ON THE RESIDUAL TRANSCEDENTAL EXTENSIONS OF A VALUATION. KEY POLYNOMIALS AND AUGMENTED VALUATION

By
Liliana Popescu and Nicolae Popescu

Let K be a field and v a valuation on K. The problem of extending v to $K(X)$ (the field of rational functions of one inderminate) has been previously considered in some works as [7] and [10]. Particularly in [7], MacLane studied the case when v is discrete and rank one. In solving the problem in this case, MacLane used some notions as key polynomial and augmented valuation.

An extension w of v to $K(X)$ is called residual transcendental (briefly, an r.t. extension) if the residue field of w is a transcendental extension of the residue field of v (MacLane called these extensions "inductive value"). Some aspects of r.t. extensions have been considered in [5, Ch. VI], [9], [1], [2], [3] and [11]. Particularly in [2] and [11] all r.t. extensions of v to $K(X)$ were described using the notion of "minimal pair" (see definition in Section 1). Although in [3] some results on minimal pairs were given, the problem of finding minimal pairs in the general setting seems to be difficult.

In this work we follow, for arbitrary r.t. extensions, MacLane's ideas of key polynomial and augmented valuation and show that these give a powerful tool in the study of all extensions of v to $K(X)$. In particular, the key polynomials over an r.t. extension give us the possibility of defining some new minimal pairs Theorem 5.1).

Now we briefly describe the content of the paper. Section 1 contains notation, definitions and the main results from [2] and [11], Theorem 1.2 and some consequences of this theorem will be used in this paper.

In section 2, we give some technical results related to the domination of valuations on $K(X)$, which was also introduced by MacLane in [7]. This notion has been used in [4] to describe all valuations on $K(X)$). In Section 3 (after MacLane [7]) key polynomial and augmented valuation are defined.

The key polynomials over an r.t. extension are studied in Section 4. The main results are given in Theorems 4.4 and 4.6. We remark that Theorem 4.6

[^0]and the proof are inspired by MacLane's work [7].
In Section 5 it is proved that a ("comensurable") augmented valuation over a given r.t. extension is also an r.t. extension Theorem 5.1). By this theorem we can define new minimal pairs, starting from a given one. Theorem 5.5 shows how the augmented valuations are closely related to the domination. Finally in Section 6, using the results of previous sections, we give another proof of a result which asserts that there exist r.t. extensions with given residue field and value group Theorem 6.4, see [3, Theorem 4.4]).

In a forthcoming paper we will use the results developed here to study all valuations on $K(X)$ and related topics.

1. Notations and definitions

In this section we recall notations, definitions and the main results of [2] and [11] (see Theorem 1.2), which will be used in the rest of this paper. Also some new consequences of Theorem 1.2 are given.

1. Let K be a field and v a valuation on K. We sometimes emphasize this situation saying that (K, v) is a valuation pair. G_{v}, O_{v}, k_{v} and $\rho_{v}: O_{v} \rightarrow k_{v}$ represent the value group of v, the valuation ring of v, its residue field and the residue homomorphism, respectively. If $x \in O_{v}$, we usually write by x^{*} the image $\rho_{v}(x)$ of x in k_{v}. We refer the reader to [5], [6], [12], [13] for general notions and definitions.

Let K^{\prime} / K be an extension of fields. A valuation v^{\prime} on K^{\prime} will be called an extension of v if $v^{\prime}(x)=v(x)$ for all $x \equiv K$. When v^{\prime} is an extension of v, we shall identify canonically k_{v} with a subfield of $k_{v^{\prime}}$ and G_{v} with a subgroup of $G_{v^{\prime}}$.

Throughout this paper, we fix a valuation pair (K, v), an algebraic closure \bar{K} of K and an extension \bar{v} of v to \bar{K}. Then $k_{\bar{v}}=\bar{k}_{v}$ an algebraic closure of k_{v} and $G_{\bar{v}}=\bar{G}_{v}=Q G_{v}$, i.e. G_{v} is the smallest divisible group which contains G_{v}.

As usual we denote by $K[X]$ and $K(X)$ the polynomial ring and the field of rational functions of an indeterminate X over K, respectively. If $r=f / g$, $f, g \in K[X]$ and f, g are relatively prime, we define the order of r by the equality : ord $r=\max (\operatorname{deg} f, \operatorname{deg} g)$. It is easy to see that $\operatorname{ord} r=[K(X): K(r)]$.
2. Let w be an extension of v to $K(X)$. According to [8] (see also [1] and [2]), w is called a residual transcendental (r.t.)-extension of v if k_{w} / k_{v} is a transcendental extension. An element (a, δ) of $\bar{K} \times \bar{G}_{v}$ is usually called a pair. If (a, δ) is a pair, we define the valuation $w_{(a, \delta)}$ of $\bar{K}(X)$ (see [5, Ch. VI, par.

10]:
$w_{(a, \delta)}(f)=\inf \left(\bar{v}\left(a_{i}\right)+i \delta\right)$ when $f(x)=a_{0}+a_{1}(x-a)+\cdots+a_{n}(x-a)^{n} \in \bar{K}[X]$.
Usually one says that $w_{(a, \delta)}$ is defined by inf, $\bar{v}, a \in \bar{K}$ and $\delta \in \bar{G}_{v}$. It is easy to see that $w_{(a, \delta)}$ is an r.t. extension of \bar{v} to $\bar{K}(X)([5, \mathrm{Ch} . \mathrm{VI}$, par. 10], or [1]).

Proposition 1.1. ([1]). Every r.t. extension wof \bar{v} to $\bar{K}(X)$ is of the form $w=w_{(a, \delta)}$ for a suitable pair (a, δ). Moreover two pairs (a, δ) and $\left(a^{\prime}, \delta^{\prime}\right)$ define the same valuation on $\bar{K}(X)$, i.e. $w_{(a, \delta)}=w_{\left(a^{\prime}, \delta^{\prime}\right)}$, if and only if $\delta=\delta^{\prime}$ and $\bar{v}(a-$ $\left.a^{\prime}\right) \geqq \delta$.

A pair $(a, \delta) \in \bar{K} \times \bar{G}_{v}$ will be called minimal with respect to K if, for every $b \in \bar{K}$ such that $[K(b): K]<[K(a): K]$, one has $\bar{v}(a-b)<\delta$. In [2], [3], [4] and [11] it is shown that the minimal pairs play a prominent part in the definition and in the study of r.t. extensions.

Theorem 1.2. ([2], [11]). Let w be an r.t. extensions of v to $K(X)$. Then there exists a pair ($a, \boldsymbol{\delta}$), minimal with respect to K such that w coincides with the restriction of $w_{(a, \delta)}$ to $K(X)$. Moreover one has:
a) Denote by f the monic minimal polynomial of a with respect to K and put $\gamma=w(f)$. Then

$$
\begin{gathered}
w(F)=\inf \left(\bar{v}\left(F_{i}(a)\right)+i \gamma\right), \text { where } F=F_{0}+F_{1} f+\cdots F_{s} f^{s} \in K[X], \\
\operatorname{deg} F_{i}<n=\operatorname{deg} f .
\end{gathered}
$$

b) Let \tilde{v} be the restriction of \bar{v} to $K(a)$. If e is the smallest natural number such that er $\in G_{\tilde{v}}$ one has:

$$
G_{w}=G_{\tilde{v}}+Z \gamma \quad \text { and } \quad\left[G_{w}: G_{v}\right]=e\left[G_{\tilde{v}}: G_{v}\right] .
$$

c) Let $h \in K[X]$. If $\operatorname{deg} h<n=\operatorname{deg} f$ and $w(h)=\bar{v}(h(a))=e \gamma=e w(f)$, then $r=f^{e} / h$ is the element of O_{w} of the smallest order such that $r^{*} \in k_{w}$ is transcendental over k_{v}.
d) The field $k_{\tilde{v}}$ can be canonically identified with the algebraic closure of k_{v} in k Moreover, on has $k_{w}=k_{\tilde{v}\left(r^{*}\right)}$.

Notation 1.3. If w is an r.t. extension of v to $K(X)$, a minimal pair ($a, \delta)$ in the previous theorem is called a minimal pair of definition of w. In what follows, for every r.t. extension w of v to $K(X)$, we fix a minimal pair of definition (a, δ). Also, the symbols $f, \gamma, \tilde{v}, e, h, r$ and r^{*} are used as in

Theorem 1.2,

Now we give some consequences of Theorem 1.2, under the same notations and the hypothesis.

Corollary 1.4. (cf. [3, Proposition 1.1]) Let $A_{1}, \cdots, A_{s}, B_{1}, \cdots, B_{t}$ be elements of $K[X]$ such that $\operatorname{deg} A_{i}<n$, and $\operatorname{deg} B_{j}<n$ for all $1 \leqq i \leqq s, 1 \leqq j \leqq t$. If $w\left(A_{1} \cdots \cdot A_{s}\right)=w\left(B_{1} \cdots \cdot B_{t}\right)$, then $y=\left(\frac{A_{1} \cdots A_{s}}{B_{1} \cdots \cdots B_{t}}\right)^{*}=\left(\frac{A_{1}(\alpha) \cdots A_{s}(a)}{B_{1}(a) \cdots B_{t}(a)}\right)^{*} \in k_{\tilde{v}}$

Corollary 1.5. If $g \in K[X]$ satisfies $w(g) \in G_{\tilde{v}}$ then for $q \in K[X]$ such that $\operatorname{deg} q<n$ and that $w(q)=\bar{v}(q(a))=w(g),(g / q)^{*} \in k_{\tilde{v}}\left[r^{*}\right]$. In particular, if $w(g)=0$ and $g^{*} \in k_{\tilde{v}}, \bar{v}(g(a))=0$ and $g^{*}=(g(a))^{*}$.

Proof. Let $g=g_{0}+g_{1} f+\cdots+g_{t} f^{t}$ be the f-expansion of g with $\operatorname{deg} g_{i}<n$, $0 \leqq i \leqq t$. Then, by definition $w(g)=\inf \left(\bar{v}\left(g_{i}(a)\right)+i \gamma\right)$. Since $w(g) \in G_{\tilde{v}}$,

$$
\bar{v}\left(g_{i}(a)\right)+i \gamma>w(g)=w(q), \quad \text { if } \quad i \not \equiv 0(\bmod e) .
$$

Since $w(g)=w(q)$, one has $w\left(g_{i} f^{i} / q\right) \geqq 0$, for all i. Hence $w\left(\frac{g_{e s} h^{s}}{q} \cdot \frac{f^{e s}}{h^{s}}\right) \geqq 0$ and $w\left(\frac{g_{\text {es }} h^{s}}{q}\right) \geqq 0$ because $w\left(\frac{f^{e s}}{h^{s}}\right)=w\left(r^{s}\right)=0$. Therefore,

$$
(g / q)^{*}=\left(g_{0} / q\right)^{*}+\left(g_{e} h / q\right)^{*} r^{*}+\cdots \in k_{\tilde{v}}\left[r^{*}\right] .
$$

Finally, if $w(g)=0$ and $g^{*} \in k_{\tilde{v}}$, then we may take $q=1$, and one has necesssarily that $\left(g_{e} h\right)^{*}=\left(g_{2 e} h^{2}\right)^{*}=\cdots=0$. Hence $g^{*}=g_{0}^{*}=(g(a))^{*}$, as claimed.

COROLLARY 1.6. The assignement: $F \rightarrow F^{*}=\rho_{w}(F)$ defines an onto ringhomomorphism $\rho_{w}: O_{w} \cap K[X] \rightarrow k_{\tilde{v}}\left[r^{*}\right]$.

Proof. According to Corollary 1.5, it is enough to show that there exists $F \in K[X] \cap O_{w}$ such that $F^{*}=r^{*}$. Indeed, take $t \in K[X]$ such that $\operatorname{deg} t<n$, $w(t)=\bar{v}(t(a))=-w\left(f^{e}\right)=-w(h)=-\bar{v} h(a)$), and that $(t h)^{*}=1$. Then $\left(t f^{e}\right)^{*}=$ $\left(t h \cdot \frac{f^{e}}{h}\right)^{*}=(t h)^{*} r^{*}=r^{*}$, as claimed.
3. Notation 1.7. Let $G=u_{0}+u_{1} r^{*}+\cdots+r^{* s}$ be a monic polynomial of $k_{\tilde{v}}\left[r^{*}\right]$. For every $i(0 \leqq i<s)$, choose a polynomial $g_{i} \in K[X]$ such that $\operatorname{deg} g_{i}<$ $n, w\left(g_{i}\right) \geqq 0$ and that $g_{i}^{*}=u_{i}$. Let

$$
A=g_{0}+g_{1} r+\cdots+r^{s}=\frac{g_{0} h^{s}+g_{1} h^{s-1} f^{e}+\cdots+f^{s e}}{h^{s}}
$$

Then $A \in K(X), w(A)=0$, and $A^{*}=G$. We shall say that the polynomial $g=$ $g_{0} h^{s}+g_{1} h^{s-1} f^{e}+\cdots+f^{s e}$ is a lifting in $K[X]$ of the polynomial G in $k_{\tilde{v}}\left[r^{*}\right]$.

Note that G has many liftings in $K[X]$.

2. Domination of r.t. extensions of v to $K(X)$

Let w_{1}, w_{2} be two r.t. extensions of v to $K(X)$. Let (a_{i}, δ_{i}) be a minimal pair of definition of $w_{i}, i=1,2$. As in Notation 1.3, let f_{i} be the monic minimal polynomial of a_{i}, with $\gamma_{i}=w_{i}\left(f_{i}\right), \tilde{v}_{i}$ the restriction of \bar{v} to $K\left(a_{i}\right), e_{i}$ the smallest positive integer such that $e_{i} \gamma_{i} \in G_{\tilde{v}_{i}}, h_{i} \in K[X]$ the polynomial such that $\operatorname{deg} h_{i}$ $<n_{i}=\operatorname{deg} f_{i}$ and that $w\left(h_{i}\right)=e_{i} \gamma_{i}, r_{i}=f_{i}^{e_{i}} / h_{i}$. Let $r_{i}^{*}=\rho_{w_{i}}\left(r_{i}\right), i=1,2$.

According to [7](see also [4]), one says that w_{2} dominants w_{1} (and written by $w_{1}<w_{2}$) if $w_{1}(g) \leqq w_{2}(g)$ for all $g \in K[X]$, and $w_{1}(G)<w_{2}(G)$ for at least one $G \in K[X]$. This inequality should be understood in $G_{\tilde{v}}$ because $G_{w_{1}}$ and $G_{w_{2}}$ are of finite index over G_{v} (see [1] or [2]).

If $w_{1}<w_{2}$, then $O_{w_{1}} \cap K[X] \subseteq O_{w_{2}} \cap K[X]$ and there exists a unique ring homonorphism $\varphi: k_{\tilde{v}_{1}}\left[r_{1}^{*}\right] \rightarrow k_{\tilde{v}_{2}}\left[r_{2}^{*}\right]$ such that the following diagram is commutative:

For the sake of simplicity we write $\rho_{i}=\rho_{w_{i}}, i=1,2$ (cf. Corollary 1.6).
Proposition 2.1. Let w_{1}, w_{2} be two r.t. extensions of v such that $w_{1}<w_{2}$. Consider the diagram (1), then
a) $\varphi(y) \neq 0$, whenever $y \in k_{\tilde{v}_{1}}, y \neq 0$,
b) $\operatorname{Ker} \varphi \neq 0$,
c) $\varphi\left(\rho_{1}(F)\right)=\rho_{2}\left(F\left(a_{2}\right)\right)$ for any $F \in O_{w_{1}} \cap K[X]$.

Proof. a) Clear because $k_{\tilde{v}_{1}}$ is a field.
b) Indeed, since $w_{1}<w_{2}$, there exists $g \in K[X]$ such that $w_{1}(g)<w_{2}(g)$. Let m be a positive integer such that $w_{1}\left(g^{m}\right)=-v(b)$ for some $b \in K$. Then $\rho_{1}\left(b g^{m}\right) \neq 0$. On the other hand, $\rho_{2}\left(b g^{m}\right)=\varphi\left(\rho_{1}\left(b g^{m}\right)\right)=0$, i.e. $\rho_{1}\left(b g^{m}\right) \in \operatorname{Ker} \varphi$.
c) Let $F \in O_{w_{1}} \cap K[X]$. Then $w_{2}(F) \geqq w_{1}(F) \geqq 0$. According to b) it follows that $\varphi\left(\rho_{1}(F)\right)$ is algebraic over k_{v}, so it belongs to $k_{\tilde{v}_{2}}$. If $w_{2}(F)=0, \varphi\left(\rho_{1}(F)\right)=$ $\rho_{2}(F)=\rho_{2}\left(F\left(a_{2}\right)\right)$ by Corollary 1.5. Assume that $w_{2}(F)>0$. Write $F=F_{0}+F_{1} f_{2}+$ $\cdots+F_{r} f_{2}^{r}, \operatorname{deg} F_{i}<\operatorname{deg} f_{2}, 0 \leqq i \leqq r$. Then $w_{2}(F) \leqq w_{2}\left(F_{0}\right)=\bar{v}\left(F_{0}\left(a_{2}\right)\right)=\bar{v}\left(F\left(a_{2}\right)\right)$. Hence $\varphi\left(\rho_{1}(F)\right)=\rho_{2}(F)=0=\rho_{2}\left(F\left(a_{2}\right)\right)$.

Corollary 2.2. With the notation and hypothesis in Proposition 2.1, we have:
a) $w_{1}\left(f_{2}\right)<w_{2}\left(f_{2}\right)$ and $n_{1} \leqq n_{2}$,
b) if $h \in K[X]$ and $\operatorname{deg} h<n_{1}, \bar{v}\left(h\left(a_{1}\right)\right)=\bar{v}\left(h\left(a_{2}\right)\right)$.

Proof. a) Let t be a natural number such that $w_{1}\left(f_{2}^{t}\right)=-v(b), b \in K$. Then $\rho_{1}\left(b f_{2}^{t}\right) \neq 0$. According to Proposition 2.1 c), $\varphi\left(\rho_{1}\left(b f_{2}^{t}\right)\right)=\rho_{2}\left(b f_{2}^{t}\right)=\rho_{2}\left(b f_{2}^{t}\left(a_{2}\right)\right)$ $=0$. This means that $w_{2}\left(f_{2}\right)>w_{1}\left(f_{2}\right)$. Furthermore, since $\varphi\left(\rho_{1}\left(b f_{2}^{t}\right)\right)=0, \rho_{1}\left(b f_{2}^{t}\right)$ is transcendental over $k_{\tilde{v}_{1}}$. Then, according to [3, Proposition 1.1], there exists a root a_{2}^{\prime} of f_{2} such that ($a_{2}^{\prime}, \delta_{1}$) is a pair of definition of w_{1}. Now since $\left(a_{1}, \delta_{1}\right)$ is a minimal pair of definition of $w_{1}, n_{1}=\left[K\left(a_{1}\right): K\right] \leqq n_{2}=\left[K\left(a_{2}\right): K\right]$.
b) If $h \in K[X]$ and $\operatorname{deg} h<n_{1}$ then, by definition of $w_{1}, w_{1}(h)=\bar{v}\left(h\left(a_{1}\right)\right)$. Let s be a positive integer such that $w_{1}\left(h^{s}\right)=-v(b), b \in K$. Then $w_{1}\left(b h^{s}\right)=0$, and $0 \neq\left(b h^{s}\right)^{*}=\rho_{1}\left(b h^{s}\right) \in k_{\tilde{v}_{1}}$. Thus, according to Proposition 2.1 a), $0 \neq \varphi\left(\rho_{1}\left(b h^{s}\right)\right)$ $=\rho_{2}\left(b h^{s}\right)$. Hence $w_{2}\left(b h^{s}\right)=0$ and $w_{2}(h)=\bar{v}\left(h\left(a_{2}\right)\right)$, because $\operatorname{deg} h<n_{1} \leqq n_{2}$. It is easy to check that $w_{1}(h)=\bar{v}\left(h\left(a_{1}\right)\right)=w_{2}(h)=\bar{v}\left(h\left(a_{2}\right)\right)$.

REMARK 2.3. Now we make some remarks on the relation of domination between r.t. extensions.
a) Let $w_{i}=w_{\left(a_{i}, \delta_{i}\right)}, i=1,2$, be two r.t. extensions of \bar{v} to $\bar{K}(X)$. In [4, Proposition 2.1], it is proved that $w_{1}<w_{2}$ if and only if $\bar{v}\left(a_{1}-a_{2}\right) \geqq \delta_{1}$ and $\delta_{1}<$ δ_{2}. When K is not necessarily algebraically closed and w_{1}, w_{2} are two r.t. extensions of v to $K(X)$ such that $w_{1}<w_{2}$, we say that w_{2} well dominates w_{1} if there exist minimal pairs of definition $\left(a_{i}, \delta_{i}\right)$ of w_{i} such that $w_{\left(a_{1}, \delta_{1}\right)}<w_{\left(a_{2}, \delta_{2}\right)}$. Ii is clear that if w_{2} well dominates w_{1}, then w_{2} dominates w_{1}. Actually, we do not know if in general the domination implies the well domination. However, this is the case when v is Henselian or of rank one.
b) The relation of domination may be defined also between (not necessarily r.t.) extensions of v to $K(X)$ in the same manner. It is easy to see that the diagram (1) may be defined for any extensions w_{1} and w_{2} of v to $K(X)$. However, the results in Proposition 2.1 and Corollary 2.2 are valid only when w_{1} and w_{2} are r.t. extensions.

3. Definitions of key polynomials

1. Let (K, v) be a valuation pair. According to MacLane [7], one says that two elements $a, b \in K$ are of the same order of magnitude or equivalent in v and writes $a \sim b$ (in v), when:

$$
v(a-b)>v(a)=v(b)
$$

It is clear that \sim is an equivalence relation on K. Moreover, if $a \sim b$ and $a^{\prime} \sim b^{\prime}$ then $a a^{\prime} \sim b b^{\prime}$.

Let A be a suitable subring of K. An element $b \in A$ is said to be equivalence divisible in A by $a \in A$ relative to v when there exists $c \in A$ such that $b \sim c a$ (in v). It is easy to see if $a \sim a^{\prime}, b \sim b^{\prime}, c \sim c^{\prime}$ and $b \sim c a$ then $b^{\prime} \sim c^{\prime} a^{\prime}$.

Let w be a valuation on $K(X)$. According to [7], a key polynomial over w is a non-constant polynomial $g(X) \in K[X]$ which satisfies the following:
(i) Irreducibility: If $F, G \in K[X]$ and $F G$ is equivalence divisible in $K[X]$ by g relative to w, then one of the factors is equivalence divisible in $K[X]$ by g.
(ii) Minimal degree: Any non-zero polynomial equivalence divisible in $K[X]$ by g has the degree in X not less than $\operatorname{deg} g(X)$.
(iii) The leading coefficient of g is 1 , i.e. g is monic.

A polynomial g with condition (i) is said to be equivalence irreducible in w.
Proposition 3.1. Let $f \in K[X]$ be equivalence irreducible in w. Assume that a product $F G$ of polynomials in $K[X]$ is equivalence divisible by $f^{i}, i \geqq 1$, and F is not equivalence divisible by f. Then G is equivalence divisible by f^{i}.

The proof follows by induction over i and is left to the reader.
2. Let w be a valuation on $K(X)$ and let g be a polynomial in $K[X]$. Suppose an ordered group G contains G_{w} as an ordered subgroup and take $\gamma \in$ G. Then a new valuation $w_{1}(F)$ may be defined as follows:

$$
w_{1}(F)=\inf \left(w\left(F_{i}\right)+i \gamma\right)
$$

where $F=F_{0}+F_{1} g+\cdots+F_{2} g^{s}, \operatorname{deg} F_{i}<\operatorname{deg} g, 0 \leqq i<s$ is the g-expansion of $F \in$ $K[X]$.

For the proof of the following result, we send the reader to [7; Theorems 4.2 and 5.1].

Theorem 3.2. (MacLane [7]) If g is a key polynomial over w and $\gamma>w(g)$, then the function w_{1} defined above is also a valuation on $K[X]$ (and on $K(X)$), which dominates w.

According to MacLane's terminology, w_{1} will be called the augmented valuation over w, associated with g and γ. If $\gamma \in Q G_{w}$, i. e. there exists a positive integer $e \neq 0$ such that $e \gamma \in G_{w}$, we snall say that w_{1} is a commensurable augmented valuation.

4. Key polynomials over r.t. extension

In this section we study key polynomials over an r.t. extension. The main results are Theorems 4.4 and 4.6 . We remark that Theorem 4.6 and its proof are inspired by MacLane's work [7, Theorem 9.4].

Throughout this section w is an r.t. extension of v to $K(X)$ and $(a, \boldsymbol{\delta})$ is a minimal pair of definition of w. We use the notation in Notation 1.3.

Propsition 4.1. If F is a key polynomial over w, then $\operatorname{deg} F \geqq n$.
Proof. It is enough to show that if $g \in K[X]$ is of $\operatorname{deg} g<n$ then g cannot be a key polynomial over w. Indeed, take $q \in K[X]$ such that $\operatorname{deg} q<n$ and that $w(g)+w(q)=0$. Then by Corollary 1.4, $(g q)^{*} \in k_{\tilde{v}}$. Hence there exists $t \in$ $K[X]$ with $\operatorname{deg} t<n$, such that $w(t)=0$, and that $t^{*}=(q g)^{*-1}$. Therefore $(t q g)^{*}$ $=1$ and so $w(t q g-1)>0$. Hence the condition (ii) is not satisfied by g.

Proposition 4.2. For $g \in K[X]$, let $g=q f+g_{0}$, with $\operatorname{deg} g_{0}<n$. The following are equivalent:
a) g is equivalence divisible in $K[X]$ by f (relative to w).
b) $w(g-q f)=w\left(g_{0}\right)>w(g)$.

Proof. The implication $b) \Rightarrow a$) is obvious.
a) \Rightarrow b) Suppose there exists $q_{1} \in K[X]$ such that $w\left(g-q_{1} f\right)>w(g)$. Then $w\left(g_{0}+\left(q-q_{1}\right) f\right)>w(g)$. By definition of w, it follows that $w(g) \leqq w\left(g_{0}\right)$.

Assume that $w(g)=w\left(g_{0}\right)$. Then $w\left(\left(q-q_{1}\right) f\right)=w\left(g_{0}\right) \in G_{\tilde{v}}$. Let

$$
\left(q-q_{1}\right) f=h_{1} f+\cdots+h_{t} f^{t} \operatorname{deg} h_{i}<n, \quad 1 \leqq i \leqq t .
$$

Then $w\left(\left(q-q_{1}\right) f\right)=\inf \left(\bar{v}\left(h_{i}(a)\right)+i \gamma\right)$. Since $w\left(\left(q-q_{1}\right) f\right) \in G_{\tilde{v}}$,

$$
\bar{v}\left(h_{i}(a)\right)+i \gamma>w\left(g_{0}\right)=w\left(\left(q-q_{1}\right) f\right), \quad \text { if } \quad i \not \equiv 0(\bmod e) .
$$

Hence $w\left(1-\left(\frac{h_{1}}{g_{0}} f+\cdots+\frac{h_{t}}{g_{0}} f^{t}\right)\right)>0$, or $w\left(1-\left(\frac{h_{1}}{g_{0}} f+\cdots+\frac{h_{e} h}{g_{0}} \frac{f^{e}}{h}+\cdots\right)\right)>0$. Thus $1=\left(\frac{h_{e} h}{g_{0}}\right)^{*} h^{*}+\cdots$. But this equallity is impossible, because $\left(\frac{h_{e} h}{g_{0}}\right)^{*}, \ldots$ belongs to $k_{\tilde{v}}$ and r^{*} is transcendental over $k_{\tilde{v}}$. Therefore $w(g)<w\left(g_{0}\right)$ as claimed.

Corollary 4.3. The polynomial f (used in the definition of w) is a key polynomial over w.

Proof. We show that the conditions (i)-(iii) in the definition of a key
polynomial are fulfilled.
(i) Let $A, B \in K[X]$ be such that $A B$ is equivalence divisible relative to w by f. Let $A=A^{\prime} f+A_{0}, \operatorname{deg} A_{0}<n$ and $B=B^{\prime} f+B_{0}, \operatorname{deg} B_{0}<n$. According to Proposition 4.2, we must prove that $w(A)<w\left(A_{0}\right)$ or $w(B)<w\left(B_{0}\right)$. Assume that $w(A) \geqq w\left(A_{0}\right)$ and $w(B) \geqq w\left(B_{0}\right)$. If we write $A_{0} B_{0}=C f+C_{0}$ with $\operatorname{deg} C_{0}<n$, then $w(A B) \geqq w\left(A_{0} B_{0}\right)=\bar{v}\left(A_{0}(a) B_{0}(a)\right)=\bar{v}\left(C_{0}(a)\right)=w\left(C_{0}\right)$. But this is a contradiction. The condition (ii) results by Proposition 4.2 and (iii) is obvious.

Now we try to give a characterization of key polynomials over w. According to Proposition 4.1, we shall treat key polynomials of degree just $n=\operatorname{deg} f$ and key polynomials whose degrees are greater than n separately.

Theorem 4.4. Let $g \in K[X]$ be a monic polynomial. Consider the following :

1) g is a key polynomial over w and equivalence divisible by f.
2) g is a key polynomial over w and of $\operatorname{deg} g=n=\operatorname{deg} f$.
3) g is irreducible and there exists a root b of g such that (b, δ) is also a minimal pair of definition of w.

Then we always have 1$) \Rightarrow 2) \Leftrightarrow 3$). Moreover, 2$) \Rightarrow 1$) when $\gamma=w(f)$ does not belong to $G_{\tilde{v}}$.

Proof. 1) $\Rightarrow 2$) Let $g=q f+g_{0}, \operatorname{deg} g_{0}<n$. According to Proposition 4.2 b), one has $w(g-q f)=w\left(g_{0}\right)>w(g)$. Now since g is also a key polynomial, q or f is equivalence divisible by g. Being $\operatorname{deg} q<\operatorname{deg} g, f$ is equivalence divisible by g. So $\operatorname{deg} f \geqq \operatorname{deg} g$. Hence $\operatorname{deg} f=\operatorname{deg} g$ by Proposition 4.1.
$2) \Rightarrow 3)$ By 2) one has $g=f+g_{0}$, $\operatorname{deg} g_{0}<n$. So $w(g)=\inf \left(w(f), w\left(g_{0}\right)\right)=$ $\inf \left(\gamma, w\left(g_{0}\right)\right)$. Thus $w(g) \leqq \gamma$. Now we remark that $w(g)=\gamma$. Assume $w(g)<\gamma$. Then $w(f)=w\left(g-g_{0}\right)=\gamma>w(g)$. But this is impossible, because g is a key polynomial over w and $\operatorname{deg} g_{0}<n=\operatorname{deg} g$.

Let b_{1}, \cdots, b_{n} be all roots of g in \bar{K} and $g=\prod_{i=1}^{n}\left(X-b_{i}\right)$. We assert that $w\left(X-b_{i}\right) \geqq \delta$ for at least one index i (here $\left.w=w_{(a, \delta)}\right)$. Indeed, assume that $\bar{v}\left(a-b_{i}\right)<\delta, 1 \leqq i \leqq n$. Then

$$
\begin{gathered}
\bar{w}(g)=\sum_{i} w\left(X-b_{i}\right)=\sum_{i} \inf \left(\delta, \bar{v}\left(a-b_{i}\right)\right)=\sum_{i} \bar{v}\left(a-b_{i}\right)=\bar{v}(g(a)), \\
w(f)=w(g)=\bar{w}(g)=\bar{v}(g(a))=\bar{v}\left(g_{0}(a)\right)=w\left(g_{0}\right) .
\end{gathered}
$$

Then $e=1$, and we may choose $h=g_{0}$ (see Theorem 1.2, c)). Therefore if we put $r=f / g_{0}$ then $w(r)=0$ and r^{*} is transcendental over $k_{\tilde{v}_{2}}$. Consequently, $\left(g / g_{0}\right)^{*}=r^{*}+1$ is also transcendental over $k_{\tilde{v}_{2}}$. Hence by [3, Proposition 2.1],
there exists a root b of $g g_{0}=0$ such that (b, δ) is a pair of definition of \bar{w}. Now since (a, δ) is a minimal pair and $\operatorname{deg} g_{0}<n$, it follows that $g_{0}(b) \neq 0$. In conclusion, one has necessarily $g(b)=0$ and $\bar{v}(b-a) \geqq \delta$. This is a contradiction.
$3) \Rightarrow 2$) Since (b, δ) is also a minimal pair of definition of w, g is a key polynomial over w and $\operatorname{deg} g=\operatorname{ceg} f=n$.

Now let us assume that $\gamma \notin G_{\tilde{v}}$. Then one has the implication 2) $\Rightarrow 1$). Indeed, we have remarked that $w(g-f)=w\left(g_{0}\right) \geqq w(f)$. Then, since $w\left(g_{0}\right) \in G_{\tilde{v}}$, $w(g-f)>w(f)$, i. e. g is equivalence divisible by f.

Remark 4.5. Now we give an example which shows that the implication $2) \Rightarrow 1$) in Proposition 4.4 is not necessarily valid if $\gamma \in G_{\tilde{v}}$. For that take an algebraically closed field K and $a, b \in K$ such $v(a-b)=\delta$. Let $w=w_{(a, \delta)}$. Then (a, δ) and (b, δ) are both minimal pairs of definition of w.

Hence, $X-a$ and $X-b$ are both key polynomials over w. But since $w(X-b)$ $:=v(a-b)=\delta, X-b$ is not equivalence divisible in $K[X]$ (with respect to w) by $X-a$.

For key polynomials over w whose degrees are greater than $n=\operatorname{deg} f$, one has:

Theorem 4.6. Take $g \in K[X]$ such that $\operatorname{deg} g>n=\operatorname{deg} f$ and consider the f-expansion of g :

$$
g=g_{0}+g_{1} f+\cdots+g_{t} f^{t}, \quad \operatorname{deg} g_{i}<n, 0 \leqq i \leqq t .
$$

Then the following are equivalent:

1) g is a key polynomial over w.
2) g satisfies the following:
$\alpha) ~ w(g)=w\left(g_{0}\right)$,
$\beta) t \equiv 0(\bmod e), g_{t}=1$, and $w(g)=w\left(f^{t}\right)=s e \gamma$,
$\gamma) g$ is equivalence irreducible in w.
3) $t=s e, w(g)=s e \gamma, g$ is monic of degree tn and $\left(g / h^{s}\right)^{*}$ is a monic and irreducible polynomial of degree s in $k_{\tilde{v}}\left[r^{*}\right]$ whose constant term is not zero.

Proof. 1) $\Rightarrow 2$). By definition of $w, w(g) \leqq w\left(g_{0}\right)$. If $w(g)<w\left(g_{0}\right), w(g-q f)$ $>w(g)$ for a suitable q of $\operatorname{deg} q<\operatorname{deg} g$. Hence q or f is equivalence divisible by g. But this is impossible. Thus has $w(g)=w\left(g_{0}\right)$.

Further, $w(g)=w\left(g_{0}\right)$ shows that $w(g) \in G_{\tilde{v}}$. Now we note that $w(g)=w\left(g_{t} f^{t}\right)$. Assume that $w(g)<w\left(g_{t} f^{t}\right)$. Then $w\left(g-\left(g_{0}+\cdots+g_{t-1} f^{t-1}\right)\right)>w(g)$. But this is also impossible, because g is a key polynomial over w. Hence two remarks $w(g)=w\left(g_{t} f^{t}\right)$ and $w(g) \in G_{\tilde{v}}$ imply that $t \equiv 0(\bmod e)$.

Let us show that $g_{t}=1$. If $g_{t} \neq 1$ then, since g is monic, $\operatorname{deg} g_{t}>0$. Take $u \in K[X]$ such that $\operatorname{deg} u<n, w\left(u g_{t}\right)=0$ and $\left(u g_{t}\right)^{*}=1$. This means $w\left(u g_{t}-1\right)$ >0. So $w\left(u g_{t} f^{t}-f^{t}\right)>w\left(f^{t}\right)=w(u g)$. Now since f is a key polynomial and $\operatorname{deg} g_{t-1}<n, u g_{t} f^{t}=u^{\prime} g-d$, where $\operatorname{deg} d<\operatorname{deg} q$ and $w\left(u^{\prime}\right)=w(u)$. Thus $w\left(u g_{t} f^{t}\right.$ $\left.-f^{t}\right)=w\left(u^{\prime} g-d-f^{t}\right)>w\left(f^{t}\right)=w\left(u^{\prime} g\right)$. But this is impossible, because g is also a key polynomial over w and $\operatorname{deg}\left(d+f^{t}\right)<\operatorname{deg} g_{t}=1$.
$2) \Rightarrow 1$) By β) and γ) conditions (i) and (iii) of a key polynomial are fulfilled. Now let $d \in K[X]$ be equivalence divisible by g. Hence there exists $q \in K[X]$ with $w(q g-d)>w(d)$. We must show $\operatorname{deg} d \geqq \operatorname{deg} g$. Writing $q=\sum_{i=0} q_{i} f_{i}$ with $\operatorname{deg} q_{i}<n$, let j be the greatest index t such that $w(q)=\bar{v}\left(q_{j}(a)\right)+j \gamma$. Thus in $q g$ one has the term $A=\left(q_{j}+q_{j+1} g_{t-1}+\cdots\right) f^{t+j}$. Then $w(A)=w\left(q_{j}\right)+w\left(f^{j+t}\right)=$ $w(q g)=w(d)$. Hence if $\operatorname{deg} d<\operatorname{deg} g$ the term A whose degree is at least $\operatorname{deg} g$ must appear in $q g-d$. So the inequality $w(q g-d)>w(d)=w(q g)$ is impossible. Therefore $\operatorname{deg} d \geqq \operatorname{deg} g$, as claimed.
$2) \Rightarrow 3$) By β) it results

$$
t=s e \equiv 0(\bmod e), w(g)=s e \gamma=w\left(h^{s}\right) \text { and } g \text { is monic }
$$

(remind that $w(h)=e \gamma$ and $\operatorname{deg} h<n$). Hence one has $w\left(g / h^{s}\right)=0$, and

$$
\begin{gathered}
g / h^{s}=g_{0} / h^{s}+g_{1} f / h^{s}+\cdots+f^{s e} / h^{s}, \\
w\left(g_{i} f^{i} / h^{s}\right) \geqq 0 \quad \text { and } \quad w\left(g_{j} f^{j} / h^{s}\right)>0 \quad \text { if } j \not \equiv 0(\bmod e) .
\end{gathered}
$$

If $j=i e, w\left(g_{i e} f^{i e} / h^{s}\right)=w\left(\frac{g_{i e} f^{i e}}{h^{s-i} h^{i}}\right) \geqq 0$. Since $w\left(f^{e} / h\right)=0, \quad w\left(g_{i e} / h^{s-i}\right) \geqq 0$. So $\left(g_{i e} / h^{s-i}\right)^{*} \in k_{\tilde{v}}$ (see Corollary 1.4). Therefore

$$
\left(g / h^{s}\right)^{*}=A_{0}+A_{1} r^{*}+\cdots+r^{* s}, A_{i} \in k_{\tilde{v}}, 0 \leqq i<s .
$$

Now we show that this is an irreducible polynomial of $k_{\tilde{v}}\left[r^{*}\right]$. Indeed, assume that $A^{\prime}, B^{\prime}, C^{\prime}$ are polynomials of $k_{\tilde{v}}\left[r^{*}\right]$ such that $\left(g / h^{s}\right)^{*} C^{\prime}=A^{\prime} B^{\prime}$. Let A, B and C be the liftings of A^{\prime}, B^{\prime} and C^{\prime}, respectively (see Notation 1.7). Then $\left(g / h^{s}\right)^{*}\left(C / h^{u}\right)^{*}=\left(A / h^{q}\right)^{*}\left(B / h^{t}\right)^{*}$. Hence

$$
w\left(\frac{g C}{h^{s+u}}-\frac{A B}{h^{q+t}}\right)>0 .
$$

Let $i=q+t-s-u$. If $i \geqq 0$, then $w\left(g C h^{i}-A B\right)>w\left(h^{q+t}\right)=w(A E)$ (see Notation 1.7). Then by condition γ) it follows that, say, A is equivalence divisible by g. Thus for a suitable polynomial $D \in K[X]$, one has

$$
\begin{gathered}
w(g D-A)>w(A)=w(g D) \\
w\left(g / h^{2} \cdot \frac{D}{h^{q-s}}-A / h^{q}\right)>0, \quad \text { or } \quad\left(g / h^{s}\right)^{*}\left(D / h^{q-s}\right)^{*}=\left(A / h^{q}\right)^{*}=A^{\prime} .
\end{gathered}
$$

Therefore, since $\left(D / h^{q-s}\right)^{*} \in k_{\tilde{v}}\left[r^{*}\right], A^{\prime}$ is divisible by $\left(g / h^{s}\right)^{*}$. If $i<0$, $w\left(g C-h^{-i} A B\right)>w\left(A B h^{-i}\right)=w(g C)$. Now because g is a key polynomial and $\operatorname{deg} h<n<\operatorname{deg} g$, it results that, say, A is equivalence divisible by g. Thus as above $A^{\prime}=\left(A^{\prime} / h^{q}\right)^{*}$ is divisible by $\left(g / h^{s}\right)^{*}$ in $k_{\tilde{v}}\left[r^{*}\right]$. In conclusion $\left(g / h^{s}\right)^{*}$ is irreducible in $k_{\tilde{v}}\left[r^{*}\right]$ and since $w\left(g_{0}\right)=w(g)=w\left(h^{s}\right)$, its constant terms is not zero.
$3) \Rightarrow 2)$ By 3) it results that $t=s e, w(g)=s e \gamma=t \gamma$, and $g_{t}=1$. Hence β) is accomplished. The condition α) is also satisfied because the constant term of $\left(g / h^{s}\right)^{*}$ is not zero.

Now we are only to show that γ) is also true. For this take $A, B \in K[X]$ such that $A B$ is equivalence divisible by g. Then there exists $D \in K[X]$ such that

$$
w(g D-A B)>w(A B)=w(g D)
$$

Let i and j be the smallest non-negative integers such that

$$
w(A)+i \gamma=\bar{v}(\omega(a)), \quad \text { and } \quad w(B)+j \gamma=\bar{v}(\sigma(a)),
$$

where $\omega, \sigma \in K[X], \operatorname{deg} \omega<n$ and $\operatorname{deg} \sigma<n$. Then

$$
\begin{aligned}
& w\left(\frac{g}{h^{s}} \cdot \frac{D h^{s} f^{i+j}}{\omega \sigma}-\frac{A f^{i}}{\omega} \cdot \frac{B f^{j}}{\sigma}\right)>0, \text { i.e., } \\
& \left(g / h^{s}\right)^{*}\left(\frac{D h^{s} f^{i+j}}{\omega \sigma}\right)^{*}=\left(\frac{A f^{i}}{\omega}\right)^{*}\left(\frac{B f^{j}}{\sigma}\right)^{*}
\end{aligned}
$$

Here according to Corollary 1.6, all factors are polynomials of $k_{\tilde{v}}\left[r^{*}\right]$. So, since $\left(g / h^{s}\right)^{*}$ is irreducible by hypothesis, it results that it divides, say, $\left(\frac{A f^{i}}{\omega}\right)^{*}$. Hence one has the equality

$$
\left(g / h^{s}\right)^{*} \cdot G^{\prime}=\left(\frac{A f^{i}}{\omega}\right)^{*}, \quad G^{\prime} \in k_{\tilde{v}}\left[r^{*}\right] .
$$

According to Notation 1.7, one may write $G^{\prime}=\left(G / h^{p}\right)^{*}$ with $G \in K[X]$ and a suitable non-negative integer p. Then

$$
w\left(\frac{g G}{h^{s+p}}-\frac{A f^{i}}{\omega}\right)>0, \quad \text { or } \quad w\left(g G \omega-A f^{i} h^{s+p}\right)>w\left(h^{s+p} \omega\right)=w(g G \omega)
$$

Furthermore, by 3) and Proposition 4.2, g is not equivalence divisible by f. Then by Proposition 3.1, it results that $G \omega$ is equivalence divisible by f^{i}, i.e. $w\left(G \omega-f^{i} H\right)>w(G \omega)=w\left(f^{i} H\right), H \in K[X]$. Hence

$$
w\left(g H f^{i}-A f^{i} h^{s+p}\right)>w\left(g H f^{i}\right), \quad \text { or } \quad w\left(g H-A h^{s+p}\right)>w(g H) .
$$

Now let $d \in K[X]$ be such that $w\left(d h^{s+p}\right)=0, \operatorname{deg} d<n$, and that $w\left(d h^{s+p}-1\right)>0$. Thus

$$
w\left(g H d-A\left(d h^{s+p}-1+1\right)\right)>w(g H d), \quad \text { or } \quad w(g H d-A)>w(g H d)=w(A) .
$$

This means that A is equivalence divisible by g. In conclusion g is equivalence irreducible. The proof of Theorem 4.6 is complete.

Corollary 4.7. Let G be a monic and irreducible polynomial of $k_{\tilde{v}}\left[r^{*}\right]$ whose constant term is not zero. Let g be a lifting of G (see Notation 1.7). Then g is a key polynomial over w. In particular, g is an irreducible polynomial of $K[X]$.

Proof. Let $s=\operatorname{deg} G$. Then $\operatorname{deg} g=s e n=t n$, and $g=g_{0}+g_{1} f+\cdots+f^{s e}, g_{i}$ $\in K[X], \operatorname{deg} g_{i}<n$. The condition that G has a non-zero constant term shows that $w(g)=w\left(g_{0}\right)=w\left(f^{s e}\right)=s e r$. Thus, since $G=\left(g / h^{s}\right)^{*}$, by condition 3) in Theorem 4.6 it results that g is a key polynomial over w.

5. Valuation defined by a key polynomial

In this section we show that key polynomials over an r.t. extension of v to $K(X)$ give new r.t. extensions of v to $K(X)$. In particular, we show that key polynomials may be used to yield minimal pairs.

Theorem 5.1. Let w be an r.t. extension of v to $K(X)$ and let f_{1} be a key polynomial over w. Take $\gamma_{1}>G_{\bar{v}}$ such that $\gamma_{1}>w\left(f_{1}\right)$. Let w_{1} be the augmented valuation over w associated with f_{1} and γ_{1}. Then w_{1} is an r.t. extension of v to $K(X)$. Moreover there exists a root a_{1} of f_{1} and $\delta_{1} \in \bar{G}_{v}$ such that (a_{1}, δ_{1}) is a minimal pair of w_{1} with respect to K and w_{1} well dominates w.

Proof. As usual we keep the notations stated in Notation 1.3. Let (a, δ) be a minimal pair of definition of w. Then two cases are possible $\operatorname{deg} f_{1}=n=$ $\operatorname{deg} f$ or $\operatorname{deg} f_{1}>n$ (see Proposition 4.1). We shall consider each case separately.
A) First assume that $\operatorname{deg} f_{1}=n$. Then according to condition 3) in Theorem 4.4, there exists a root a_{1} of f_{1} such that $\left(a_{1}, \delta\right)$ is also a minimal pair of definition of w. Hence we may assume that $f_{1}=f$ and $a_{1}=a$. Since (a, δ) is a minimal pair of definition of w, one has

$$
\begin{gathered}
w(f)=\gamma=\inf \left(\bar{v}\left(A_{i}\right)+i \delta\right), \quad \text { where } f=\sum_{i=1}^{n} A_{i}(X-a)^{i}, A_{i} \in \bar{K} \\
\text { and } \delta=\sup _{1 \leqq i \leqq n} \frac{\gamma-\bar{v}\left(A_{i}\right)}{i} .
\end{gathered}
$$

Now let us define

$$
\delta_{1}=\sup _{1 \leq i \leq n} \frac{\gamma_{1}-\bar{v}\left(A_{i}\right)}{i} .
$$

Since by hypothesis $\gamma_{1}>\gamma$, it results that $\delta_{1}>\delta$. Therefore (a, δ_{1}) is also a minimal pair because (a, δ) is a minimal pair with respect to K. Let w^{\prime} be the restriciton of $w_{\left(a, \delta_{1}\right)}$ to $K(X)$. Then by Theorem 1.2, for $F \in K[X]$

$$
w^{\prime}(F)=\inf \left(\bar{v}\left(F_{i}(a)\right)+i \gamma_{1}\right)=\inf \left(w\left(F_{i}\right)+i \gamma_{1}\right),
$$

where $F=F_{0}+F_{1} f+\cdots+F_{s} f^{s}$, $\operatorname{deg} F_{i}<n, 0 \leqq i \leqq s$. Hence $w_{1}=w^{\prime}$ by definition of an augmented valuation. Therefore w_{1} well dominates w because $w_{(a, \delta)}<$ $w_{\left(a, \delta_{1}\right)}$ by [4, Proposition 2.1].
B) Next assume that $\operatorname{deg} f_{1}=n_{1}>n$. Then by assertion 3) in Theorem 4.6, there exists a positive integer s such that $w\left(f_{1} / h^{s}\right)=0$ and that $\left(f_{1} / h^{s}\right)^{*}$ is an irreducible polynomial of $k_{\tilde{v}}\left[r^{*}\right]$. Then, according to [3, Prosition 1.1] there exists an element $a_{1} \in \bar{K}$ such that $f_{1}\left(a_{1}\right) h^{s}\left(a_{1}\right)=0$ and that (a, δ) is a pair of definition of $w_{(a, \delta)}$, or equivalently $\bar{v}\left(a_{1}-a\right) \geqq \delta$. Now since deg $h<n$ and (a, δ) is a minimal pair with respect to K, one has necessarily $f_{1}\left(a_{1}\right)=0$. Writing $f_{1}=\sum_{i=1}^{n_{1}} A_{i}^{\prime}\left(X-a_{1}\right)^{1}, A_{i}^{\prime} \in \bar{K}$, define

$$
\delta_{1}=\sup _{1 \Sigma i \leq n_{1}} \frac{\gamma_{1}-\bar{v}\left(A_{i}^{\prime}\right)}{i} .
$$

In what follows we shall show that w_{1} is an r.t. extension of v to $K(X)$ and that (a_{1}, δ_{1}) is a minimal pair of definition of w_{1} with $\delta<\delta_{1}$, or w_{1} well dominates w. We shall divide the proof in several steps.

B1) At this point we introduce an useful notation. Let us denote by P the subring of $K[X]$ whose elements are fractions $p=F / G$ such that $w(p) \geqq 0$, and that every irreducible factor of G has the degree smaller than n. According to Corollaries 1.4 and 1.6 it results that for every $p \in P$ the mapping $p m \rightarrow p^{*}$ gives a surjective ring homomorphism $\rho: P \rightarrow k_{\tilde{v}}\left[r^{*}\right]$.

If $p \in O_{w_{1}}$, let us denote by $p^{* *}$ the image of p into the residue field $k_{w_{1}}$. According to MacLane's Theorem (see Theorem 3.2), one has $w<w_{1}$. So if $p \in P$, then $p \in O_{w_{1}}$. Hence the mapping $p m \rightarrow p^{* *}$ gives a ring homomorphism $\rho_{1}: P \rightarrow k_{w_{1}}$. Finally, it is easy to see that the mapping $p^{*} m \rightarrow p^{* *}$ gives a $k_{v^{-}}$ algebras homomorphism $\varphi: k_{\tilde{v}}\left[r^{*}\right] \rightarrow k_{w_{1}}$, which makes the following diagram commutative

B2) Since $\gamma_{1}>w\left(f_{1}\right)$ and $w(h)=w_{1}(h)$ we note that the kernel of φ is generated by $\left(f_{1} / h^{s}\right)^{*}$. This implies that for every $z \in k_{\tilde{v}}\left[r^{*}\right], \varphi(z)$ is algebraic over k_{v}.

B3) Let e_{1} be the smallest positive integer such that $e_{1} \gamma_{1} \in G_{w}$. We claim that there exists a polynomial $h_{1} \in K[X]$ such that $\operatorname{deg} h_{1}<\operatorname{deg} f_{1}=n_{1}$ and that $w\left(h_{1}\right)=w_{1}\left(h_{1}\right)=e_{1} \gamma_{1}$.

According to Theorem 1.2, since $G_{w}=G_{\tilde{v}}+Z \gamma$ and $e \gamma \in G_{\tilde{v}}$, one has $e_{1} \gamma_{1}=$ $w\left(g f^{i}\right)$ for suitable g and i with $\operatorname{deg} g<n, 0 \leqq i<e$. Then, if $g f^{i}=q f_{1}+h_{1}$, $\operatorname{deg} h_{1}<n_{1}$, we have $w\left(g f^{i}\right)=e_{1} \gamma_{1}=w\left(h_{1}\right)$. Indeed, assume that $e_{1} \gamma_{1}>w\left(h_{1}\right)$. Then $w\left(q f_{1}+h_{1}\right)>w\left(h_{1}\right)$. But this is impossible, because f_{1} is a key polynomial over w and $\operatorname{deg} h_{1}<n_{1}$. Further, if $e_{1} \gamma_{1}<w\left(h_{1}\right)$ then $w\left(g f^{i}-q f_{1}\right)>w\left(g f^{i}\right)=e_{1} \gamma_{1}$. Since f_{1} is a key polynomial over w, it results that one of the polynomials g or f is equivalence div!sible by f_{1}. But this is also impossible since $\operatorname{deg} n<n_{1}$. Hence $w\left(g f^{i}\right)=e_{1} \gamma_{1}=w\left(h_{1}\right)$.

B4) Now we shall prove that, if we put $r_{1}=f_{1}^{e_{1}} / h_{1}$ with h_{1} as above (see B3)), $w_{1}\left(r_{1}\right)=0$ and $r_{1}^{* *} \in k_{w_{1}}$ is transcendental over k_{v}. Moreover, r_{1} is the element of $K(X)$ of the smallest degree with these properties.

For the sake of simplicity, in the rest of this proof we shall express $r_{1}^{* *}$ by y. Assume that $y \in k_{w_{1}}$ is algebraic over k_{v}. Then there exists b_{0}, \cdots, $b_{t-1} \in K$ such that $v\left(b_{i}\right) \geqq 0,0 \leqq i<t$, and that

$$
b_{0}^{*}+\cdots+b_{t-1}^{*} y^{t-1}+y^{t}=0
$$

Let us consider the polynomial $G=b_{0} h_{1}^{t}+b_{1} h_{1}^{t-1} f_{1}^{e_{1}}+\cdots+b_{t-1} h_{1} f_{1}^{(t-1) e_{1}}+f_{1}^{t e_{1}}$. Then $w_{1}(G)>w\left(h_{1}^{t}\right)=t_{1} e_{1}$.

On the other hand, since $\operatorname{deg} h_{1}<n_{1}, \operatorname{deg} b_{i} h_{1}^{t-i} f_{1}^{e_{1} i}<t e_{1} n_{1}$. So, in the $f_{1}-$ expansion of G, the term $f_{1}^{t e_{1}}$ must appear. But, then, according to the definition of w_{1}, one has $w_{1}(G) \leqq t_{1} e_{1}$. This is a contradiction. Therefore y is transcendental over k_{v}.

Furthermore, suppose $p=F / H \in K(X)$ satisfies $w_{1}(p)=0$ and $\operatorname{deg} p=[K(X)$: $K(p)]=\max (\operatorname{deg} F, \operatorname{deg} H)<\operatorname{deg} r_{1}=e_{1} n_{1}$. Let

$$
F=F_{0}+F_{1} f_{1}+\cdots+F_{m} f_{1}^{m}, \quad \text { and } \quad H=H_{0}+H_{1} f_{1}+\cdots+H_{q} f_{1}^{q}
$$

be the f_{1}-expansions of F and H respectively. Since $w_{1}(p)=0$, one has

$$
w_{1}(F)=\inf _{i}\left(w\left(F_{i}\right)+i \gamma_{1}\right)=w_{1}(H)=\inf _{j}\left(w\left(H_{j}\right)+j \gamma_{1}\right)
$$

Now since $\operatorname{deg} p<e_{1} n_{1}$, it follows that $m<e_{1}, q<e_{1}$. So there exists only one index, say i, such that

$$
w_{1}(F)=w\left(F_{i}\right)+i \gamma_{1}=w_{1}(H)=w\left(H_{i}\right)+i \gamma_{1} .
$$

But then $p^{* *}=\left(\frac{F_{i}}{H_{i}}\right)^{* *}$, because

$$
p=\frac{F}{H}=\frac{F_{i}}{H_{i}} \cdot \frac{F_{0} / F_{i} f_{1}^{i}+\cdots+1+\cdots}{H_{0} / H_{1} f_{1}^{i}+\cdots+1+\cdots} .
$$

To end the proof of B4) it is enough to show that $p^{* *}$ is algebraic over k_{v}. Indeed, since $\operatorname{deg} F_{i}<n_{1}, \operatorname{deg} C_{i}<n_{1}, w_{1}\left(F_{i}\right)=w\left(F_{i}\right)=w_{1}\left(H_{i}\right)=w\left(H_{i}\right)$. Let d be a positive integer such that $d w\left(F_{i}\right)=v(c)$ for a suitable $c \in K$. Then we have (see (2)):

$$
\begin{gathered}
p^{* d}=\left(\frac{F_{i}}{H_{i}}\right)^{* d}=\left(\left(F_{i}^{d} / c\right) /\left(H_{i}^{d} / c\right)\right)^{*}=\left(F_{i}^{d} / c\right)^{*} /\left(H_{i}^{d} / c\right)^{*} . \\
\varphi\left(p^{* d}\right)=\varphi\left(\left(F_{i}^{d} / c\right)^{*}\right) / \varphi\left(\left(H_{i}^{d} / c\right)^{*}\right)=p^{* * d} .
\end{gathered}
$$

Hence $p^{* *}$ is also algebraic over $k_{v}($ see B 1$)$).
B5) Finally we shall prove that the pair (a_{1}, δ_{1}) defined above (see B)) is a minimal pair of definition of w_{1} (with respect to K). For this we show that $[K(b): K] \geqq n_{1}$, whenever $\left(b, \delta_{1}\right)$ is a pair of definition of w_{1} with respect to K. We shall prove that $\operatorname{deg} g \geqq n_{1}$ if g is the minimal polynomial of b over K.

Indeed, let us assume that $\operatorname{deg} g<n_{1}$. According to the definition of an augmented valuation, one has $w_{1}(g)=w(g)$. Take a suitable positive integer t such that $t w(g)=v(c), c \in K$. Then $w\left(g^{t} / c\right)=w_{1}\left(g^{t} / c\right)=0$, and by diagram (2) one has $0 \neq\left(g^{t} / c\right)^{* *}=\varphi\left(\left(g^{t} / c\right)^{*}\right)$. Hence $\left(g^{t} / c\right)^{* *}$ is algebraic over k_{v}. But this contradicts the assumption that $\left(b, \delta_{1}\right)$ is a pair of definition of w_{1} (see [1]).

Furthermore, since $\left(f_{i}^{e_{1}} / h_{1}\right)^{* *}$ is transcendental over k_{v}, according to [3, Proposition 1.1] it follows that there exists a root a_{1}^{\prime} of $f_{1} h_{1}=0$ such that ($a_{1}^{\prime}, \delta_{1}$) is a pair of definition of w_{1}. Since $\operatorname{deg} h_{1}<n_{1}=\operatorname{deg} f_{1}$ it follows that a_{1}^{\prime} is necessarily a root of f_{1} and that ($a_{1}^{\prime}, \delta_{1}$) is a minimal pair of definition of w_{1}.

And we have the inequality $\delta<\delta_{1}$ because $w\left(f_{1}\right)<\gamma_{1}$ (see B)). The proof of Theorem 5.1 is complete.

Remark 5.2. Let w_{1}, w_{2} be two r.t. extensions of v to $K(X)$ such that $w_{1}<w_{2}$. In general, we do not know if w_{2} well dominates w_{1}. However, according to Theorem 5.1, if w_{2} is an augmented valuation over w_{1}, then w_{2} well domintes w_{1}. Now we shall give an example which shows that the "well domination" is not a special property of an augmented valuation, i.e. it is possible that w_{2} well dominates w_{1} even if w_{2} is not an augmented valuation over w_{1}.

Let K be the field of 3 -adic numbers and v the 3 -adic valuation on K. Let $a_{2}=\sqrt[8]{3}$. The minimal polynomial of a_{2} is $f_{2}=X^{3}-3$. Let ω be a primitive cube-root of 1 . Then, $a_{2}, \omega a_{2}, \omega^{2} a_{2}$ are all roots of f_{2}. One has $\sup \left(\bar{v}\left(a_{2}-\omega a_{2}\right)\right.$,
$\left.\bar{v}\left(a_{2}-\omega^{2} a_{2}\right)\right)=4 / 3$. Hence according to [3, Proposition 3.2, b)], $\left(a_{2}, 2\right)$ is a minimal pair. Let w_{2} be the restriction of $w_{\left(a_{2}, 2\right)}$ to $K(X)$ and w_{1} the restriction of $w_{(0,0)}$ to $K(X)$. It is easy to see that w_{2} well domintes w_{1}. However, w_{2} is not an augmented valuation over w_{1}. Indeed, if w_{2} would be an augmented valuation over w_{1}, then for every polynomial g of $\operatorname{deg} g<3$ we have $w_{1}(g)=w_{2}(g)$. But it is easy to see that $w_{1}\left(X^{2}-3\right)<w_{2}\left(X^{2}-3\right)$.

On the other hand, Theorem 5. 5 gives a characterization of r.t. valuations which are augmented valuations over another r.t. extensions of v to $K(X)$. First we prove the following:

Lemma 5.3. Let w_{1}, w_{2} be r.t. extensions of v to $K(X)$ such that $w_{1}<w_{2}$. Let $g \in K[X]$ be a monic polynomial of the smallest degree such that $w_{1}(g)<w_{2}(g)$. Then g is a key polynomial over w_{1}.

Proof. Let $\left(a_{i}, \delta_{i}\right)$ be a minimal pair of definition of w_{i} and let f_{i} be the monic minimal polynomial of $a_{i}, i=1,2$. According to Corollary 2.2 b) it follows that, if $h \in K[X]$ is of $\operatorname{deg} h<\operatorname{deg} f_{1}, w_{1}(h)=\bar{v}\left(h\left(a_{1}\right)\right)=\bar{v}\left(h\left(a_{2}\right)\right)=w_{2}(h)$. Hence $\operatorname{deg} g \geqq \operatorname{deg} f_{1}$. Let t be a positive integer such that $w_{1}\left(g^{t}\right)=-v(c), c \in K$. Then $w_{1}\left(c g^{t}\right)=0$, and $\left(c g^{t}\right)^{*}$ is a non-zero element of $k_{\tilde{v}}\left[r_{1}^{*}\right]$. The hypothesis $w_{1}(g)<$ $w_{2}(g)$ yields $\varphi\left(\left(c g^{t}\right)^{*}\right)=0$. But then, according to Proposition 2.1 a), it results that $\left(c g^{t}\right)^{*}$ is transcendental over k_{v}. Therefore, according to [3, Proposition 1.1] there exists a root b of g such that $\left(b, \delta_{1}\right)$ is a pair of definition of w_{1}.

Now we consider the cases $\operatorname{deg} g=\operatorname{deg} f_{1}$ and $\operatorname{deg} g>\operatorname{deg} f_{1}$ separately.
Suppose $\operatorname{deg} g=\operatorname{deg} f_{1}$. Then (b, δ) is also a minimal pair of definition for w_{1}. Hence according to Corollary 4.3, g is a key polynomial over w_{1}.

Now let us assume that $\operatorname{deg} g>\operatorname{deg} f_{1}$ and

$$
g=A_{0}+A_{1} f_{1}+\cdots+A_{t} f_{1}^{t}, \quad \operatorname{deg} A_{i}<\operatorname{deg} f, \quad 0 \leqq i \leqq t
$$

To show that g is a key polynomial over w_{1} we shall prove that g satisfies the condition 3) in Theorem 4.6.
a) First we claim that $w_{1}(g)=w_{1}\left(A_{0}\right)$. Since $w_{1}(g) \leqq w_{1}\left(A_{0}\right)$ we show that $w_{1}(g)<w_{1}\left(A_{0}\right)$ implies a contradiction. Indeed, assume that $w_{1}\left(g_{2}\right)<w_{1}\left(A_{0}\right)$. Let $g=A_{0}+f_{1} q, \operatorname{deg} q<\operatorname{deg} g$ be the f_{1}-expansion of g. Then $w_{1}\left(g-f_{1} q\right)=w_{1}\left(A_{0}\right)>$ $w_{1}(g)$. Hence $w_{1}(g)=w_{1}\left(f_{1} q\right)<w_{1}\left(A_{0}\right)$. Since $\operatorname{deg} q<\operatorname{deg} g$ then, by hypothesis on g, one has

$$
w_{2}\left(f_{1} q\right)=w_{1}\left(f_{1} q\right)=w_{1}(g)<w_{2}(g)
$$

Thus $w_{1}(g)=w_{1}\left(f_{1} q\right)=w_{2}\left(f_{1} q\right)=w_{2}\left(g-f_{1} q\right)=w_{2}\left(A_{0}\right)=w_{1}\left(A_{0}\right)$. So we get a desired contradiction.
b) Next we show that $t=s e_{1}$ and $w_{1}(g)=s e_{1} \gamma_{1}$. Note that by a) it follows that $w_{1}(g)=w_{1}\left(A_{0}\right)=\bar{v}\left(A_{0}\left(a_{1}\right)\right) \in G_{\bar{v}}$, where \tilde{v} is the restriction of \bar{v} to $K\left(a_{1}\right)$. Now we remark that $w_{1}(g)=w_{1}\left(A_{1} f_{1}^{t}\right)$. Indeed, if $w_{1}(g)<w_{1}\left(A_{t} f_{1}^{t}\right)$, then $w_{1}(B)=w_{1}(g)$, where $B=g-A_{t} f_{1}^{t}$. Hence $w_{1}\left(A_{t} f_{1}^{t}\right)>w_{1}(B)$. Further, since $\operatorname{deg} B<\operatorname{deg} g$, one has $w_{1}(B)=w_{2}(B)$. And $w_{1}\left(A_{t} f_{1}^{t}\right)=w_{2}\left(A_{t} f_{1}^{t}\right)$. On the other hand, since $w_{2}(g)>$ $w_{1}(g)=w_{1}(B)=w_{2}(B)$, one has $w_{1}\left(A_{t} f_{1}^{t}\right)=w_{2}(g-B)=w_{2}(B)=w_{1}(B)$ a contradiction. Therefore $w_{1}(g)=w_{1}\left(A_{t} f_{1}^{t}\right)$. Since $w_{1}(g) \in G_{\tilde{v}}$, it follows that $w_{1}\left(f_{1}^{t}\right) \in G_{\tilde{v}}$, or $t=s e_{1}$.

Now we shall prove that $A_{t}=1$, or A_{t} is of degree 0 . Since $w_{1}(g) \in G_{\tilde{v}}$, there exists $h \in K[X], \operatorname{deg} h<\operatorname{deg} f_{1}$ such that $w_{1}(g)=w_{1}(h)=\bar{v}\left(h\left(a_{1}\right)\right)$. Hence $0 \neq(g / h)^{*} \in k_{\tilde{v}}\left[r_{1}^{*}\right]$. We show that $(g / h)^{*}$ is in fact an irreducible polynomial of $k_{\tilde{v}}\left[r_{1}^{*}\right]$. Note that by hypothesis $\varphi\left((g / h)^{*}\right)=0$. Hence to prove that $(g / h)^{*}$ is irreducible it is enough to show that $(g / h)^{*}$ is the kernel of φ.

Let $m \in k_{\tilde{v}}\left[r^{*}\right]$ be the monic generator of the kernel of φ, i.e.

$$
m=u_{0}+u_{1} r_{1}^{*}+\cdots+u_{p-1} r_{1}^{* p-1}+r_{1}^{* p} .
$$

Since $w_{1}(g) \in G_{\tilde{v}}, w_{1}\left(A_{i} f_{1}^{i}\right)>w_{1}(g)=w_{1}(h)$, for every $i \not \equiv 0\left(\bmod e_{1}\right)$. Thus

$$
\begin{aligned}
(g / h)^{*} & =\left(A_{0} / h\right)^{*}+\left(A_{e_{1}} h_{1} / h\right)^{*}\left(f_{1}^{\left.e_{1} / h_{1}\right)^{*}+\cdots+\left(A_{t} h_{1}^{s} / h\right)^{*}\left(f_{1}^{\left.e_{1} / h_{1}\right)^{* s}}\right.} \begin{array}{l}
\\
\\
=u_{0}^{\prime}+u_{1}^{\prime} r_{1}^{*}+\cdots+u_{s}^{\prime} r_{1}^{* s}, \quad u_{i}^{\prime}=\left(\frac{A_{i e_{1}} h_{1}^{i}}{h}\right)^{*} \in k_{\tilde{v}}, 0 \leqq i \leqq s .
\end{array} .=i_{i} .\right.
\end{aligned}
$$

Now since m is the kernel of φ, it follows that $p \leqq s$. Let $M=m_{0}+m_{1} f_{1}^{e_{1}}+\cdots$ $+f_{1}^{p e_{1}}$ be a lifting of m in $K[X]$. Since $\varphi(m)=0$, it follows that $w_{1}(M)<w_{2}(M)$. Thus $\operatorname{deg} M \geqq \operatorname{deg} g$, or $p e_{1} \operatorname{deg} f_{1} \geqq s e_{1} \operatorname{deg} f_{1}+\operatorname{deg} A_{t}$. This inequality together with the inequality $p \leqq s$ implies that $s=p$ and $A_{s}=1$. Therefore it results that $w_{1}(g)=w_{1}\left(f_{1}^{t}\right)=s e_{1} \gamma_{1}$ as claimed.
c) Finally we shall prove that $\left(g / h_{\mathrm{i}}^{s}\right)^{*}$ is an irreducible polynomial of $k_{\tilde{v}}\left[r_{1}^{*}\right]$, with non-zero constant term. Indeed, by a) and b) one has $w_{1}(g)=w_{1}\left(A_{0}\right)=s e_{1} \gamma_{1}$ $=w_{1}\left(h_{1}^{s}\right)$. On the other hand, since $w_{1}(g) \in G_{\tilde{v}}, w_{1}\left(A_{i} f_{1}^{i}\right)>w_{1}(g)$ if $i \not \equiv 0\left(\bmod e_{1}\right)$. Hence

$$
\left(g / h_{1}^{s}\right)^{*}=\left(A_{0} / h_{1}^{s}\right)^{*}+\left(A_{e_{1}} / h_{1}^{s-1}\right)^{*} r_{1}^{*}+\cdots+r_{1}^{* s},\left(A_{0} / h_{1}^{s}\right)^{*} \neq 0 .
$$

In the same way as for $(g / h)^{*}$, we see that $\left(g / h_{1}^{s}\right)^{*} \in \operatorname{Ker} \varphi$. So $\left(g / h_{1}^{s}\right)^{*}$ is divisible by m. But, since we have already proved that $s=p$, it follows that $\left(g / h_{1}^{s}\right)^{*}$ is also an irreducible polynomial of $k_{\tilde{v}}\left[r_{1}^{*}\right]$ whose constant term $\left(A_{0} / h_{1}^{s}\right)^{*}$ is not-zero.

Remark 5.4. A) Note that the diagram (1) can be derived only by the hypothesis that w_{2} is an extension (but not necessarily an r.t. extension) of v to $K(X)$ which dominates w_{1}. So it is easy to see that Lemma 5.3 is true
without the hypothesis that w_{2} is an $\mathrm{r} . \mathrm{t}$. extension of v.
B) By the proof of Lemma 5.3 it follows that $\left(g / h_{1}^{s}\right)^{*}$ is the kernel of φ.

THEOREM 5.5. Let w_{1}, w_{2} be r.t. extensions of v to $K(X)$ such that $w_{1}<w_{2}$. Let $\left(a_{i}, \delta_{i}\right)$ be a minimal pair of definition of w_{i} and let f_{i} be the monic minimal polynomial of a_{i} (with respect to K), $i=1,2$. The following assertions are equivalent:

1) f_{2} is a key polynomial over w_{1}.
2) f_{2} is the polynomial in $K[X]$ of the smallest degree such that $w_{1}\left(f_{2}\right)<$ $w_{2}\left(f_{2}\right)$.

In this case w_{2} is an augmented valuation over w_{1} and w_{2} well dominates w_{1}.
Proof. 1) $\Rightarrow 2$) First, let us assume that $\operatorname{deg} f_{1}=\operatorname{deg} f_{2}$. Then, according to Theorem 4.43), there exists a root b of f_{2} such that (b, δ_{1}) is also a minimal pair of definition of w_{1}. Hence we may assume that $f_{1}=f_{2}$ and that $b=a_{1}$. The inequality $w_{1}\left(f_{2}\right)<w_{2}\left(f_{2}\right)$ follows by Corollary 2.2.

Next, let us assume that $n_{1}=\operatorname{deg} f_{1}<n_{2}=\operatorname{deg} f_{2}$. According to Theorem 4.6 3), there exists a suitable positive integer s such that $\left(f_{2} / h_{1}^{s}\right)^{*}=\rho_{1}\left(f_{2} / h_{1}^{s}\right)$ is an irreducible polynomial of $k_{\tilde{v}}\left[r_{1}^{*}\right]$ (see Notation 1.3). And by diagram (1) and Corollary 2.2 a), it follows that $\varphi\left(\left(f_{2} / h_{1}^{*}\right)^{*}\right)=0$. Hence $\left(f_{2} / h_{1}^{s}\right)^{*}$ is an irreducible polynomial which generates $\operatorname{Ker} \varphi$.

Futhermore, let $g \in K[X]$ be of the smallest degree such that $w_{1}(g)<w_{2}(g)$. By Lemma 5.3, g is a key polynomial over w_{1}. And, by Theorem 4.6 3) and Corollary 2.2, we may assume $\operatorname{deg} g>n_{1}$. By Theorem 4.63), it results that for a suitable $t,\left(g / h_{1}^{t}\right)^{*}$ is an irreducible polynomial and that $\left(g / h_{1}^{t}\right)^{+} \in \operatorname{Ker} \varphi$. So $\operatorname{deg}\left(g / h_{1}^{t}\right)=\operatorname{deg}\left(f_{1} / h_{1}^{s}\right)$. This means that $\operatorname{deg} g=\operatorname{deg} f_{2}$.

The implication 2) $\Rightarrow 2$) is a special case of Lemma 5.3.
Finally, it is clear that w_{2} is the augmented valuation over w_{1} associated with f_{2} and $\gamma_{2}=w_{2}\left(f_{2}\right)$. So by Theorem 5.1, w_{2} well dominates w_{1}.

6. Some applications

In this section we use the above results on key polynomials and augmented valuations over an r.t. extension to give a new proof of a result [3, Theorem 4.4]. We begin by a completion of Theorem 5.1.

Let w be an r.t. extension of v to $K(X)$. Let (a, δ) be a minimal pair of w with respect to K. As usual we shall use Notation 1.3. If g is a key polynomial over w such that $\operatorname{deg} g>\operatorname{deg} f$, then according to Theorem 4.63), there
exists a positive integer s such that $\left(g / h^{s}\right)^{*}$ is an irreducible polynomial of $k_{\tilde{v}}\left[r^{*}\right]$. The polynomial $\left(g / h^{s}\right)^{*}$ will be called the residue of the key polynomial g.

Lemma 6.1. Let w be an r.t. extension of v to $K(X)$ and let w_{1} be the augmented valuation over w associated with a key polynomial g over w and $\gamma_{1} \in G_{\tilde{v}}$ with $\gamma_{1}>w(g)$. Then
a) $k_{w_{1}}$ is cannonically isomorphic to k_{w} if $\operatorname{deg} g=\operatorname{deg} f$. If $\operatorname{deg} g>\operatorname{deg} f$, then
b) $k_{w_{1}} \cong\left(k_{\tilde{v}}\left[r^{*}\right] /\left(g / h^{s}\right)^{*}\right)(t)$, t transcendental over $k_{\tilde{v}}$, and
c) $G_{w_{1}}=G_{w}+Z \gamma_{1}$.

Proof. a) According to Theorem 4.43), there exists a root b of g such that (b, δ) is a minimal pair of definition of w. Thus according to Theorem 1.2 d), the residue field k_{w} is cannonically isomorphic to $k_{v^{\prime}}(t)$, where v^{\prime} is the restriction of \bar{v} to $K(b)$ and t is transcendental over $k_{v^{\prime}}$. Now according to the step A in Theorem 5. 1, the augmented valuation w_{1} has a minimal pair (b, δ_{1}), where $\delta<\delta_{1}$. Also according to Theorem 1.2 d), it follows that $k_{w_{1}} \cong$ $k_{v^{\prime}}(u)$, where u is a variable, i. $\mathrm{e}^{\cdot} k_{w} \cong k_{w_{1}}$ as claimed.
b) Let us consider the diagram (1). Since g is the polynomial of the smallest degree such that $w(g)<w_{1}(g)$, according to the proof of Lemma 5.3 (see Remark 5.4 B)) it results that $\left(g / h^{s}\right)^{*}$ (the residue of the key polynomial g) is the kernel of φ. Since according to Theorem 1.2 d), $k_{w_{1}}$ is isomorphic to the field of the rational function of one variable over the algebraic closure of k_{v} in $k_{w_{1}}$, we are only to prove that the image of φ in $k_{w_{1}}$ coincides with the algebraic closure of k_{v} in $k_{w_{1}}$. Indeed, according to Theorem 5.1, w_{1} has a minimal pair of definition (a_{1}, δ_{1}) where a_{1} is a root of g. Hence if $y \in k_{w_{1}}$ is algebraic over k_{v} then, according to Theorem 1.2 d), there exists $F \in K[X]$ such that $\operatorname{deg} F<\operatorname{deg} g, w_{1}(F)=\bar{v}\left(F\left(a_{1}\right)\right)=0$, and that $F^{* *}$ is just y. Now since $\operatorname{deg} F<\operatorname{deg} g, w(F)=w_{1}(F)=0$ and $\varphi\left(F^{*}\right)=F^{* *}=y$, where F^{*} is the residue of F in k_{w}. To complete the proof, it suffices to remark that the image of φ is included in the algebraic closure of k_{v} in $k_{w_{1}}$ because the kernel of φ is not trivial.

The part c) results from the definition of an augmented valuation.
Lemma 6.2. Let w be an r.t. extension of v to $K(X)$. Assume that there exists a subgroup G of G_{v} such that $G_{w}<G$ and that the quotient group G / G_{w} is cyclic. Then there exists a key polynomial g over w and $\gamma_{1} \in G_{v}$, with $\gamma_{1}>w(g)$ such that, $G_{w_{1}}=G$ and $k_{w_{1}}$ is k_{v}-isomorphic to k_{w}, where w_{1} is the augumented valuation over w defined by g and γ_{1}.

Paoor. As usual we shall use Notation 1.3. Let (a, δ) be a minimal pair of definition of w. Two cases are possible: $e=1$ or $e>1$.

If $e=1$, then $G_{w}=G_{\tilde{v}}$. Take $\gamma_{1} \in G$ such that $\gamma_{1}>\gamma=w(f)$ and the coset $\bar{\gamma}_{1}$ of γ_{1} modulo G_{w} generates G / G_{w}. Let w_{1} be the augmented valuation over w defined by f and γ_{1}. Then by Theorem 1.2 and Lemma 6.1 a), $G_{w_{1}}=G_{\tilde{v}}+Z \gamma_{1}=$ $G_{w}+Z \gamma_{1}=G$ and $k_{w_{1}} \cong k_{\tilde{v}}(t)$ is k_{v}-isomorphic to $k_{w} \cong k_{\tilde{v}}\left(r^{*}\right)$.

Now assume that $e>1$. Let $g=f^{e}+u$, taking $u \in K[X]$ such that $\operatorname{deg} u<$ $\operatorname{deg} f$ and that $w(u)=\bar{v}(u(a))=w\left(f^{e}\right)=e \gamma$. Then by Theorem 4.63), g is a key polynomial over w end $(g / h)^{*}=r^{*}+y$ with $0 \neq y \in k_{\tilde{v}}$. Take $\gamma_{1} \in G$ such that $\gamma_{1}>w(g)$ and that the coset $\bar{\gamma}_{1}$ or γ_{1} modulo G_{w} generates G / G_{w}. Let w_{1} be the augmented valuation over w associated with g and γ_{1}. Then since, $(g / h)^{*}$ is of degree 1 , according to Lemma 6.1 b) and c) it follows that $k_{w_{1}} \cong k_{\tilde{v}}(t)$ is k_{v}-isomorphic to k_{w} and that $G_{w_{1}}=G$.

LEMMA 6.3. Let w be an r.t. extension of v to $K(X)$ and let $k_{w}=k^{\prime}(t)$ where k^{\prime} is a finite extension of k_{v} and t is transcendental over k_{v}. Let k / k^{\prime} be a finite simple extension, i.e. $k=k^{\prime}(\alpha)$. Then there exists a key polynomial g over w and $\gamma_{1} \in \bar{G}_{v}$ with $\gamma_{1}>w(g)$ such that, if w_{1} is the augmented valuation over w associated with g and γ_{1},

$$
k_{w_{1}} \cong k(t) \quad \text { and } \quad G_{w_{1}}=G_{w}
$$

Proop. Using Notation 1.3, we may assume that $k^{\prime}=k_{\tilde{v}}$ and that $k=k_{\tilde{v}}(\alpha)$. Let $G \in k_{\tilde{v}}\left[r^{*}\right]$ be the monic minimal polynomial of α. We may assume that $k \neq k_{\tilde{v}}$, or G is of degree greater than 1 . Let g be a lifting of G in $K[X]$. According to Corollary 4.7, we know that g is a key polynomial over w.

Take $\gamma_{1} \in G_{w}$ such that $\gamma_{1}>w(g)$ and let w_{1} be the augmented valuation over w associated with g and γ_{1}. The proof of Lemma 6.3 follows from Lemma 6.1 b) and c).

Theorem 6.4. Let (K, v) be a valuation pair, k a finite extension field of k_{v} and G an ordered group such that G / G_{v} is a finite group. Then there exists an r.t. extension w of v to $K(X)$ such that $G_{w} \cong G$ and $k_{w} \cong k(t), t$ transcendental over k.

Proop. Since G / G_{v} is finite we may assume that $G_{v} \subseteq G \subseteq G_{\tilde{v}}$, and that there exists a chain of subgroups $G_{v}=G_{0} \subset G_{1} \subset \cdots \subset G_{m}=G$ such that G_{i+1} / G_{i} is a non-trivial cyclic group, $i=0, \cdots, m-1$.

Let w_{0} be the r.t. extenion of v to $K(X)$ defined by the minimal pair (0,0). Then $k_{w_{0}}=k_{v}\left(X^{*}\right)$ (as usual X^{*} is the image of X in the residue field), and
$G_{w_{0}}=G_{v}$. By repeated application of Lemma 6.2 we can define, starting from w_{0}, an r. t. extension w^{\prime} of v to $K(X)$ such that $G_{w^{\prime}}=G$ and $k_{w^{\prime}}=k_{v}\left(t^{\prime}\right)$, where t^{\prime} is transcendental over k_{v}.

Furthermore, since k / k_{v} is a finite extension, we can define a tower of fields $k_{v}=k_{0} \subset k_{1} \subset \cdots \subset k_{n}=k$ such that k_{i+1} / k_{i} is a simple extension for all i, $0 \leqq i<n$. By repeated application of Lemma 6.3, we can define, starting from w^{\prime}, an r.t. extension w of v to $K(X)$ such that $G_{w}=G_{w^{\prime}}=G$, and $k_{w} \cong k(t)$, where t is transcendental over k. The proof of Theorem 6.4 is complete.

The authors express their gratitude to the referee who has made numerous stylistic and mathematical observations on this work.

References

[1] V. Alexandru and N. Popescu, Sur une classe de prolongements à $K(X)$ d'une valuation sur un corps K, Rev. Roum. Math. Pures Appl. 33 (1988), 5, 393400.
[2] V. Alexandru, N. Popescu and A. Zaharescu, A theorem of characterization of residual transcendental extensions of a valuation, J. Math. Kyoto Univ., 22 (1988), 579-592.
[3] V. Alexandru, N. Popescu and A. Zaharescu, Minimal pair of definition of a residual transcendntal extension of a valuation, J. Math. Kyoto Univ., 30 (1990), 207-225.
[4] V. Alexandru, N. Popescu and A. Zaharescu, All valuations on $K(X)$, J. Math. Kyoto Univ., 30 (1990), 281-296.
[5] N. Bourbaki, Algèbre Commutative, Ch. V: Entiers, Ch. VI: Valuations, Hermann, Paris 1964.
[6] O. Endler, Valuation theory, Springer, Berlin-Heidelberg New York, 1972.
[7] S. MacLane, A construction for absolute values in polynomial rings, Trans. Amer. Math. Soc. 40 (1936), 363-395.
[8] M. Nagata, A theorem on valuation rings and its applications, Nagoya Math. J. 29 (1967), 85-91.
[9] J. Ohm, Simple transcendental extensions of valued fields, J. Math. Kyoto Univ. 22 (1982), 201-221.
[10] A. Ostrowsky. Untersuchungen zur arithmetishcen Theorie der Körper, Math. Z., 30 (1934), 209-404.
[11] L. Popescu and N. Popescu, Sur la definition des prolongements residuels transcendents d'une valuation sur un corps K à $K(X)$, Bull. Math. Soc. Math. R.S. Romania, tom 33 (81), Nr. 3 (1989), 257-264.
[12] P. Ribenboim, Theorie des valuations, Les presses de l'Universite de Montreal, 1964.
[13] O.F.G. Schilling, The theory of valuations, A.M.S. Surveys, no. 4, Providence, Rhode Island, 1950.

University of Bucharest
Department of Mathematics
Str. Academiei 14, 70109 Bucharest Romania.

INCREST
Department of Mathematics Bdul Pacii 220, 79622 Bucharest Romania

[^0]: Received September 25, 1989, Revised September 13, 1990.

