a minimal
pair of definition of $w_{i},$ $i=1,2$ . As in Notation 1.3, let $f_{i}$ be the monic minimal
polynomial of $a_{i}$ , with $\gamma_{i}=w_{i}(f_{i}),\tilde{v}_{i}$ the restriction of $\overline{v}$ to $K(a_{i}),$ $e_{i}$ the smallest
positive integer such that $e_{i}\gamma_{i}\in G_{\overline{v}_{i}},$ $h_{i}\in K[X]$ the polynomial such that $\deg h_{i}$

$<n_{i}=\deg f_{i}$ and that $w(h_{i})=e_{i}\gamma_{i},$ $r_{i}=f_{i^{i}}^{e}/h_{i}$ . Let $r_{i}^{*}=\rho_{w_{i}}(r_{i}),$ $i=1,2$ .
According to [7](see also [4]), one says that $w_{2}$ dominants $w_{1}$ (and written

by $w_{1}<w_{2}$) if $w_{1}(g)\leqq w_{2}(g)$ for all $g\in K[X]$ , and $w_{1}(G)<w_{2}(G)$ for at least one
$G\in K[X]$ . This inequality should be understood in $G_{\tilde{v}}$ because $G_{w_{1}}$ and $G_{w_{2}}$

are of finite index over $G_{v}$ (see [1] or [2]).

If $w_{1}<w_{2}$ , then $O_{w_{1}}\cap K[X]\subseteqq O_{w_{2}}\cap K[X]$ and there exists a unique ring
homonorphism $\varphi:k_{\tilde{v}_{1}}[r_{1}^{*}]\rightarrow k_{\tilde{v}_{2}}[r_{2}^{*}]$ such that the following diagram is com-
mutative:

$O_{w_{1}}\cap K[X]\rightarrow O_{w_{2}}\cap K[X]$

(1) $\rho_{1}($ $1^{\rho_{Z}}$

$ k_{\tilde{v}_{1}}[r_{1}^{*}]-\rightarrow k_{\tilde{v}_{2}}[r_{g}^{*}]\varphi$

For the sake of simplicity we write $\rho_{i}=\rho_{w}ii=1,2$ (cf. Corollary 1.6).

PROPOSITION 2.1. Let $w_{1},$ $w_{2}$ be two $r$ . $t$ . extensions of $v$ such that $w_{1}<w_{2}$ .
Consider the diagram (1), then

a) $\varphi(y)\neq 0$ , whenever $y\in k_{\tilde{v}_{1}},$ $y\neq 0$ ,

b) $Ker\varphi\neq 0$ ,
c) $\varphi(\rho_{1}(F))=\rho_{2}(F(a_{2}))$ for any $F\in O_{w_{1}}\cap K[X]$ .

PROOF. a) Clear because $k_{\tilde{v}_{1}}$ is a field.
b) Indeed, since $w_{1}<w_{2}$ , there exists $g\in K[X]$ such that $w_{1}(g)<w_{2}(g)$ .

Let $m$ be a positive integer such that $w_{1}(g^{m})=-v(b)$ for some $b\in K$. Then
$\rho_{1}(bg^{m})\neq 0$ . On the other hand, $\rho_{2}(bg^{m})=\varphi(\rho_{1}(bg^{m}))=0,$ $i.e$ . $\rho_{1}(bg^{m})\in Ker\varphi$ .

c) Let $F\in O_{w_{1}}\cap K[X]$ . Then $w_{2}(F)\geqq w_{1}(F)\geqq 0$ . According to b) it follows
that $\varphi(\rho_{1}(F))$ is algebraic over $k_{v}$ , so it belongs to $k_{\tilde{v}_{2}}$ . If $w_{2}(F)=0,$ $\varphi(\rho_{I}(F))=$

$\rho_{2}(F)=\rho_{2}(F(a_{2}))$ by Corollary 1.5. Assume that $w_{2}(F)>0$ . Write $F=F_{0}+F_{1}f_{2}+$

$+F_{r}f_{2}^{r},$ $\deg F_{i}<\deg f_{2},0\leqq i\leqq r$ . Then $w_{2}(F)\leqq w_{2}(F_{0})=\overline{v}(F_{0}(a_{2}))=\overline{v}(F(a_{2}))$ .
Hence $\varphi(\rho_{1}(F))=\rho_{2}(F)=0=\rho_{2}(F(a_{2}))$ .
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COROLLARY 2.2. With the notation and hypothesis in Proposition 2.1, $u^{1}e$ have:
a) $w_{1}(f_{2})<w_{2}(f_{2})$ and $n_{1}\leqq n_{2}$ ,

b) if $h\in K[X]$ and $\deg h<n_{1},\overline{v}(h(a_{1}))=\overline{v}(h(a_{2}))$ .

PROOF. a) Let $t$ be a natural number such that $w_{1}(f_{2}^{t})=-v(b),$ $b\in K$.
Then $\rho_{1}(bf_{2}^{t})\neq 0$ . According to Proposition 2.1 c), $\varphi(\rho_{1}(bf_{2}^{t}))=\rho_{2}(bf_{2}^{t})=\rho_{2}(bf_{2}^{t}(a_{2}))$

$=0$ . This means that $w_{2}(f_{2})>w_{1}(f_{2})$ . Furthermore, since $\varphi(\rho_{1}(bf_{2}^{l}))=0,$ $\rho_{1}(bf_{2}^{t})$

is transcendental over $k_{\overline{v}_{1}}$ . Then, according to [3, Proposition 1.1], there exists
a root $a_{2}^{\prime}$ of $f_{2}$ such that $(a_{2}^{\prime}, \delta_{1})$ is a pair of definition of $w_{1}$ . Now since $(a_{1}, \delta_{1})$

is a minimal pair of definition of $w_{1},$ $n_{1}=[K(a_{1}):K]\leqq n_{2}=[K(a_{2}):K]$ .
b) If $h\in K[X]$ and $\deg h<n_{1}$ then, by definition of $w_{1},$ $w_{1}(h)=\overline{v}(h(a_{1}))$ .

Let $s$ be a positive integer such that $w_{1}(h^{s})=-v(b),$ $b\in K$. Then $w_{1}(bh^{s})=0$ ,

and $0\neq(bh^{s})^{*}=\rho_{1}(bh^{s})\in k_{\overline{v}_{1}}$ . Thus, according to Proposition 2.1 a), $0\neq\varphi(\rho_{1}(bh^{s}))$

$=\rho_{2}(bh^{s})$ . Hence $w_{2}(bh^{s})=0$ and $w_{2}(h)=\overline{v}(h(a_{2}))$ , because $\deg h<n_{1}\leqq n_{2}$ . It is
easy to check that $w_{1}(h)=\overline{v}(h(a_{1}))=w_{2}(h)=\overline{v}(h(a_{2}))$ .

REMARK 2.3. Now we make some remarks on the relation of domination
between $r$ . $t$ . extensions.

a) Let $w_{i}=w_{(a_{i},\delta_{i})},$ $i=1,2$ , be two $r.t$ . extensions of $\overline{v}$ to $\overline{K}(X)$ . In [4,

Proposition 2.1], it is proved that $w_{1}<w_{2}$ if and only if $\overline{v}(a_{1}-a_{2})\geqq\delta_{1}$ and $\delta_{1}<$

$\delta_{2}$ . When $K$ is not necessarily algebraically closed and $w_{1},$ $w_{2}$ are two $r.t$ .
extensions of $v$ to $K(X)$ such that $w_{1}<w_{2}$ , we say that $w_{2}$ well dominates $n_{1}$ if
there exist minimal pairs of definition $(a_{i}, \delta_{i})$ of $w_{i}$ such that $w_{(a_{1},\delta_{1})}<w_{(a_{2}.\delta_{2})}$ .
Ii is clear that if $w_{2}$ well dominates $w_{1}$ , then $w_{2}$ dominates $u_{1}^{1}$ . Actually, we
do not know if in general the domination implies the well domination. However,
this is the case when $v$ is Henselian or of rank one.

b) The relation of domination may be defined also between (not necessarily
$r.t.)$ extensions of $v$ to $K(X)$ in the same manner. It is easy to see that the
diagram (1) may be defined for any extensions $w_{1}$ and $w_{2}$ of $v$ to $K(X)$ .
However, the results in Proposition 2.1 and Corollary 2.2 are valid only when
$\mathcal{U}^{f}1$ and $w_{2}$ are $r.t$ . extensions.

3. Definitions of key polynomials

1. Let $(K, v)$ be a valuation pair. According to MacLane [7], one says
that two elements $a,$ $b\in K$ are of the same order of magnitude or equivalent in
$v$ and writes $a\sim b$ (in $v$ ), when:

$v(a-b)>v(a)=v(b)$ .
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It is clear that $\sim$ is an equivalence relation on K. Moreover, if $a\sim b$ and $a^{\prime}\sim b^{\prime}$

then $aa^{\prime}\sim bb^{\prime}$ .
Let $A$ be a suitable subring of $K$. An element $b\in A$ is said to be equivalence

divisible in $A$ by $a\in A$ relative to $v$ when there exists $c\in A$ such that $b\sim ca$ (in

$v)$ . It is easy to see if $a\sim a^{\prime},$ $b\sim b^{\prime},$ $c\sim c^{\prime}$ and $b\sim ca$ then $b^{\prime}\sim c^{\prime}a^{\prime}$ .
Let $w$ be a valuation on $K(X)$ . According to [7], a key polynomial over

$w$ is a non-constant polynomial $g(X)\in K[X]$ which satisfies the following:
(i) Irreducibility: If $F,$ $G\in K[X]$ and $FG$ is equivalence divisible in $K[X]$

by $g$ relative to $w$ , then one of the factors is equivalence divisible in $K[X]$

by $g$ .
(ii) Minimal degree: Any non-zero polynomial equivalence divisible in

$K[X]$ by $g$ has the degree in $X$ not less than $\deg g(X)$ .
(iii) The leading coefficient of $g$ is 1, $i$ . $e$ . $g$ is monic.
A polynomial $g$ with condition (i) is said to be equivalence irreducible in $w$ .

PROPOSITION 3.1. Let $f\in K[X]$ be equivalence irreducible in $w$ . Assume
that a product $FG$ of polynomials in $K[X]$ is equivalence divisible by $f^{i},$ $i\geqq 1$ ,

and $F$ is not equivalence divisible by $f$. Then $G$ is equivalence divisible by $f^{i}$ .

The proof follows by induction over $i$ and is left to the reader.

2. Let $w$ be a valuation on $K(X)$ and let $g$ be a polynomial in $K[X]$ .
Suppose an ordered group $G$ contains $G_{w}$ as an ordered subgroup and take $\gamma\in$

$G$ . Then a new valuation $w_{1}(F)$ may be defined as follows:

$w_{1}(F)=\inf(w(F_{i})+i\gamma)$

where $F=F_{0}+F_{1}g+$ – $+F_{2}g^{s},$ $\deg F_{i}<\deg g,$ $0\leqq i<s$ is the g-expansion of $ F\in$

$K[X]$ .
For the proof of the following result, we send the reader to [7; Theorems

4.2 and 5.1].

THEOREM 3.2. (MacLane [7]) If $g$ is a key polynomial over $\iota v$ and $\gamma>\tau\iota(g)$ ,

then the function $w_{1}$ defined above is also a valuation on $K[X]$ (and on $K(X)$ ),

which dominates $w$ .

According to MacLane’s terminology, $w_{1}$ will be called the augmented valua-

tion over $w$ , associated with $g$ and $\gamma$ . If $\gamma\in QG_{w},$ $i.e$ . there exists a positive

integer $e\neq 0$ such that $e\gamma\in G_{w}$ , we snall say that $w_{1}$ is a commensurable aug-

mented valuation.
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4. Key polynomials over $r$ . $t$ . extension

In this section we study key polynomials over an $r.t$ . extension. The main
results are Theorems 4.4 and 4.6. We remark that Theorem 4.6 and its proof
are inspired by MacLane’s work [7, Theorem 9.4].

Throughout this section $w$ is an $r.t$ . extension of $v$ to $K(X)$ and $(a, \delta)$ is
a minimal pair of definition of $w$ . We use the notation in Notation 1.3.

PROPSITION 4.1. If $F$ is a key polynomial over $w$ , then $\deg F\geqq n$ .

PROOF. It is enough to show that if $g\in K[X]$ is of $\deg g<n$ then $g$ cannot
be a key polynomial over $w$ . Indeed, take $q\in K[X]$ such that $\deg q<n$ and
that $w(g)+w(q)=0$ . Then by Corollary 1.4, $(gq)^{*}\in k_{\overline{v}}$ . Hence there exists $ t\in$

$K[X]$ with $\deg t<n$ , such that $w(t)=0$ , and that $t^{*}=(qg)^{*1}-$ . Therefore $(tqg)^{*}$

$=1$ and so $w(tqg-1)>0$ . Hence the condition (ii) is not satisfied by $g$ .

PROPOSITION 4.2. For $g\in K[X]$ , let $g=qf+g_{0}$ , with $\deg g_{0}<n$ . The fol-
lowing are equivalent:

a) $g$ is equivalence divisible in $K[X]$ by $f$ (relative to $w$ ).

b) $\iota v(g-qf)=w(g_{0})>w(g)$ .

PROOF. The implication $b$ ) $\Rightarrow a$ ) is obvious.
$a)\Rightarrow b)$ Suppose there exists $q_{1}\in K[X]$ such that $w(g-q_{1}f)>w(g)$ . Then

$w(g_{0}+(q-q_{1})f)>w(g)$ . By definition of $w$ , it follows that $w(g)\leqq w(g_{0})$ .
Assume that $w(g)=w(g_{0})$ . Then $w((q-q_{1})f)=w(g_{0})\in G_{\overline{v}}$ . Let

$(q-q_{1})f=h_{1}f+\cdots+h_{l}f^{l}\deg h_{i}<n$ , $1\leqq i\leqq t$ .

Then $w((q-q_{1})f)=\inf(\overline{v}(h_{i}(a))+i\gamma)$ . Since $w((q-q_{1})f)\in G_{\tilde{v}}$ ,

$\overline{v}(h_{t}(a))+i\gamma>w(g_{0})=w((q-q_{1})f)$ , if $i\not\equiv O(mod e)$ .

Hence $w(1-(\frac{h_{1}}{g_{0}}f+\cdots+\frac{h_{t}}{g_{0}}f^{t}))>0$ , or $w(1-(\frac{h_{1}}{g_{0}}f+\cdots+\frac{h_{e}h}{g_{0}}\frac{f^{e}}{h}+\cdots))>0$ .

Thus $ 1=(\frac{h_{e}h}{g_{0}})^{*}h^{*}+\cdots$ . But this equallity is impossible, because $(\frac{h_{e}h}{g_{0}})^{*},$ $\cdots$

belongs to $k_{\tilde{v}}$ and $r^{*}$ is transcendental over $k_{\overline{v}}$ . Therefore $w(g)<w(g_{0})$ as
claimed.

COROLLARY 4.3. The polynomial $f$ (used in the definition of w) is a key
polynomial over $w$ .

PROOF. We show that the conditions $(i)-(iii)$ in the definition of a key
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polynomial are fulfilled.
(i) Let $A,$ $B\in K[X]$ be such that $AB$ is equivalence divisible relative to

$w$ by $f$. Let $A=A^{\prime}f+A_{0},$ $\deg A_{0}<n$ and $B=B^{\prime}f+B_{0},$ $\deg B_{0}<n$ . According

to Proposition 4.2, we must prove that $w(A)<w(A_{0})$ or $w(B)<w(B_{0})$ . Assume
that $w(A)\geqq w(A_{0})$ and $w(B)\geqq w(B_{0})$ . If we write $A_{0}B_{0}=Cf+C_{0}$ with $\deg C_{0}<n$ ,

then $w(AB)\geqq w(A_{0}B_{0})=\overline{v}(A_{0}(a)B_{0}(a))=\overline{v}(C_{0}(a))=w(C_{0})$ . But this is a contradic-
tion. The condition (ii) results by Proposition 4.2 and (iii) is obvious.

Now we try to give a characterization of key polynomials over $w$ . Accord-
ing to Proposition 4.1, we shall treat key polynomials of degree just $n=\deg f$

and key polynomials whose degrees are greater than $n$ separately.

THEOREM 4.4. Let $g\in K[X]$ be a monic polynomial. Consider the following:
1) $g$ is a key polynomial over $w$ and equivalence divisible by $f$.
2) $g$ is a key polynomial over $w$ and of $\deg g=n=\deg f$.
3) $g$ is irreducible and there exists a root $b$ of $g$ such that $(b, \delta)$ is also a

minimal pair of definition of $w$ .

Then we always have $1$ ) $\Rightarrow 2$ ) $\Leftrightarrow 3$ ). Moreover, $2$ ) $\Rightarrow 1$ ) when $\gamma=w(f)$ does
not belong to $G_{\tilde{v}}$ .

PROOF. $1$ ) $\Rightarrow 2$ ) Let $g=qf+g_{0},$ $\deg g_{0}<n$ . According to Proposition 4.2 b),

one has $w(g-qf)=w(g_{0})>w(g)$ . Now since $g$ is also a key polynomial, $q$ or $f$

is equivalence divisible by $g$ . Being $\deg q<\deg g,$ $f$ is equivalence divisible by
$g$ . So $\deg f\geqq\deg g$ . Hence $\deg f=\deg g$ by Proposition 4.1.

$2)\Rightarrow 3)$ By 2) one has $g=f+g_{0},$ $\deg g_{0}<n$ . So $w(g)=\inf(w(f), w(g_{0}))=$

$\inf(\gamma, w(g_{0}))$ . Thus $ w(g)\leqq\gamma$ . Now we remark that $ w(g)=\gamma$ . Assume $ w(g)<\gamma$ .
Then $w(f)=w(g-g_{0})=\gamma>w(g)$ . But this is impossible, because $g$ is a key
polynomial over $w$ and $\deg g_{0}<n=\deg g$ .

Let $b_{1},$
$\cdots,$

$b_{n}$ be all roots of $g$ in $\overline{K}$ and $g=\prod_{i=1}^{n}(X-b_{i})$ . We assert that
$ w(X-b_{i})\geqq\delta$ for at least one index $i(herew=w_{(a,\delta)})$ . Indeed, assume that
$\overline{v}(a-b_{i})<\delta,$ $1\leqq i\leqq n$ . Then

$\overline{w}(g)=\sum_{i}w(X-b_{i})=\sum_{i}\inf(\delta,\overline{v}(a-b_{i}))=\sum_{i}\overline{v}(a-b_{i})=\overline{v}(g(a))$ ,

$w(f)=w(g)=\overline{w}(g)=\overline{v}(g(a))=\overline{v}(g_{0}(a))=w(g_{0})$ .

Then $e=1$ , and we may choose $h=g_{0}$ (see Theorem 1.2, $c$)). Therefore if
we put $r=f/g_{0}$ then $w(r)=0$ and $r^{*}$ is transcendental over $k_{\overline{v}_{2}}$ . Consequently,
$(g/g_{0})^{*}=r^{*}+1$ is also transcendental over $k_{\overline{v}_{2}}$ . Hence by [3, Proposition 2.1],
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there exists a root $b$ of $gg_{0}=0$ such that $(b, \delta)$ is a pair of definition of $\overline{w}$ .
Now since $(a, \delta)$ is a minimal pair and $\deg g_{0}<n$ , it follows that $g_{0}(b)\neq 0$ . In
conclusion, one has necessarily $g(b)=0$ and $\overline{v}(b-a)\geqq\delta$ . This is a contradiction.

$3)\Rightarrow 2)$ Since $(b, \delta)$ is also a minimal pair of definition of $w,$ $g$ is a key

polynomial over $w$ and $\deg g=cegf=n$ .
Now let us assume that $\gamma\not\in G_{\overline{v}}$ . Then one has the implication $2$ ) $\Rightarrow 1$ ).

Indeed, we have remarked that $w(g-f)=w(g_{0})\geqq w(f)$ . Then, since $w(g_{0})\in G_{\tilde{v}}$ ,

$w(g-f)>w(f),$ $i$ . $e$ . $g$ is equivalence divisible by $f$ .

REMARK 4.5. Now we give an example which shows that the implication
$2)\Rightarrow 1)$ in Proposition 4.4 is not necessarily valid if $\gamma\in G_{\overline{v}}$ . For that take an
algebraically closed field $K$ and $a,$ $b\in K$ such $ v(a-b)=\delta$ . Let $w=w_{(a,\delta)}$ . Then
$(a, \delta)$ and $(b, \delta)$ are both minimal pairs of definition of $w$ .

Hence, $X-a$ and $X-b$ are both key polynomials over $w$ . But since $w(X-b)$

$=v(a-b)=\delta,$ $X-b$ is not equivalence divisible in $K[X]$ ($with$ respect to w) by
$X-a$ .

For key polynomials over $w$ whose degrees are greater than $n=\deg f$ , one
has:

THEOREM 4.6. Take $g\in K[X]$ such that $\deg g>n=\deg f$ and consider the
f-expansion of $g$ :

$g=g_{0}+g_{1}f+\cdots-\vdash g_{t}f^{t}$ , $\deg g_{i}<n,$ $0\leqq i\leqq t$ .

Then the following are equivalent:
1) $g$ is a key polynomial over $w$ .
2) $g$ satisfies the following:

$\alpha)$ $w(g)=w(g_{0})$ ,
$\beta)$ $t\equiv 0(mod e),$ $g_{t}=1$ , and $ w(g)=w(f^{l})=se\gamma$ ,
$\gamma)$ $g$ is equivalence irreducible in $w$ .

3) $t=se,$ $w(g)=se\gamma,$ $g$ is monic of degree $tn$ and $(g/h^{s})^{*}$ is a monic and
irreducible polynomial of degree $s$ in $k_{\tilde{v}}[r^{*}]$ whose constant term is not zero.

PROOF. $1$ ) $\Rightarrow 2$ ). By definition of $w,$ $w(g)\leqq w(g_{0})$ . If $w(g)<w(g_{0}),$ $w(g-qf)$

$>w(g)$ for a suitable $q$ of $\deg q<\deg g$ . Hence $q$ or $f$ is equivalence divisible
by $g$ . But this is impossible. Thus has $w(g)=w(g_{0})$ .

Further, $w(g)=w(g_{0})$ shows that $w(g)\in G_{\overline{v}}$ . Now we note that $w(g)=w(g_{l}f^{l})$ .
Assume that $w(g)<w(g_{t}f^{l})$ . Then $w(g-(g_{0}+\cdots+g_{t-1}f^{t-1}))>w(g)$ . But this is
also impossible, because $g$ is a key polynomial over $w$ . Hence two remarks
$w(g)=w(g_{t}f^{t})$ and $w(g)\in G_{\overline{v}}$ imply that $t\equiv 0(mod e)$ .
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Let us show that $g_{t}=1$ . If $g_{t}\neq 1$ then, since $g$ is monic, $\deg g_{t}>0$ . Take
$u\in K[X]$ such that $\deg u<n,$ $w(ug_{t})=0$ and $(ug_{t})^{*}=1$ . This means $w(ug_{t}-1)$

$>0$ . So $w(ug_{t}f^{t}-f^{t})>w(f^{t})=w(ug)$ . Now since $f$ is a key polynomial and
$\deg g_{t- 1}<n,$ $ug_{t}f^{t}=u^{\prime}g-d$ , where $\deg d<\deg q$ and $w(u^{\prime})=w(u)$ . Thus $w(ug_{t}f^{t}$

$-f^{t})=w(u^{\prime}g-d-f^{t})>w(f^{t})=w(u^{\prime}g)$ . But this is impossible, because $g$ is also
a key polynomial over $w$ and $\deg(d+f^{t})<\deg g_{t}=1$ .

$2)\Rightarrow 1)$ By $\beta$ ) and $\gamma$ ) conditions (i) and (iii) of a key polynomial are
fulfilled. Now let $d\in K[X]$ be equivalence divisible by $g$ . Hence there exists
$q\in K[X]$ with $w(qg-d)>w(d)$ . We must show $\deg d\geqq\deg g$ . Writing $q=\sum_{i=0}q_{i}f_{t}$

with $\deg q_{i}<n$ , let $j$ be the greatest index $t$ such that $ w(q)=\overline{v}(q_{j}(a))+j\gamma$ . Thus
in $qg$ one has the term $A=(q_{j}+q_{j+1}g_{l-1}+\cdots)f^{t+j}$ . Then $w(A)=w(q_{j})+w(f^{j+t})=$

$w(qg)=w(d)$ . Hence if $\deg d<\deg g$ the term $A$ whose degree is at least $\deg g$

must appear in $qg-d$ . So the inequality $w(qg-d)>w(d)=w(qg)$ is impossible.

Therefore $\deg d\geqq\deg g$ , as claimed.
$2)\Rightarrow 3)$ By $\beta$ ) it results

$t=se\equiv 0(mod e),$ $w(g)=se\gamma=w(h^{s})$ and $g$ is monic

(remind that $ w(h)=e\gamma$ and $\deg h<n$ ). Hence one has $w(g/h^{s})=0$ , and

$g/h^{s}=g_{0}/h^{s}+g_{1}f/h^{s}+\cdots+f^{se}/h^{s}$ ,

$w(g_{i}f^{i}/h^{s})\geqq 0$ and $w(g_{j}f^{j}/h^{s})>0$ if $1\overline{\neq}o(mod e)$ .

If $j=ie,$ $w(g_{ie}f^{ie}/h^{s})=w(\frac{g_{ie}f^{ie}}{h^{s-i}h^{i}})\geqq 0$ . Since $w(f^{e}/h)=0$ , $w(g_{ie}/h^{s- i})\geqq 0$ . So

$(g_{ie}/h^{s-i})^{*}\in k_{\overline{v}}$ ( $see$ Corollary 1.4). Therefore

$(g/h^{s})^{*}=A_{0}+A_{1}r^{*}+\cdots+r^{*s},$ $A_{i}\in k_{\tilde{v}},$ $0\leqq i<s$ .

Now we show that this is an irreducible polynomial of $k_{\overline{v}}[r^{*}]$ . Indeed, assume
that $A^{\prime},$ $B^{\prime}$ , C’ are polynomials of $k_{\overline{v}}[r^{*}]$ such that $(g/h^{s})^{*}C^{\prime}=A^{\prime}B^{\prime}$ . Let $A$ ,
$B$ and $C$ be the liftings of $A^{\prime},$ $B^{\prime}$ and $C^{\prime}$ , respectively (see Notation 1.7). Then
$(g/h^{s})^{*}(C/h^{u})^{*}=(A/h^{q})^{*}(B/h^{t})^{*}$ . Hence

$u)(\frac{gC}{h^{s+u}}-\frac{AB}{h^{q+t}})>0$ .

Let $i=q+t-s-u$ . If $i\geqq 0$ , then $w(gCh^{i}-AB)>w(h^{q+t})=w(AE)(see$ Notation
1.7). Then by condition $\gamma$ ) it follows that, say, $A$ is equivalence divisible by

$g$ . Thus for a suitable polynomial $D\in K[X]$ , one has

$w(gD-A)>w(A)=w(gD)$ ,

$w(g/h^{2}\cdot\frac{D}{h^{q-s}}-A/h^{q})>0$ , or $(g/h^{s})^{*}(D/h^{q-s})^{*}=(A/h^{q})^{*}=A^{\prime}$
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Therefore, since $(D/h^{q-s})^{*}\in k_{\overline{v}}[r^{*}],$ $A^{\prime}$ is divisible by $(g/h^{S})^{*}$ . If $i<0$ ,

$w(gC-h^{-i}AB)>w(ABh^{-i})=w(gC)$ . Now because $g$ is a key polynomial and
$\deg h<n<\deg g$ , it results that, say, $A$ is equivalence divisible by $g$ . Thus as
above $A^{\prime}=(A^{\prime}/h^{q})^{*}$ is divisible by $(g/h^{s})^{*}$ in $k_{\overline{v}}[r^{*}]$ . In conclusion $(g/h^{s})^{*}$ is
irreducible in $k_{\overline{v}}[r^{*}]$ and since $w(g_{0})=w(g)=w(h^{s})$ , its constant terms is not zero.

$3)\Rightarrow 2)$ By 3) it results that $t=se,$ $ w(g)=se\gamma=t\gamma$ , and $g_{l}=1$ . Hence $\beta$ ) is
accomplished. The condition $\alpha$ ) is also satisfied because the constant term of
$(g/h^{s})^{*}$ is not zero.

Now we are only to show that $\gamma$ ) is also true. For this take $A,$ $B\in K[X]$

such that $AB$ is equivalence divisible by $g$ . Then there exists $D\in K[X]$ such
that

$w(gD-AB)>w(AB)=w(gD)$ .

Let $i$ and $j$ be the smallest non-negative integers such that

$w(A)+i\gamma=\overline{v}(\omega(a))$ , and $w(B)+j\gamma=\overline{v}(\sigma(a))$ ,

where $\omega,$ $\sigma\in K[X],$ $\deg\omega<n$ and $\deg\sigma<n$ . Then

$w(\frac{g}{h^{s}}\cdot\frac{Dh^{\$}f^{i+j}Af^{i}}{\omega\sigma\omega}\cdot\frac{Bf^{j}}{\sigma})>0$ , $i.e.$ ,

$(g/h^{s})^{*}(\frac{Dh^{s}f^{i+j}}{\omega\sigma})^{*}=(\frac{Af^{i}}{\omega})^{*}(\frac{Bf^{j}}{\sigma})^{*}$

Here according to Corollary 1.6, all factors are polynomials of $k_{\overline{v}}[r^{*}]$ . So,

since $(g/h^{s})^{*}$ is irreducible by hypothesis, it results that it divides, say, $(\frac{Af^{i}}{\omega})^{*}$

Hence one has the equality

$(g/h^{s})^{*}\cdot G^{\prime}=(\frac{Af^{i}}{\omega})^{*}$ , $G^{\prime}\in k_{\tilde{v}}[r^{*}]$ .

According to Notation 1.7, one may write $G^{\prime}=(G/h^{p})^{*}$ with $G\in K[X]$ and a
suitable non-negative integer $p$ . Then

$w(\frac{gG}{h^{s+p}}-\frac{Af^{i}}{\omega})>0$ , or $w(gG\omega-Af^{i}h^{s+p})>w(h^{s+p}\omega)=w(gG\omega)$ .

Furthermore, by 3) and Proposition 4.2, $g$ is not equivalence divisible by $f$.
Then by Proposition 3.1, it results that $ G\omega$ is equivalence divisible by $f^{i},$ $i.e$ .
$w(G\omega-f^{i}H)>w(G\omega)=w(f^{i}H),$ $H\in K[X]$ . Hence

$w(gHf^{i}-Af^{i}h^{s+p})>w(gHf^{i})$ , or $w(gH-Ah^{s+p})>w(gH)$ .

Now let $d\in K[X]$ be such that $w(dh^{s+p})=0,$ $\deg d<n$ , and that $w(dh^{s+p}-1)>0$ .
Thus
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$w(gHd-A(dh^{s+p}-1+1))>w(gHd)$ , or $w(gHd-A)>w(gHd)=w(A)$ .
This means that $A$ is equivalence divisible by $g$ . In conclusion $g$ is equivalence
irreducible. The proof of Theorem 4.6 is complete.

COROLLARY 4.7. Let $G$ be a monic and irreducible polynomial of $k_{\tilde{v}}[r^{*}]$

whose constant term is not zero. Let $g$ be a lifting of $G$ (see Notation 1.7).
Then $g$ is a key Polynomial over $w$ . In particular, $g$ is an irreducible polynomial

of $K[X]$ .

PROOF. Let $s=\deg G$ . Then $\deg g=sen=tn$ , and $g=g_{0}+g_{1}f+\cdots+f^{se},$ $g_{i}$

$\in K[X],$ $\deg g_{i}<n$ . The condition that $G$ has a non-zero constant term shows
that $ w(g)=w(g_{0})=w(f^{se})=se\gamma$ . Thus, since $G=(g/h^{s})^{*}$ , by condition 3) in
Theorem 4.6 it results that $g$ is a key polynomial over $w$ .

5. Valuation defined by a key polynomial

In this section we show that key polynomials over an $r.t$ . extension of $\nu$

to $K(X)$ give new $r.t$ . extensions of $v$ to $K(X)$ . In particular, we show that
key polynomials may be used to yield minimal pairs.

THEOREM 5.1. Let $w$ be an $r$ . $t$ . extension of $v$ to $K(X)$ and let $f_{1}$ be a key
polynomial over $w$ . Take $\gamma_{1}>G_{\overline{v}}$ such that $\gamma_{1}>w(f_{1})$ . Let $w_{1}$ be the augmented
valuation over $w$ associated with $f_{1}$ and $\gamma_{1}$ . Then $w_{1}$ is an $r$ . $t$ . extension of $v$ to
$K(X)$ . Moreover there exists a root $a_{1}$ of $f_{1}$ and $\delta_{1}\in\overline{G}_{v}$ such that $(a_{1}, \delta_{1})$ is a
minimal pair of $w_{1}$ with respect to $K$ and $w_{1}$ well dominates $w$ .

PROOF. As usual we keep the notations stated in Notation 1.3. Let ( $a,$
$\delta\rangle$

be a minimal pair of definition of $w$ . Then two cases are possible $\deg f_{I}=n=$

$\deg f$ or $\deg f_{1}>n$ (see Proposition 4.1). We shall consider each case separately.
A) First assume that $\deg f_{1}=n$ . Then according to condition 3) in Theorem

4.4, there exists a root $a_{1}$ of $f_{1}$ such that $(a_{1}, \delta)$ is also a minimal pair of
definition of $w$ . Hence we may assume that $f_{1}=f$ and $a_{1}=a$ . Since $(a, \delta)$ is a
minimal pair of definition of $w$ , one has

$w(f)=\gamma=\inf(\overline{v}(A_{i})+i\delta)$ , where $f=\sum_{i=1}^{n}A_{t}(X-a)^{i},$ $A_{i}\in\overline{K}$

and $\delta=\sup_{1\not\leqq i\leq n}\frac{\gamma-\overline{v}(A_{i})}{i}$ .

Now let us define
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$\delta_{1}=\sup_{1\leq i\leq n}\frac{\gamma_{1}-\overline{v}(A_{i})}{i}$ .

Since by hypothesis $\gamma_{1}>\gamma$ , it results that $\delta_{1}>\delta$ . Therefore $(a, \delta_{1})$ is also a
minimal pair because $(a, \delta)$ is a minimal pair with respect to $K$. Let $w^{\prime}$ be the
restriciton of $w_{(a.\delta_{1})}$ to $K(X)$ . Then by Theorem 1.2, for $F\in K[X]$

$w^{\prime}(F)=\inf(\overline{v}(F_{i}(a))+i\gamma_{1})=\inf(u)(F_{i})+i\gamma_{1})$ ,

where $F=F_{0}+F_{1}f+\cdots+F_{s}f^{s},$ $\deg F_{i}<n,$ $0\leqq i\leqq s$ . Hence $w_{1}=w^{\prime}$ by definition
of an augmented valuation. Therefore $w_{1}$ well dominates $w$ because $w_{(a.\delta)}<$

$w_{(a,\delta_{1})}$ by [4, Proposition 2.1].

B) Next assume that $\deg f_{1}=n_{1}>n$ . Then by assertion 3) in Theorem 4.6,

there exists a positive integer $s$ such that $w(f_{1}/h^{s})=0$ and that $(f_{1}/h^{s})^{*}$ is an
irreducible polynomial of $k_{\tilde{v}}[r^{*}]$ . Then, according to [3, Prosition 1.1] there
exists an element $a_{1}\in\overline{K}$ such that $f_{1}(a_{1})h^{s}(a_{1})=0$ and that $(a, \delta)$ is a pair of
definition of $w_{(a.\delta)}$ , or equivalently $\overline{v}(a_{1}-a)\geqq\delta$ . Now since $\deg h<n$ and $(a, \delta)$

is a minimal pair with respect to $K$, one has necessarily $f_{1}(a_{1})=0$ . Writing

$f_{1}=\sum_{i=1}^{n1}A_{i}^{\prime}(X-a_{1})^{1},$ $A_{i}^{\prime}\in\overline{K}$, define

$\delta_{1}=\sup_{1\leq i\leq n_{1}}\frac{\gamma_{1}-\overline{v}(A_{i}^{\prime})}{i}$ .

In what follows we shall show that $w_{1}$ is an $r.t$ . extension of $v$ to $K(X)$

and that $(a_{1}, \delta_{1})$ is a minimal pair of definition of $w_{1}$ with $\delta<\delta_{1}$ , or $w_{1}$ well
dominates $w$ . We shall divide the proof in several steps.

Bl) At this point we introduce an useful notation. Let us denote by $P$

the subring of $K[X]$ whose elements are fractions $p=F/G$ such that $w(p)\geqq 0$ ,

and that every irreducible factor of $G$ has the degree smaller than $n$ . Accord-

ing to Corollaries 1.4 and 1.6 it results that for every $p\in P$ the mapping $pv\wedge\Rightarrow p*$

gives a surjective ring homomorphism $\rho$ : $P\rightarrow k_{\overline{v}}[r^{*}]$ .
If $p\in O_{w_{1}}$ , let us denote by $p**the$ image of $p$ into the residue field $k_{w_{1}}$ .

According to MacLane’s Theorem (see Theorem 3.2), one has $w<w_{1}$ . So if
$p\in P$, then $p\in O_{w_{1}}$ . Hence the mapping $p_{W^{\iota}}p**gives$ a ring homomorphism

$\rho_{1}$ : $P\rightarrow k_{w_{1}}$ . Finally, it is easy to see that the mapping $p*N\varphi\div p**$ gives a $k_{v^{-}}$

algebras homomorphism $\varphi:k_{\tilde{v}}[r^{*}]\rightarrow k_{w_{1}}$ , which makes the following diagram

commutative
$p$

(2)
$k_{9}[r^{*}]\rightarrow k_{w_{1}}\sqrt{}\backslash \varphi\rho_{1}$

.
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B2) Since $\gamma_{1}>w(f_{1})$ and $w(h)=w_{1}(h)$ we note that the kernel of $\varphi$ is gene-
rated by $(f_{1}/h^{s})^{*}$ . This implies that for every $z\in k_{\overline{v}}[r^{*}],$ $\varphi(z)$ is algebraic
over $k_{v}$ .

B3) Let $e_{1}$ be the smallest positive integer such that $e_{1}\gamma_{1}\in G_{w}$ . We claim
that there exists a polynomial $h_{1}\in K[X]$ such that $\deg h_{1}<\deg f_{1}=n_{1}$ and that
$w(h_{1})=w_{1}(h_{1})=e_{1}\gamma_{1}$ .

According to Theorem 1.2, since $ G_{w}=G_{\overline{v}}+Z\gamma$ and $e\gamma\in G_{\tilde{v}}$ , one has $e_{1}\gamma_{1}=$

$w(gf^{i})$ for suitable $g$ and $i$ with $\deg g<n,$ $0\leqq i<e$ . Then, if $gf^{i}=qf_{1}+h_{1}$ ,
$\deg h_{1}<n_{1}$ , we have $w(gf^{i})=e_{1}\gamma_{1}=w(h_{1})$ . Indeed, assume that $e_{1}\gamma_{1}>w(h_{1})$ . Then
$w(qf_{1}+h_{1})>w(h_{1})$ . But this is impossible, because $f_{1}$ is a key polynomial over
$w$ and $\deg h_{1}<n_{1}$ . Further, if $e_{1}\gamma_{1}<w(h_{1})$ then $w(gf^{i}-qf_{1})>w(gf^{i})=e_{1}\gamma_{1}$ . Since
$f_{1}$ is a key polynomial over $w$ , it results that one of the polynomials $g$ or $f$ is
equivalence divIsible by $f_{1}$ . But this is also impossible since $\deg n<n_{1}$ . Hence
$w(gf^{i})=e_{1}\gamma_{1}=w(h_{1})$ .

B4) Now we shall prove that, if we put $r_{1}=f_{1}^{e_{1}}/h_{1}$ with $h_{1}$ as above (see

B3)), $w_{1}(r_{1})=0$ and $r_{1}^{**}\in k_{w_{1}}$ is transcendental over $k_{v}$ . Moreover, $r_{1}$ is the
element of $K(X)$ of the smallest degree with these properties.

For the sake of simplicity, in the rest of this proof we shall express $r_{1}^{**}$

by $y$ . Assume that $y\in k_{w_{1}}$ is algebraic over $k_{v}$ . Then there exists $b_{0},$ $\cdots$ ,
$b_{t-1}\in K$ such that $v(b_{i})\geqq 0,0\leqq i<t$ , and that

$b_{0}^{*}+\cdots+b_{t-1}^{*}y^{t-1}+y^{t}=0$ .

Let us consider the polynomial $G=b_{0}h_{1}^{t}+b_{1}h_{1}^{t-1}f_{1}^{e_{1}}+\cdots+b_{t-1}h_{1}f_{1}^{(t-1)e_{1}}+f_{1}^{le_{1}}$ . Then
$w_{1}(G)>w(h_{1}^{t})=t_{1}e_{1}$ .

On the other hand, since $\deg h_{1}<n_{1},$ $\deg b_{i}h_{1}^{t-i}f_{1}^{e_{1}i}<te_{1}n_{1}$ . So, in the $f_{1^{-}}$

expansion of $G$ , the term $f_{1}^{te_{1}}$ must appear. But, then, according to the defini-
tion of $w_{1}$ , one has $w_{1}(G)\leqq t_{1}e_{1}$ . This is a contradiction. Therefore $y$ is trans-
cendental over $k_{v}$ .

Furthermore, suppose $p=F/H\in K(X)$ satisfies $w_{1}(p)=0$ and $\deg p=[K(X)$ :
$K(p)]=\max(\deg F, \deg H)<\deg r_{1}=e_{1}n_{1}$ . Let

$F=F_{0}+F_{1}f_{1}+\cdots+F_{m}f_{1}^{m}$ , and $H=H_{0}+H_{1}f_{1}+\cdots+H_{q}f^{q_{1}}$

be the $f_{1}$ -expansions of $F$ and $H$ respectively. Since $w_{1}(p)=0$ , one has

$w_{1}(F)=\inf_{i}(w(F_{i})+i\gamma_{1})=w_{1}(H)=\inf_{j}(w(H_{j})+]\gamma_{1})$ .

Now since $\deg p<e_{1}n_{1}$ , it follows that $m<e_{1},$ $q<e_{1}$ . So there exists only

one index, say $i$ , such that

$w_{1}(F)=w(F_{i})+i\gamma_{1}=w_{1}(H)=w(H_{i})+i\gamma_{1}$ .
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But then $p^{**}=(\frac{F_{i}}{H_{i}})^{**}$ because

$p=\frac{F}{H}=\frac{F_{i}}{H_{i}}\cdot\frac{F_{0}/F_{i}f_{1}^{i}+\cdot.\cdot.\cdot.+1+}{H_{0}/H_{1}1f_{1}^{i}++1+}$ .

To end the proof of B4) it is enough to show that $p**is$ algebraic over $k_{v}$ .
Indeed, since $\deg F_{i}<n_{1},$ $\deg C_{i}<n_{1},$ $w_{1}(F_{i})=w(F_{i})=w_{1}(H_{i})=w(H_{i})$ . Let $d$ be a
positive integer such that $dw(F_{i})=v(c)$ for a suitable $c\in K$. Then we have
(see (2)):

$p^{*d}=(\frac{F_{i}}{H_{i}})^{*d}=((F_{i^{d}}/c)/(H_{i}^{d}/c))^{*}=(F_{i}^{d}/c)^{*}/(H_{i^{d}}/c)^{*}$ .

$\varphi(p^{*d})=\varphi((F_{t^{d}}/c)^{*})/\varphi((H_{i}^{d}/c)^{*})=p**d$

Hence $p**is$ also algebraic over $k_{v}$(see Bl)).

B5) Finally we shall prove that the pair $(a_{1}, \delta_{1})$ defined above (see $B$)) is
a minimal pair of definition of $w_{1}$ (with respect to $K$ ). For this we show that
$[K(b):K]\geqq n_{1}$ , whenever $(b, \delta_{1})$ is a pair of definition of $w_{1}$ with respect to $K$.
We shall prove that $\deg g\geqq n_{1}$ if $g$ is the minimal polynomial of $b$ over $K$.

Indeed, let us assume that $\deg g<n_{1}$ . According to the definition of an
augmented valuation, one has $w_{1}(g)=w(g)$ . Take a suitable positive integer $t$

such that $tw(g)=v(c),$ $c\in K$. Then $w(g^{t}/c)=w_{1}(g^{t}/c)=0$ , and by diagram (2) one
has $0\neq(g^{t}/c)^{**}=\varphi((g^{t}/c)^{*})$ . Hence $(g^{l}/c)^{**}$ is algebraic over $k_{v}$ . But this con-
tradicts the assumption that $(b, \delta_{1})$ is a pair of definition of $w_{1}$ (see [1]).

Furthermore, since $(f_{i}^{e_{1}}/h_{1})^{**}$ is transcendental over $k_{v}$ , according to [3,

Proposition 1.1] it follows that there exists a root $a_{1}^{\prime}$ of $f_{1}h_{1}=0$ such that
$(a_{1}^{\prime}, \delta_{1})$ is a pair of definition of $w_{1}$ . Since $\deg h_{1}<n_{1}=\deg f_{1}$ it follows that $a_{1}^{\prime}$

is necessarily a root of $f_{1}$ and that $(a_{1}^{\prime}, \delta_{1})$ is a minimal pair of definition of $w_{1}$ .
And we have the inequality $\delta<\delta_{1}$ because $w(f_{1})<\gamma_{1}(seeB))$ . The proof of

Theorem 5.1 is complete.

REMARK 5.2. Let $w_{1},$ $w_{2}$ be two $r.t$ . extensions of $v$ to $K(X)$ such that
$w_{1}<w_{2}$ . In general, we do not know if $w_{2}$ well dominates $w_{1}$ . However, accord-
ing to Theorem 5.1, if $w_{2}$ is an augmented valuation over $w_{1}$ , then $w_{2}$ well
domintes $w_{1}$ . Now we shall give an example which shows that the “well
domination” is not a special property of an augmented valuation, $i.e$ . it is pos-
sible that $w_{2}$ well dominates $w_{1}$ even if $w_{2}$ is not an augmented valuation over $w_{1}$ .

Let $K$ be the field of 3-adic numbers and $v$ the 3-adic valuation on $K$. Let
$a_{2}=\sqrt[8]{3}$. The minimal polynomial of $a_{2}$ is $f_{2}=X^{3}-3$ . Let $\omega$ be a primitive
cube-root of 1. Then, $a_{2},$ $\omega a_{2},$

$\omega^{2}a_{2}$ are all roots of $f_{2}$ . One has $\sup(\overline{v}(a_{2}-\omega a_{2})$ ,
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$\overline{v}(a_{2}-\omega^{2}a_{2}))=4/3$ . Hence according to [3, Proposition 3.2, $b)$], $(a_{2},2)$ is a
minimal pair. Let $w_{2}$ be the restriction of $w_{(a_{2}.2)}$ to $K(X)$ and $w_{1}$ the restric-
tion of $w_{(0.0)}$ to $K(X)$ . It is easy to see that $w_{2}$ well domintes $w_{1}$ . However,
$w_{2}$ is not an augmented valuation over $w_{1}$ . Indeed, if $w_{2}$ would be an augmented
valuation over $w_{1}$ , then for every polynomial $g$ of $\deg g<3$ we have $w_{1}(g)=w_{2}(g)$ .
But it is easy to see that $w_{1}(X^{2}-3)<w_{2}(X^{2}-3)$ .

On the other hand, Theorem 5.5 gives a characterization of $r.t$ . valuations
which are augmented valuations over another $r.t$ . extensions of $v$ to $K(X)$ .
First we prove the following:

LEMMA 5.3. Let $w_{1},$ $w_{2}$ be $r$ . $t$ . extensions of $v$ to $K(X)$ such that $w_{1}<w_{2}$ .
Let $g\in K[X]$ be a monic polynomial of the smallest degree such that $w_{1}(g)<w_{2}(g)$ .
Then $g$ is a key polynomial over $w_{1}$ .

PROOF. Let $(a_{i}, \delta_{i})$ be a minimal pair of definition of $w_{i}$ and let $f_{i}$ be the
monic minimal polynomial of $a_{i},$ $i=1,2$ . According to Corollary 2.2 b) it follows
that, if $h\in K[X]$ is of $\deg h<\deg f_{1},$ $w_{1}(h)=\overline{v}(h(a_{1}))=\overline{v}(h(a_{2}))=w_{2}(h)$ . Hence
$\deg g\geqq\deg f_{1}$ . Let $t$ be a positive integer such that $w_{1}(g^{t})=-v(c),$ $c\in K$. Then
$w_{1}(cg^{t})=0$ , and $(cg^{t})^{*}$ is a non-zero element of $k_{\tilde{v}}[r_{1}^{*}]$ . The hypothesis $w_{1}(g)<$

$w_{2}(g)$ yields $\varphi((cg^{t})^{*})=0$ . But then, according to Proposition 2.1 a), it results
that $(cg^{t})^{*}$ is transcendental over $k_{v}$ . Therefore, according to [3, Proposition
1.1] there exists a root $b$ of $g$ such that $(b, \delta_{1})$ is a pair of definition of $w_{1}$ .

Now we consider the cases $\deg g=\deg f_{1}$ and $\deg g>\deg f_{1}$ separately.
Suppose $\deg g=\deg f_{1}$ . Then $(b, \delta)$ is also a minimal pair of definition for

$w_{1}$ . Hence according to Corollary 4.3, $g$ is a key polynomial over $w_{1}$ .
Now let us assume that $\deg g>\deg f_{1}$ and

$g=A_{0}+A_{1}f_{1}+\cdots+A_{t}f_{1}^{t}$ , $\deg A_{i}<\deg f$ , $0\leqq i\leqq t$ .
To show that $g$ is a key polynomial over $w_{1}$ we shall prove that $g$ satisfies the
condition 3) in Theorem 4.6.

a) First we claim that $w_{1}(g)=w_{1}(A_{0})$ . Since $w_{1}(g)\leqq w_{1}(A_{0})$ we show that
$w_{1}(g)<w_{1}(A_{0})$ implies a contradiction. Indeed, assume that $w_{1}(g_{2})<w_{1}(A_{0})$ . Let
$g=A_{0}+f_{1}q,$ $\deg q<^{\prime}\deg g$ be the $f_{1}$ -expansion of $g$ . Then $w_{1}(g-f_{1}q)=w_{1}(A_{0})>$

$w_{1}(g)$ . Hence $w_{1}(g)=w_{1}(f_{1}q)<w_{1}(A_{0})$ . Since $\deg q<\deg g$ then, by hypothesis on
$g$ , one has

$w_{2}(f_{1}q)=w_{1}(f_{1}q)=w_{1}(g)<w_{2}(g)$ .
Thus $w_{1}(g)=w_{1}(f_{1}q)=w_{2}(f_{1}q)=w_{2}(g-f_{1}q)=u\prime_{2}(A_{0})=w_{1}(A_{0})$ . So we get a desired
contradiction.
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b) Next we show that $t=se_{1}$ and $w_{1}(g)=se_{1}\gamma_{1}$ . Note that by a) it follows
that $w_{1}(g)=w_{1}(A_{0})=\overline{v}(A_{0}(a_{1}))\in G_{\overline{v}}$ , where $\tilde{v}$ is the restriction of $\overline{v}$ to $K(a_{1})$ . Now
we remark that $w_{1}(g)=w_{1}(A_{1}f_{1}^{t})$ . Indeed, if $w_{1}(g)<w_{1}(A_{t}f_{1}^{l})$ , then $w_{1}(B)=w_{1}(g)$ ,

where $B=g-A_{t}f_{1}^{t}$ . Hence $w_{1}(A_{t}f_{1}^{t})>w_{1}(B)$ . Further, since $\deg B<\deg g$ , one
has $w_{1}(B)=w_{2}(B)$ . And $w_{1}(A_{t}f_{1}^{t})=w_{2}(A_{t}f_{1}^{t})$ . On the other hand, since $w_{2}(g)>$

$w_{1}(g)=w_{1}(B)=w_{2}(B)$ , one has $w_{1}(A_{t}f_{1}^{t})=w_{2}(g-B)=w_{2}(B)=w_{1}(B)$ a contradiction.
Therefore $w_{1}(g)=w_{1}(A_{t}f_{1}^{t})$ . Since $w_{1}(g)\in G_{\overline{v}}$ , it follows that $w_{1}(f_{1}^{t})\in G_{\tilde{v}}$ , or $t=se_{1}$ .

Now we shall prove that $A_{t}=1$ , or $A_{l}$ is of degree $0$ . Since $w_{1}(g)\in G_{\overline{v}}$ ,

there exists $h\in K[X]$ , $\deg h<\deg f_{1}$ such that $w_{1}(g)=w_{1}(h)=\overline{v}(h(a_{1}))$ . Hence
$0\neq(g/h)^{*}\in k_{\overline{v}}[r_{1}^{*}]$ . We show that $(g/h)^{*}$ is in fact an irreducible polynomial
of $k_{\overline{v}}[r_{1}^{*}]$ . Note that by hypothesis $\varphi((g/h)^{*})=0$ . Hence to prove that $(g/h)^{*}$

is irreducible it is enough to show that $(g/h)^{*}$ is the kernel of $\varphi$ .
Let $m\in k_{\overline{v}}[r^{*}]$ be the monic generator of the kernel of $\varphi,$

$i.e$ .

$m=u_{0}+u_{1}r_{1}^{*}+$ $+u_{p-1}r_{1}^{*p-1}+r_{1}^{*p}$ .

Since $w_{1}(g)\in G_{\tilde{v}},$ $w_{1}(A_{i}f_{1}^{i})>w_{1}(g)=w_{1}(h)$ , for every $i\not\equiv O(mod e_{1})$ . Thus

$(g/h)^{*}=(A_{0}/h)^{*}+(A_{e_{1}}h_{1}/h)^{*}(f_{1}^{e_{1}}/h_{1})^{*}+\cdots+(A_{t}h_{1}^{s}/h)^{*}(f_{1}^{e_{1}}/h_{1})^{*s}$

$=u_{0}^{\prime}+u_{1}^{\prime}r_{1}^{*}+\cdots+u_{s}^{\prime}r_{1}^{*s}$ , $u_{i}^{\prime}=(\frac{A_{ie_{1}}h_{1}^{i}}{h})^{*}\in k_{\overline{v}},$ $0\leqq i\leqq s$ .

Now since $m$ is the kernel of $\varphi$ , it follows that $p\leqq s$ . Let $ M=m_{0}+m_{1}f_{1^{1}}^{e}+\cdots$

$+f^{p_{1}e_{1}}$ be a lifting of $m$ in $K[X]$ . Since $\varphi(m)=0$ , it follows that $w_{1}(M)<w_{2}(M)$ .
Thus $\deg M\geqq\deg g$ , or $pe_{1}\deg f_{1}\geqq se_{1}\deg f_{1}+\deg A_{l}$ . This inequality together

with the inequality $p\leqq s$ implies that $s=p$ and $A_{s}=1$ . Therefore it results that
$w_{1}(g)=w_{1}(f_{1}^{t})=se_{1}\gamma_{1}$ as claimed.

c) Finally we shall prove that $(g/h_{1}^{s})^{*}$ is an irreducible polynomial of $k_{\overline{v}}[r_{1}^{*}]$ ,

with non-zero constant term. Indeed, by a) and b) one has $w_{1}(g)=u_{1}(A_{0})=se_{1}\gamma_{1}$

$=w_{1}(h_{1}^{s})$ . On the other hand, since $w_{1}(g)\in G_{\overline{v}},$ $w_{1}(A_{i}f_{1}^{i})>w_{1}(g)$ if $i\not\equiv O(mod e_{1})$ .
Hence

$(g/h_{1}^{s})^{*}=(A_{0}/h_{1}^{s})^{*}+(A_{e_{1}}/h_{1}^{s-1})^{*}r_{1}^{*}+\cdots+r_{1}^{*s},$ $(A_{0}/h_{1}^{s})^{*}\neq 0$ .

In the same way as for $(g/h)^{*}$ , we see that $(g/h_{1}^{s})^{*}\in Ker\varphi$ . So $(g/h_{1}^{s})^{*}$ is
divisible by $m$ . But, since we have already proved that $s=p$ , it follows that
$(g/h^{s_{1}})^{*}$ is also an irreducible polynomial of $k_{\overline{v}}[r_{1}^{*}]$ whose constant term $(A_{0}/h_{1}^{s})^{*}$

is not-zero.

REMARK 5.4. A) Note that the diagram (1) can be derived only by the
hypothesis that $w_{2}$ is an extension (but not necessarily an $r$ . $t$ . extension) of $v$

to $K(X)$ which dominates $w_{1}$ . So it is easy to see that Lemma 5.3 is true
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without the hypothesis that $w_{2}$ is an $r$ . $t$ . extension of $v$ .
B) By the proof of Lemma 5.3 it follows that $(g/h_{1}^{s})^{*}$ is the kernel of $\varphi$ .

THEOREM 5.5. Let $w_{1},$ $w_{2}$ be $r$ . $t$ . extensions of $v$ to $K(X)$ such that $w_{1}<u\prime_{2}$ .
Let $(a_{i}, \delta_{i})$ be a minimal pair of definition of $w_{i}$ and let $f_{i}$ be the monic minimal
polynomial of $a_{i}$ (with respect to $K$), $i=1,2$ . The following assertions are equiva-
lent:

1) $f_{2}$ is a key polynomial over $w_{1}$ .
2) $f_{2}$ is the polynomial in $K[X]$ of the smallest degree such that $w_{1}(f_{2})<$

$w_{2}(f_{2})$ .

In this case $w_{2}$ is an augmented valuation over $w_{1}$ and $w_{2}$ well dominates $w_{1}$ .

PROOF. $1$ ) $\Rightarrow 2$ ) First, let us assume that $\deg f_{1}=\deg f_{2}$ . Then, according
to Theorem 4.43), there exists a root $b$ of $f_{2}$ such that $(b, \delta_{1})$ is also a minimal
pair of definition of $w_{1}$ . Hence we may assume that $f_{1}=f_{2}$ and that $b=a_{1}$ .
The inequality $w_{1}(f_{2})<w_{2}(f_{2})$ follows by Corollary 2.2.

Next, let us assume that $n_{1}=\deg f_{1}<n_{2}=\deg f_{2}$ . According to Theorem 4.6
3), there exists a suitable positive integer $s$ such that $(f_{2}/h_{1}^{s})^{*}=\rho_{1}(f_{2}/h_{1}^{s})$ is an
irreducible polynomial of $k_{\overline{v}}[r_{1}^{*}]$ (see Notation 1.3). And by diagram (1) and
Corollary 2.2 a), it follows that $\varphi((f_{2}/h_{1}^{*})^{*})=0$ . Hence $(f_{2}/h_{1}^{s})^{*}$ is an irreducible
polynomial which generates $Ker\varphi$ .

Futhermore, let $g\in K[X]$ be of the smallest degree such that $w_{1}(g)<w_{2}(g)$ .
By Lemma 5.3, $g$ is a key polynomial over $w_{1}$ . And, by Theorem 4.63) and
Corollary 2.2, we may assume $\deg g>n_{1}$ . By Theorem 4.63), it results that
for a suitable $t,$ $(g/h_{1}^{t})^{*}$ is an irreducible polynomial and that $(g/h_{I}^{l})^{+}\in Ker\varphi$ .
So $\deg(g/h_{1}^{l})=\deg(f_{1}/h_{1}^{s})$ . This means that $\deg g=\deg f_{2}$ .

The implication $2$ ) $\Rightarrow 2$ ) is a special case of Lemma 5.3.
Finally, it is clear that $w_{2}$ is the augmented valuation over $w_{1}$ associated

with $f_{2}$ and $\gamma_{2}=w_{2}(f_{2})$ . So by Theorem 5.1, $w_{2}$ well dominates $w_{1}$ .

6. Some applications

In this section we use the above results on key polynomials and augmented
valuations over an $r$ . $t$ . extension to give a new proof of a result [3, Theorem
4.4]. We begin by a completion of Theorem 5.1.

Let $w$ be an $r$ . $t$ . extension of $v$ to $K(X)$ . Let $(a, \delta)$ be a minimal pair of
$w$ with respect to $K$ As usual we shall use Notation 1.3. If $g$ is a key poly-
nomial over $w$ such that $\deg g>\deg f$, then according to Theorem 4.63), there
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exists a positive integer $s$ such that $(g/h^{s})^{*}$ is an irreducible polynomial of
$k_{\overline{v}}[r^{*}]$ . The polynomial $(g/h^{s})^{*}wiIl$ be called the residue of the key polynomial $g$ .

LEMMA 6.1. Let $w$ be an $r.t$ . extension of $v$ to $K(X)$ and let $w_{1}$ be the aug-
mented valuation over $w$ associated with a key polynomial $g$ over $w$ and $\gamma_{1}\subseteq G_{\overline{v}}$

with $\gamma_{1}>w(g)$ . Then
a) $k_{w_{1}}$ is cannonically isomorphic to $k_{w}$ if $\deg g=\deg f$.

If $\deg g>\deg f$, then
b) $k_{w_{1}}\cong(k_{\tilde{v}}[r^{*}]/(g/h^{s})^{*})(t),$ $t$ transcendental over $k_{\overline{v}}$ , and
c) $G_{w_{1}}=G_{w}+Z\gamma_{1}$ .

PROOF. a) According to Theorem 4.43), there exists a root $b$ of $g$ such
that $(b, \delta)$ is a minimal pair of definition of $w$ . Thus according to Theorem 1.2
d), the residue field $k_{w}$ is cannonically isomorphic to $k_{v^{\prime}}(t)$ , where $v^{\prime}$ is the

restriction of $\overline{v}$ to $K(b)$ and $t$ is transcendental over $k_{v^{\prime}}$ . Now according to
the step $A$ in Theorem 5.1, the augmented valuation $w_{1}$ has a minimal pair
$(b, \delta_{1})$ , where $\delta<\delta_{1}$ . Also according to Theorem 1.2 d), it follows that $ k_{w_{1}}\cong$

$k_{v^{\prime}}(u)$ , where $u$ is a variable, $i$ . $e$ $k_{w}\cong k_{w_{1}}$ as claimed.
b) Let us consider the diagram (1). Since $g$ is the polynomial of the

smallest degree such that $w(g)<w_{1}(g)$ , according to the proof of Lemma 5.3
(see Remark 5.4 $B$)) it results that $(g/h^{s})^{*}$ (the residue of the key polynomial g)

is the kernel of $\varphi$ . Since according to Theorem 1.2 d), $k_{w_{1}}$ is isomorphic to
the field of the rational function of one variable over the algebraic closure of
$k_{v}$ in $k_{w_{1}}$ , we are only to prove that the image of $\varphi$ in $k_{w_{1}}$ coincides with the
algebraic closure of $k_{v}$ in $k_{w_{1}}$ . Indeed, according to Theorem 5.1, $w_{1}$ has a
minimal pair of definition $(a_{1}, \delta_{1})$ where $a_{1}$ is a root of $g$ . Hence if $y\in k_{w_{1}}$ is
algebraic over $k_{v}$ then, according to Theorem 1.2 d), there exists $F\in K[X]$

such that $\deg F<\deg g,$ $w_{1}(F)=\overline{v}(F(a_{1}))=0$ , and that $F^{**}$ is just $y$ . Now since
$L\deg F<\deg g,$ $w(F)=w_{1}(F)=0$ and $\varphi(F^{*})=F^{**}=y$ , where $F^{*}$ is the residue of

$F$ in $k_{w}$ . To complete the proof, it suffices to remark that the image of $\varphi$ is
included in the algebraic closure of $k_{v}$ in $k_{w_{1}}$ because the kernel of $\varphi$ is not
trivial.

The part c) results from the definition of an augmented valuation.

LEMMA 6.2. Let $w$ be an $r.t$ . extension of $v$ to $K(X)$ . Assume that there
exists a subgroup $G$ of $G_{v}$ such that $G_{w}<G$ and that the quotient group $G/G_{w}$

is cyclic. Then there exists a key polynomial $g$ over $w$ and $\gamma_{1}\in G_{v}$ , with $\gamma_{1}>w(g)$

such that, $G_{w_{1}}=G$ and $k_{w_{1}}$ is $k_{v}$-isomorphic to $k_{w}$ , where $w_{1}$ is the augumented

valuation over $w$ defined by $g$ and $\gamma_{1}$ .
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PAOOP. As usual we shall use Notation 1.3. Let $(a, \delta)$ be a minimal pair

of definition of $w$ . Two cases are possible: $e=1$ or $e>1$ .
If $e=1$ , then $G_{w}=G_{\tilde{v}}$ . Take $\gamma_{1}\in G$ such that $\gamma_{1}>\gamma=w(f)$ and the coset $\overline{\gamma}_{1}$

of $\gamma_{1}$ modulo $G_{w}$ generates $G/G_{w}$ . Let $w_{1}$ be the augmented valuation over $w$

defined by $f$ and $\gamma_{1}$ . Then by Theorem 1.2 and Lemma 6.1 a), $G_{w_{1}}=G_{\overline{v}}+Z\gamma_{1}=$

$G_{w}+Z\gamma_{1}=G$ and $k_{w_{1}}\cong k_{\overline{v}}(t)$ is $k_{v}$-isomorphic to $k_{w}\cong k_{\tilde{v}}(r^{*})$ .
Now assume that $e>1$ . Let $g=f^{e}+u$ , taking $u\in K[X]$ such that $\deg u<$

$\deg f$ and that $ w(u)=\overline{v}(u(a))=w(f^{e})=e\gamma$ . Then by Theorem 4.63), $g$ is a key

polynomial over $w$ end $(g/h)^{*}=r^{*}+y$ with $0\neq y\in k_{\tilde{v}}$ . Take $\gamma_{1}\in G$ such that
$\gamma_{1}>w(g)$ and that the coset $\overline{\gamma}_{1}$ or $\gamma_{1}$ modulo $G_{w}$ generates $G/G_{w}$ . Let $w_{1}$ be
the augmented valuation over $w$ associated with $g$ and $\gamma_{1}$ . Then since, $(g/h)^{*}$

is of degree 1, according to Lemma 6.1 b) and c) it follows that $k_{w_{1}}\cong k_{\tilde{v}}(t)$ is
$k_{v}$-isomorphic to $k_{w}$ and that $G_{w_{1}}=G$ .

LEMMA 6.3. Let $w$ be an $r$ . $t$ . extension of $v$ to $K(X)$ and let $k_{w}=k^{\prime}(t)$ where
$k^{\prime}$ is a finite extension of $k_{v}$ and $t$ is transcendental over $k_{v}$ . Let $k/k^{\prime}$ be a finite
simple extension, $i.e$ . $k=k^{\prime}(\alpha)$ . Then there exists a key polynomial $g$ over $w$ and
$\gamma_{1}\in\overline{G}_{v}$ with $\gamma_{1}>w(g)$ such that, if $w_{1}$ is the augmented valuation over $w$ associated
with $g$ and $\gamma_{1}$ ,

$k_{w_{1}}\cong k(t)$ and $G_{w_{1}}=G_{w}$ .

PROOP. Using Notation 1.3, we may assume that $k^{\prime}=k_{\overline{v}}$ and that $k=k_{\overline{v}}(\alpha)$ .
Let $G\in k_{\tilde{v}}[r^{*}]$ be the monic minimal polynomial of $\alpha$ . We may assume that
$k\neq k_{\overline{v}}$ , or $G$ is of degree greater than 1. Let $g$ be a lifting of $G$ in $K[X]$ .
According to Corollary 4.7, we know that $g$ is a key polynomial over $w$ .

Take $\gamma_{1}\in G_{w}$ such that $\gamma_{1}>w(g)$ and let $w_{1}$ be the augmented valuation over
$w$ associated with $g$ and $\gamma_{1}$ . The proof of Lemma 6.3 follows from Lemma 6.1
b) and c).

THEOREM 6.4. Let $(K, v)$ be a valuation pair, $k$ a finite extension field of $k_{v}$

and $G$ an ordered group such that $G/G_{v}$ is a finite group. Then there exists an
$r.t$ . extension $w$ of $v$ to $K(X)$ such that $G_{w}\cong G$ and $k_{w}\cong k(t)$ , $t$ transcendental
over $k$ .

PROOP. Since $G/G_{v}$ is finite we may assume that $G_{v}\subseteqq G\subseteqq G_{\overline{v}}$ , and that
there exists a chain of subgroups $G_{v}=G_{0}\subset G_{1}\subset\cdots\subset G_{m}=G$ such that $G_{i+1}/G_{i}$

is a non-trivial cyclic group, $i=0,$ $\cdots$ , $m-1$ .
Let $w_{0}$ be the $r$ . $t$ . extenion of $v$ to $K(X)$ defined by the minimal pair $(0,0)$ .

Then $k_{w_{0}}=k_{v}(X^{*})$ ( $as$ usual $x*$ is the image of $X$ in the residue field), and
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$G_{w_{0}}=G_{v}$ . By repeated application of Lemma 6.2 we can define, starting from
$w_{0}$ , an $r$ . $t$ . extension $w^{\prime}$ of $v$ to $K(X)$ such that $G_{w^{\prime}}=G$ and $k_{w^{\prime}}=k_{v}(t^{\prime})$ , where
$t^{\prime}$ is transcendental over $k_{v}$ .

Furthermore, since $k/k_{v}$ is a finite extension, we can define a tower of
fields $k_{v}=k_{0}\subset k_{1}\subset\cdots\subset k_{n}=k$ such that $k_{i+1}/k_{i}$ is a simple extension for all $i$,
$0\leqq i<n$ . By repeated application of Lemma 6.3, we can define, starting from
$w^{\prime}$ , an $r$ . $t$ . extension $w$ of $v$ to $K(X)$ such that $G_{w}=G_{w^{\prime}}=G$ , and $k_{w}\cong k(t)$ ,

where $t$ is transcendental over $k$ . The proof of Theorem 6.4 is complete.

The authors express their gratitude to the referee who has made numerous
stylistic and mathematical observations on this work.
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